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Abstract

The paper shows how structural reliability algorithms can be incorporated into determin-
istic (commercial) finite element codes and used to perform numerical structural reliability
analysis based on finite element models of a structure. A structural reliability module is
developed and linked to the ANSYS finite element program, creating a customized version
of the program. Structural reliability analysis can be performed in the ANSYS environment,
and involves construction of a parametric finite element model, definition of random param-
eter distributions, definition of a limit state function based on finite element results, and
solution for the failure probability. Numerical examples involving truss and frame structures
are studied. An application example - structural reliability analysis of an eye-bar suspension
bridge - is also presented.

1 Introduction

In the last decades, numerical solutions to engineering problems have been widely developed.
The versatility, broadness and accuracy of numerical (e.g. finite element) solutions have reached
wide acceptability by the engineering practice.

The finite element solution, however, is only a solution to the mathematical model of the
underlying engineering problem. Solution of the actual problem involves, in addition, a physical
(behavioral) model, a failure model, selection of characteristic values for problems parameters
and selection of suitable safety coefficients.

The need for safety coefficients is also widely accepted as due to the various sources of
uncertainty which affect engineering problems. These uncertainties include natural randomness
of problem parameters like material resistance and environmental loads, modelling uncertainty
(the discrepancy between the result of failure models and results of failure tests), statistical
uncertainty, decision uncertainty, human error and phenomenological uncertainty [11].

Structural reliability theory allows some of these uncertainties to be quantified and included
explicitly in the analysis. In consideration of these uncertainties, structural reliability analysis
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yields a quantifiable measure of structural safety, the failure probability, as shown in schematic
form in Figure 1. Structural reliability methods can be used to guide the choice of characteristic
values and safety coefficients to be used in a given project. This is particularly important in
the design of novel structures for which design standards do not apply, in the design of unique
structures and in the re-habilitation analysis of existing structures which have overcome their
original design lives.

On the other hand, structural reliability methods are of little use if they cannot be used in
conjunction with the best available techniques for solving the mechanical part of the problem.
This includes a proper mechanical (behavioral) model of the problem and an accurate solution
scheme for the mathematical model. Hence, it becomes very important to couple structural
reliability algorithms with finite element analysis of structural problems.

This paper lays out the basis at which such coupling can be performed. It shows how
structural reliability algorithms can be incorporated into deterministic finite element programs.
The paper shows the implementation of a structural reliability module for the ANSYS program,
and presents the analysis of some truss and frame structures. An application example involving
an eye-bar suspension bridge is also presented.

 

Figure 1: Reliability analysis of a structure with random parameters.

2 Coupling of reliability and structural analysis

Consider a structural problem where random or uncertain parameters are characterized in terms
of random variables xi (Figure 1). Each random variable is characterized by a marginal prob-
ability density function fXi(xi) and its parameters. Random variables may include material
properties, geometric variables or loads. The vector of random problem parameters is denoted
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by X and the correlation between pairs of random variables is represented by a correlation
matrix C, whose therms ρij are the correlation coefficients between variables i and j.

Loading of the structure produces a set of load effects s(x), which include deformations,
stresses and deflections. For a given failure mode (e.g. excessive deflection, yielding, instability),
a limit state function is written in terms of load effects and some critical value xc (e.g. ultimate
stress, admissible deflection):

g(s(x),xc) = 0 (1)

Critical effect xc can be random or deterministic. The limit state equation is explicit in terms
of load effects s(x), but contains the vector of problem parameters x implicitly. It is important
to note that the relation between problem parameters x and load effects s(x) is given by the
numerical (finite element) solution of the problem.

The limit state function is defined in such a manner that it divides the failure (Df ) and
survival (Ds) domains:

Df = {x|g(x,xc) ≤ 0}
Ds = {x|g(x,xc) > 0} (2)

Failure probability with respect to a given failure mode is given by the integral of the joint
probability density function over the failure domain:

Pf =
∫

g(x,xc)≤0
fX(x)dx (3)

where fX(x) is the joint probability density function (PDF) of the problems random variables.
The integrand fX(x) is usually approximated by marginal densities fXi(xi) and the correlation
coefficients ρij .

The integration domain in equation (3) is not known in closed form, but is given numer-
ically as the solution to the finite element model. For each realization X = x of the vector
of random variables, a (deterministic) solution of the finite element model yields a numerical
value for the limit state equation. This allows equation (3) to be evaluated using the finite
element model of the structure as a black-box, as shown in Figure 2. The structural reliability
algorithm establishes the points where g(x,xc) is to be evaluated, and guides the solution for
failure probabilities. This independence between the structural reliability module and the finite
element solution makes the integration with commercial (deterministic) finite element programs
possible.

Using crude Monte Carlo Simulation, equation (3) is solved directly, by sampling the prob-
lems random variables following the density fX(x) and evaluating the limit state function for
each sampled point. This requires repetitive solutions of the finite element model, and is very
costly in computation time if the failure probability is small.

More efficient solutions can be employed. In the First- and Second-Order Reliability Methods
(FORM and SORM), integral (3) is solved in a transformed space of Standard Gaussian variables,
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Figure 2: Independence between structural reliability module and finite element solution in
structural reliability analysis.

and the integration boundary is approximated by an hyper-plane (FORM) or second-order
surface (SORM). A more efficient sampling scheme (importance sampling) can be constructed
using information obtained from a FORM analysis. These schemes will be presented in the
sequence.

3 Structural reliability fundamentals

3.1 FORM - First order reliability method

In the FORM (and SORM) solutions, the original set of (possibly correlated) random variables
x is transformed into a set of uncorrelated standard Gaussian variables y by the transformation:

y = T(x) (4)

This transformation involves:

1. an evaluation of Gaussian distributions that are equivalent to the original marginal densi-
ties fX(x) and;

2. elimination of the correlation between original variables.
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This transformation allows equation (3) to be solved approximately by making use of the
symmetry of the (uncorrelated) joint standard Gaussian distribution fY(y). If J is the Jacobian
of the transformation from x to y, the desired transformation is:

y = J · {x−Mneq} (5)

In equation (5), the Jacobian is evaluated as:

J = L−1 · (Dneq)−1 (6)

and:
Mneq is the vector of means of the equivalent normal distributions;
Dneq is the diagonal matrix whose elements are the standard deviations of the equivalent normal
distributions and
L−1 is the lower triangular matrix obtained by Choleski decomposition of correlation matrix C.

Parameters (means and standard deviations) of the equivalent Gaussian distributions are
obtained using the Principle of Normal Tail Approximation [7]. This yields:

σneq
Xi

=
φ (y∗i )
fXi(xi)

µneq
Xi

= x∗i − y∗i · σneq
Xi

(7)

where φ(.) is the standard Gaussian density and y∗i = Φ−1(FXi(x
∗
i )) is the point in standard

Gaussian space where the transformation is being made. The transformation also involves the
evaluation of equivalent correlation coefficients [8].

With the transformation to the standard Gaussian space, the rotational symmetry of the
joint density fY(y) is used to approximate the integral in equation (3). As shown in Figure 4,
the point over the limit state surface which is closest to the origin of the standard Gaussian space
is also the point over the failure domain with the greatest probability of occurrence. Therefore,
this is also an appropriate point to approximate the original limit state function g(x,xc) by an
hyper-plane (the first order approximation). This point is also known as the design point, and
it corresponds to that realization (among all possible) of the problems random variables which
is more likely to cause failure of the structure. The (minimal) distance between the design
point and the origin is called reliability index (β). The first order approximation to the failure
probability is:

Pf1 = Φ(−β) (8)

where Φ(.) is the cumulative standard Gaussian distribution.
Because of this minimum property, the design point and reliability index β are found (nu-

merically) using a convenient optimization scheme. The optimization problem is stated as:

minimize: d2 = yT · y
subject to: g(y) = 0 (9)
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Figure 3: First-order approximation in standard normal space.

The minimum is β2 and the minimum point is the design point y∗. The very simple HLRF
algorithm [12,13] can be used to solve the optimization problem. Starting from a point yk, the
next point in the iteration is:

yk+1 =
∇g(yk)T · yk − g(yk)
∇g(yk)T · ∇g(yk)

· ∇g(yk) (10)

where ∇g(yk) is the gradient of the limit state surface with respect to the random variables,
calculated in the standard Gaussian space.

The gradient can be evaluated in original X space by finite difference or by means of Direct
Differentiation [9]. Direct Differentiation involves an analytical derivation of finite element
equilibrium equations in terms of response quantities. It yields a set of (finite element) equations
to be solved for terms of the gradient of response quantities. The contribution of gradient terms
is assembled in a global gradient stiffness matrix, which is solved for the desired gradients. The
gradient evaluated in X space is transformed into Y space using the transformation:

∇g(y) = (J−1)T · ∇g(x) (11)

In this paper, a finite difference scheme is used to compute the gradients. This avoids
programming of finite element routines and allows the finite element code to be used without
alteration.

3.2 SORM - Second order reliability method

First order estimates of the failure probability can be improved by taking into account the
curvatures of the limit state surface at the design point. In the Second Order Reliability Method
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(SORM), a second-order surface is used to approximate the limit state function at the design
point. When an hyper-paraboloid is fitted so that its principal curvatures coincide with the
principal curvatures (ki) of the limit state surface, the SORM estimate of the failure probability
becomes [6]:

Pf2 = Φ(−β)
nrv−1∏

i=1

1√
1− βki

(12)

where nrv is the number of random variables.

3.3 Multiple failure modes

Structural members can usually fail in a multitude of manners. Each failure mode gives rise to
one limit state function. Failure of the member is characterized by failure in any of the possible
failure modes, i.e. the limit state functions for a structural member are associated as a series
system.

In the case of isostatic structures (structures with little redundancy), failure of any of its
members causes failure of the structure. For hyperstatic structures with multiple member re-
dundancy, progressive failure of members has to be considered.

The failure probability of members with multiple failure modes (series system) cannot be
obtained in closed form, unless some simplifications are considered. Bounds for the failure
probability of the member can be derived from individual failure probabilities by linearizing each
limit state functions at its design point. Considering joint failure in two modes and neglecting
triple failure mode combinations, one obtains the bimodal bounds [1]:

P [F1] +
nfm∑

i=2

max


P [Fi]−

i−1∑

j=1

(P (Aij) + P (Bij)) ; 0


 6 Pf

Pf 6
nfm∑

i=1

P [Fi]−
nfm∑

i=2

max
i>j

[max[ P (Aij), P (Bij)]] (13)

where nfm is the number of failure modes and where individual failure modes (Fi) are arranged
in decreasing order of failure probability.

The linearized correlation coefficient between two failure modes is evaluated at the respective
design points as:

ρij =
∇gi · ∇gj

|∇gi| · |∇gj | (14)

The probabilities P (Aij) and P (Bij) in equation (13) are calculated as:
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P (Aij) = Φ(−βi) · Φ

−βj − ρij · βi√

1− ρ2
ij




P (Bij) = Φ(−βj) · Φ

−βi − ρij · βj√

1− ρ2
ij


 (15)

When two or more failure modes are equivalent, the bounds given in equation (13) can
be quite large. The bounds are asymptotic, i.e., they get narrower as the failure probability
decreases. Results for multiple failure modes can be improved with importance sampling, as
will be seen later.

3.4 Response surface

The reliability analysis based on a numerical (finite element) model of a structure can also be
performed by means of a response surface. An approximate polynomial model of the structure
(the response surface) can be constructed by curve fitting to a set of points evaluated from
the numerical model of the problem. The polynomial model is then used for the reliability
computation (e.g. Monte Carlo simulation) with a great speed-up in computation time. A
second-order response surface is obtained as:

grs(x) ≈ a + x · b + xT · c · x (16)

where a,b, c contain the coefficients to be determined. Construction of a complete second-order
surface requires the evaluation of the limit state at (1 + nrv + n2

rv) points, where nrv is the
number of random variables. A cruder version, without cross terms, can also be used. In this
case, only (2nrv + 1) points have to be evaluated. In this paper, vector b and matrix c are
approximated by the gradient and the Hessian of the limit state surface, which are computed by
central differences. The required number of limit state evaluations is (2n2

rv) for each response
surface.

One significant improvement over a ”crude” response surface analysis is to construct response
surfaces around the design points. This ensures that curve fitting is performed around the most
important failure regions, and errors of approximating the numerical response by analytical
surfaces are reduced. In this case, design points are first found using the HLRF algorithm.

3.5 Monte Carlo simulation

3.5.1 Simple sampling

In simple (crude) Monte Carlo simulation, samples of x are generated according to the original
joint probability density function fX(x). Using and indicator function I[g(x)], integration for the
failure probability in equation (3) is extended over the whole domain:
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Pf =
∫

all x
I[g(x)]fX(x)dx (17)

The state of the structure (either failure or survival) for each sample point is given by the
indicator function:

I[g(xi)] = 1 if g(xi) ≤ 0

I[g(xi)] = 0 if g(xi) > 0 (18)

The failure probability is estimated from eq. (17) as:

Pf =

∑nsi
i=1 I[g(xi)]

nsi
(19)

Simulation results are subject to a statistical sampling error. Variance of the estimated
failure probability is:

V ar(Pf ) =

∑nsi
i=1

(
I[g(xi)] − P f

)2

nsi(nsi − 1)
(20)

Due to the small failure probability of engineering structures, usually a very large number
of samples is required in crude Monte Carlo in order to keep the variance within acceptable
limits. Variance of results can be reduced by increasing the number of samples or by making use
of importance sampling, which shifts sampled points to more important regions of the failure
domain.

3.5.2 Importance sampling

With importance sampling, a sampling function hX(x) is used to generated the samples. Each
sampled point xi is associated to a sampling weight wi = fX(xi)/hX(xi), and the failure prob-
ability is given by:

Pf =
1

nsi

nsi∑

i=1

I[g(xi)]
fX(xi)
hX(xi)

(21)

A very efficient sampling scheme is importance sampling using design points [5]. This tech-
nique makes intelligent use of a priory knowledge: location of the most important failure regions,
around the design points.

The sampling function hX(x) for multiple failure modes is constructed following [14]. The
design points are first found using the HLRF algorithm. The FORM estimate of individual
failure probabilities shows the relative importance of each design point. Simulation weights pj

are calculated based on FORM results:

pj =
Φ(−βj)∑k

j=1 Φ(−βj)
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The sampling function is constructed as to have one bulge over each design point and to be
flat elsewhere, as shown in Figure 5. Each bulge hjX is obtained by shifting the original joint
PDF to the respective design point. The bulges are scaled according to sampling weight pj , and
the sampling function results:

hX(x) =
k∑

j=1

pjhjX(x)

When importance sampling (using design points) is used, the required number of samples is
virtually independent of the order of magnitude of the failure probability. Usually, 2000 to 3000
sample points will be required for a 5-10% variance.

The importance sampling simulation can be performed using the finite element model directly
or using the response surfaces fitted to each design point. When the number of random variables
and limit state functions is not large, it is convenient to use response surfaces. Using response
surfaces as proposed in this paper is convenient when (2n2

rvnfm < 3000), where nfm is the
number of failure modes.

The importance sampling scheme is particularly interesting for multiple failure modes. For
each sampled point, all limit state functions are checked. The failure probability for individual
failure modes and for any combination of series and parallel failure modes is easily computed.
Simulation using second-order response surfaces is a significant improvement over linearized
bimodal bounds (eq. 13).

3.6 Sub-modelling

Structural reliability algorithms, when coupled with finite element models of a structure, can be
used to evaluate failure probabilities or to obtain the probability density distribution of response
quantities (load effects). When using sub-models in the structural (finite element) analysis,
response probability densities are necessary in order to construct the (sub-model) reliability
problem.

The distribution of displacements or stresses acting on the sub-model can be determined
from the distribution of original random variables by repeatedly solving the structural reliability
problem of the global finite element model. This is done by varying the critical variable sc for a
given response quantity s(x) over its whole range. The cumulative distribution of S is obtained
as:

FS(sc) = P [S < sc]

=
∫

g(x,sc)≤0
fX(x)dx (22)

using the limit state function:
g(x,sc) = S(x)− sc = 0 (23)
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Figure 4: Importance sampling using design points.

The failure probability is then evaluated using the response quantity probability distribution
and the finite element sub-model. Examples are shown in the sequel to illustrate this feature.

4 A structural reliability module for the ANSYS program

Structural reliability algorithms just described were programmed in Fortran, using the Digital
Fortran 95 compiler. A structural reliability module was developed and linked to the ANSYS
finite element program, creating a customized version of the program. The User Programmable
Feature for optimization (file userop.f) was used to link the structural reliability module with
ANSYS [2,4].

The developed structural reliability module is depicted in Figure 5. The figure shows the
modules main subroutines. The finite element program is acessed by means of the limit state
evaluation subroutine, as indicated in the figure. For each limit state function, the developed
module:

1. finds the design point;
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2. evaluates the first-order failure probability;

3. constructs a response surface centered at the design point;

When more than one failure mode exists, the module:

1. evaluates bi-modal failure bounds and

2. performs Monte Carlo simulation with importance sampling, using the constructed re-
sponse surfaces.

 

 

Figure 5: Fluxogram showing main routines of strutural reliability module.

A structural reliability analysis using ANSYS and the developed module is fully performed
in the ANSYS program environment. It requires only two additional tasks, in comparison to a
deterministic structural analysis:

1. construction of a parametric finite element model of the structure and;
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2. statistical description of random problem parameters.

The parametric model is constructed similarly as in an ANSYS optimization analysis. The
structural reliability module is accessed via the user optimization module. Each random variable
and limit state function is defined as a parameter. The finite element model is constructed and
the solution is obtained. Required load effects (stresses, displacements) are recovered from the
solution and the limit state functions are defined. In the ANSYS optimization module, random
variables are declared as design variables and limit state functions are declared as state variables.
An objective function is defined only to fulfill ANSYS requirements. Results are written to a
text file. Other details are given in ref. [3].

Some numerical examples follow.

5 Numerical examples

5.1 Cantilever beam

This example is taken from [10]. It is very simple on the mechanical point of view, but it has
a highly non-linear limit state function. This allows an analysis of the accuracy of approximate
solution methods. The limit state function corresponds to incipient yielding of the clamped end
of the beam (elastic behavior):

g(x) = Sy − 3ql2

bh2
= X5 − 3X1X

2
2

X3X2
4

= 0 (24)

Data for this example is summarized in Table 1. Results for distinct solution methods are
presented in Table 2.

 

 

Figure 6: Cantilever beam.

Results agree with ref. [10]: Pf1 = 0.100 and Pf2 = 0.103, for FORM and SORM, respectively.
Computation time for this example, using ANSYS, was only a few seconds, using a 80586, 300
MHz processor.

Failure probability for this example is large because the safety coefficient is small (k = 1.16).
The solution was repeated by decreasing (in mean value) load variables q and l and by increasing
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Table 1: Data for cantilever beam example.
RV Distribution µ δ Unit
X1 q Normal 1.15 0.029 kg/cm

X2 l Normal 60.00 0.010 cm

X3 b Normal 4.00 0.030 cm

X4 h Normal 1.00 0.030 cm

X5 Sy Normal 3600.00 0.083 kg/cm2

Table 2: Results for the cantilever beam example.
Method Pf δ / toler. nsi / niter

FORM 0.100 10−3 5
SORM 0.104 10−3 -

Crude MCS 0.103 0.009 105

Imp. Sampling 0.104 0.004 105

Crude MCS with Response Surface 0.107 0.009 105

Imp. Sampling with Response Surface 0.108 0.004 105

resistance variables (b, h and Sy), thus increasing the safety coefficient. Results are shown in
Figure 7, in both linear and logarithmic scales. The figure shows the highly non-linear relation
between safety factors and failure probabilities. It shows how structural reliability analysis can
be used to guide selection of the safety factor. In this example, reducing the safety factor from
1.75 to 1.5 does not affect failure probability critically. But reducing the safety factor from 1.5
to 1.25 can be disastrous. On the other hand, it is seen that increasing the safety factor from
2.0 to 3.0 will only increase costs, with no important increase in reliability.

Figure 8 shows the sub-modelling feature for this problem. The probability density function
for the maximum stress (Smax = 3ql2/bh2) at the clamped end of the beam is obtained by
making X5 deterministic and varying its value. The resulting distribution is compared with
that obtained by random variable algebra (Gaussian assumption). The figure shows that the
high non-linearity of the limit state function does not significantly affect the maximum stress
distribution, which is also closely Gaussian.

5.2 13 bar truss

This 13 bar truss example is taken from ref. [15]. Failure modes are yielding of each bar,
resulting in 13 limit state functions. Yielding stress of each bar is assumed an independent
random variable, with log-normal distribution. Load P is also a random variable.

The problem can be solved analytically by means of load factors, which relate the loading
on each bar with applied load P . The limit state functions are:
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Figure 7: Relation between safety coefficient and failure probability.

 

 

Figure 8: PDF of the maximum stress at the clamped end of the beam.

Latin American Journal of Solids and Structures 3 (2006)
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Figure 9: 13 bar truss example.

gi(x) = SiAi − aiP = 0 for i = 1, ..., 13

where:
Si = yielding stress of the ith bar;
Ai = cross sectional area of the ith bar;
ai = load factor for the ith bar.

Data for this example is presented in Tables 3 and 4. The results are presented in Table 5.

Table 3: Random variable data for 13 bar truss problem.
RV Distribution µ δ Unit
X1 P Log-normal 50250.63 0.10 lb

X2 to X14 Si Log-normal 40032.01 0.04 psi

Table 4: Data for deterministic parameters.
Bar Ai (in2) ai

1 and 4 4.80 2.50
2 and 3 4.80 2.25

5, 6, 7, and 8 2.10 1.50
9, 11 and 13 2.10 1.00
10 and 12 2.10 1.25

Results show that failure of the truss is mainly governed by bars 5 to 8. Results for the series
system analysis agree with results in ref. [15], obtained with a convolution integral (Pf = 0.2435).
Bimodal failure bounds for the series system analysis are very large in this example. This is due
to the high correlation between the most important failure modes.
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Table 5: Results for the 13 bar truss example (series system analysis).
Method Pf δ / toler. nsi / niter

FORM - Bimodal limits 0.1463 ≤ Pf ≤ 0.4154 10−4 5 per g(x)
Crude MCS 0.2434 0.008 5× 104

Imp. Sampling 0.2447 0.004 5× 104

Table 6: Results for individual bars.
Bars Pf (FORM)

1 and 4 3.3× 10−4

2 and 3 3.5× 10−7

5, 6, 7 and 8 0.1463
9, 11 and 13 7.3× 10−7

10 and 12 3.0× 10−3

The safety coefficient for bar 5 is 1.12. Figure 10 shows the non-linear relation between
safety factors and failure probabilities for the truss and for bar number 5.

 

 

Figure 10: Relation between safety coefficient and failure probability.

Solution of this problem using a convolution integral [15] requires significant simplifications,
like the assumption of independence between the yielding stresses and consideration of identical
P loads. These simplifications would not be required in the present formulation. The developed
structural reliability module allows solution of the problem in a more realistic basis.
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5.3 Built-up column

This problem is taken from ref. [8]. Solution involves a non-linear finite element analysis, due to
large deflections of the column. The failure mode considered is buckling. The problem involves
22 random variables: the elasticity modules of struts (E1) and of braces and battens (E2), two
random forces F1 and F2 (following Figure 11) and 18 nodal coordinates. The vertical coordinate
of each node is deterministic, but the horizontal coordinate is represented as a random variable.
This takes into account the effect of geometric imperfections in the buckling load of the column.

 

 

Figure 11: Built-Up column.

The limit state equation is written in terms of the horizontal displacement at the midspan
of the column (node 10) and the critical displacement u0:

g(x) = u0 − u10 = 0

Figure 12 shows the load-displacement curve for the column. From this figure, the critical
displacement is set as u0 = 10 inches. Data for this problem is summarized in Table 7.

The correlation coefficient between E1 and E2 is equal to 0.3. The remaining random vari-
ables are uncorrelated. Cross sectional areas of struts are 1.59 in2 and of braces and battens are
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Figure 12: Load - displacement curve for the Built-Up column.

Table 7: Data for the built-up column problem.
RV Distribution µ δ Unit
X1 E1 Log-normal 30000.0 0.08 ksi
X2 E2 Log-normal 30000.0 0.08 ksi
X3 F1 Log-normal 20.0 0.10 kips
X4 F2 Log-normal 1500.0 0.10 kips

X5 to X22 x2 to x18 Normal +60.0 or −60.0 0.02 in
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Table 8: Results for the built-up column example.
Reference Method Pf tolerance niter

Liu and Kiureghian [10] FORM 5.0× 10−3 ? 8
Present analysis in ANSYS FORM 1.1× 10−4 10−3 8

0.938 in2. Other dimensions are given in Figure 11. Failure probability results are presented in
Table 8.

Results are in reasonable agreement, considering that the non-linear model used in the
two studies was not exactly the same. Because each limit state evaluation requires a non-linear
finite element analysis, the computation time increased reasonably for this problem. The FORM
estimate was obtained in 2 minutes and construction of the response surface lasted 18 minutes.
Much of this computation time is due to the finite difference scheme used in the gradient and
Hessian computations.

For critical displacements larger that 10 inches (u0 > 10) convergence problems were encoun-
tered. Therefore, a comparison between safety factor and failure probabilities was not possible.
The safety factor for this example is 3.62.

Sensitivity coefficients of FORM solution are shown in Figure 13. Those coefficients show the
relative importance of each random variable in failure of the column. Results show the relatively
high importance of the uncertainty in the horizontal coordinate of the nodes, especially for those
nodes situated at the midspan of the column. The figure also shows a large contribution of F2,

comparing to lateral load F1. Uncertainty in elasticity modules affects reliability of the column
more in struts than in braces and battens.

 

 

Figure 13: FORM sensitivity coefficients for the built-up column.
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5.4 Application example: reliability analysis of an eye-bar suspension bridge

The developed structural reliability modules were employed in a simplified reliability analysis of
an eye-bar suspension bridge (Herćılio Luz), located in the city of Florianópolis, Santa Catarina,
Brazil, and built in 1926. The bridges suspension chain is composed of intercalated sets of four
and five parallel eye bars connected by pins. A volume plot of part of the 3D finite element
model used in the analysis is shown in Figure 14. The model has 2275 elements and 8886
degrees of freedom. Stress stiffening effects were considered in the analysis. Details of the
eye-bar suspension chain are shown in Figure 15.

 

 

Figure 14: Volume plot of the bridges 3D finite element model.

In a simplified reliability analysis, only 5 random variables were considered: the distributed
live load (q), yielding stress of the bars (Sy), the ultimate stress (Su), the actual level of corrosion
(area reduction) of the bars (γ) and the dead weight. The uncertainty in the dead weight was
represented by means of an uncertainty in the gravity acceleration constant (g). Random variable
data for the analysis is summarized in Table 9.

Several situations were analyzed in this study. In this paper, results for failure of an individ-
ual bar and for failure of the suspension chain are presented. The complete analysis is presented
in Beck (1999). For failure of an individual bar, two limit states were considered:
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218 André T. Beck and Edison da Rosa

 

 

Figure 15: Detailed view of suspension chain bars.

Table 9: Random variable data for bridge analysis.
Variable Distribution µ δ Unit

q Gaussian 1.4× 106 0.140 N
Sy Weibull for minima 582.60 0.060 MPa
Su Weibull for minima 848.00 0.054 MPa
γ Weibull for maxima 0.10 0.138 -
g Gaussian 9.81 0.100 m/s2

g1(x) = Sy − Sbar1204
membrane

g2(x) = Su − Sbar1204
membrane (25)

Failure mode 1 represent yielding (plastification) of the whole section of a bar and failure
mode 2 represent rupture of the bar. These limit states assume free rotation of the bar, hence
only membrane stresses are included. Bar 1204 is the bar that fractured in use, but results are
valid for any single bar of the suspension chain that is not part of the center frame.

Failure probability results are shown in Table 10:

Table 10: Results for the bridge analysis.
Failure mode Safety factor Failure Probability

yielding - g1(x) 2.00 6.60× 10−6

rupture - g2(x) 2.90 1.70× 10−9
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Independent checking of these results was not possible, but they seem fairly reasonable. The
computation time required in this case was 20 minutes for each limit state. Convergence of the
solution in this study shows the developed structural reliability modules ability to handle large
scale real world problems.

5.4.1 Failure of one module (4 bars)

Each module of the suspension chain is formed by 4 bars, connected to each other and to the
next module by a pin. Failure of one individual bar does not necessarily cause failure of the
suspension chain, as practice has shown (failure of bar 1204 with the bridge still standing). The
four bars of a module form a parallel system with active redundancy.

Since failure of the 4 bars is not perfectly correlated, a conditional failure analysis has to
be performed. For one module, there are 4! = 24 possible failure sequences. The two most
important failure sequences for one module are shown in Figure 16. Initial failure could be of
any bar of the module.

 

 

Figure 16: Most important failure sequences for one module.

The probability for the first bar failure is Pf = 1.70 × 10−9, corresponding to limit state
function g2(x). In the second stage, the failure probability of the remaining bars given failure of
the first bar is evaluated. For this analysis, a random impact factor with distribution N(2, 0.5)
was considered. Failure probability results and sensitivity coefficients for conditional failures are
presented in Table 11.

The failure probability of the third bar, given failure of two bars (stage 3A), is fairly high.
Hence, one can assume failure of the fourth bar, given failure of the third bar, as certain. Con-
sidering independence between bar failures, probability of occurrence of the two most important
failure sequences (as shown in Figure 16) is:

P [sequence 1] = 1.70× 10−9 × 5.02× 10−4 × 1.19× 10−2 = 1.01× 10−14

P [sequence 2] = 1.70× 10−9 × 6.58× 10−5 × 1.19× 10−2 = 1.33× 10−15
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Table 11: Failure probability results and sensitivity coefficients for conditional failure of one
module.

Stage Pf Sensit.
q Su γ g impact factor

1A 1.70× 10−9 −0.22 0.95 −0.16 −0.13 −
2A 5.02× 10−4 −0.48 0.29 −0.42 −0.28 −0.65
2B 6.58× 10−5 −0.47 0.28 −0.52 −0.27 −0.59
3A 1.19× 10−2 −0.53 0.22 −0.36 −0.31 −0.66

Taking into account the symmetry of the module, both sequences can occur in two distinct
forms. Considering failure sequences to be independent and mutually exclusive, the failure
probability for a suspension chain module is:

P [module failure] = 2× P [sequence 1] + 2× P [sequence 2] = 2.86× 10−14

Unimodal failure probability bounds for a suspension chain module are:

2.86× 10−14 ≤ P [module failure] ≤ 1.70× 10−9

The lower bound (left) assumes independence and the upper bound (right) assumes perfectly
correlated bar failures. Since limit state functions for failure of individual bars depend on the
same set of random variables, bar failures are likely to be correlated. Hence, the upper bound
(P [module failure] ≤ 1.70× 10−9) is probably more appropriate.

5.4.2 Failure of the suspension chain

The modules of the suspension chain are connected as a series system, i.e., failure of any of the
modules leads to failure of the suspension chain. Each suspension chain is composed of 46 mod-
ules, with 11 modules belonging to the central truss. Disconsidering central truss modules, that
makes 35 modules in a chain, and 70 modules for 2 chains. Assuming perfect correlation between
module failures, failure probability of the suspension chain is equal to the failure probability of
one module. Assuming independence between module failures leads to:

P [chain failure] = 1−
35∏

i=1

(1− P [failure module i])

= 1− (1− 1.70× 10−9)70 = 1.19× 10−7

Hence, unimodal failure bounds for chain failure, assuming independence (left) and perfect
correlation (right) are:

1.70× 10−9 ≤ P [chain failure] ≤ 1.19× 10−7
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Once more, assuming positive correlation between module failures seems more reasonable,
hence the suspension chain failure probability is more likely to be closer to the upper bound
(right).

6 Conclusion

The paper has shown how numerical structural reliability analysis can be performed based
on finite element models of a structure, by incorporating structural reliability algorithms with
deterministic finite element codes. A structural reliability module was developed and linked to
the ANSYS finite element program.

The developed module provides an efficient and accurate scheme for solving structural reli-
ability problems. It begins by searching design points, and makes intelligent use of design point
location. Construction of response surfaces around each design point reduces errors in failure
probability estimation, and allows an accurate evaluation of multi mode failure probabilities
through importance sampling. If the numerical finite element model is not too large, impor-
tance sampling simulation can be performed directly on the finite element model, avoiding errors
introduced by curve fitting.

Structural reliability analysis using the developed module becomes quite simple, requiring
small additional effort in comparison to a traditional deterministic analysis. The feasibility of
a numerical structural reliability analysis has been demonstrated through the solution of some
example problems. These included non-linear and large scale structural problems.

The study of two very simple problems has shown the highly non-linear relation between
safety coefficients and failure probabilities. It reveals the weak role of safety coefficients as
determinators of structural safety.

Future research includes the incorporation of time-variant structural reliability methods and
random vibration analysis of structures under the action of time-varying loads.
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