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Abstract 
A secant function based shear deformable finite element model is 
developed for the flexural behavior of laminated composite and 
sandwich plates with various conditions. The structural kinematics 
of the plate is expressed by means of secant function based shear 
deformation theory newly developed by the authors. The theory 
possesses non-linear shear deformation and also satisfies the zero 
transverse shear conditions on top and bottom surfaces of the 
plate. The field variables are elegantly utilized in order to ensure 
C0 continuity requirement. Penalty parameter is implemented to 
secure the constraints arising due to independent field variables. A 
biquadratic quadrilateral element with eight nodes and 56 degrees 
of freedom is employed to discretize the domain.  Extensive nume-
rical tests for the flexural behavior of laminated composite and 
sandwich plates are conducted to affirm the validity of the present 
finite element model in conjunction with the improved structural 
kinematics. Influences of boundary conditions, loading conditions, 
lamination sequences, aspect ratio, span-thickness ratio, etc on the 
flexural behavior are investigated specifically and compared with 
the existing results in order to indicate the performance of the 
present mathematical treatment. 
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1 INTRODUCTION 

The requirement of laminated composite and sandwich structures for the structural/components 
design in various disciplines such as aerospace, naval, automotive, civil, etc. has increased signifi-
cantly over the past three decades due to their improved mechanical properties such as specific 
strength, specific stiffness; enhanced environmental properties such as their response to moisture 
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and temperature; design flexibility due to their ability to tailor-made designs. In order to ensure the 
safe and reliable usage of these structures, there has been significant development towards the anal-
ysis procedures. The structural kinematics is always of the primary concern since it describes the 
physical behavior of the structures. Moreover, an efficient numerical tool is mandatory for the in-
vestigation of real application problems. With reference to structural kinematics of laminated com-
posite and sandwich plates, classical laminated plate theory (CLPT) based upon Kirchoff’s hypothe-
sis is inappropriate since it ignores the transverse shear deformation (Reissner, 1945; Mindlin, 1951). 
The early works considering the shear deformation were presented by Whintey (1969), Whitney and 
Pagano (1970), and Reissner (1975, 1979). However, they considered linear shear deformation and 
these theories are termed as first order shear deformation theories (FSDT). In order to ascertain 
zero transverse shear conditions at top and bottom surfaces, a shear correction factor is required in 
FSDT. In addition, the dependency of shear correction factor on lamination sequence, loading con-
ditions etc. makes the FSDT less realistic (Pai, 1995). Various higher-order shear deformation theo-
ries (HSDTs) were developed in the past by neglecting the assumptions of normality and straight-
ness of the normal to mid plane after deformation as in case of CLPT and FSDT respectively. The-
se theories consider non-linear shear deformation and the shear correction factor is not required. 
The HSDTs are either developed in the form of polynomial shear deformation theories (PSDT) by 
considering the Taylor’s series expansion in the in-plane displacement components (Levinson, 1980; 
Lo et al., 1977; Reddy, 1984; Pandya and Kant, 1988; Talha and Singh, 2010) or in the form of 
non-polynomial shear deformation theories (NPSDTs) by expressing the shear deformation in terms 
of a shear strain function (Touratier, 1991; Soldatos, 1992; Karama et al., 2009; Aydogdu, 2009; 
Meiche et al., 2011; Mantari et al., 2011; Hamidi et al., 2012; Mantari et al., 2012; Tounsi et al., 
2013; Grover et al., 2013a). In addition to consider the realistic shear deformation, focus has been 
considered on the inter-laminar continuity (IC) and zig-zag (ZZ) requirement for modeling the mul-
tilayered plate structures (Carrera, 2002). The layerwise (LW) and ZZ theories consider these re-
quirements in addition to shear deformation. Some of the significant contributions towards ZZ and 
LW theories are due to Di Sciuva (1987), Murakami (1986), Cho and Parmerter (1992), Lee and 
Liu (1992), Ferreira et al. (2005), Roque et al. (2005), Pandit et al. (2009a, 2009b), Brischetto et al. 
(2009), Chakrabarti et al. (2011), Neves et al. (2012), Demasi, L. (2012, 2013) and Sahoo and Singh 
(2013). The various review articles on the modeling of laminated-composite and sandwich plates 
have been presented in the past (Noor and Burton, 1989; Reddy, 1991; Reddy and Robbins, 1994; 
Mallikarjuna and Kant, 1993; Liu and Li, 1996; Carrera, 1998, 2002, 2003; Zhang and Yang, 2009). 
Since the computational efforts for modeling the layered structures using HSDTs which are equiva-
lent single layer theories (ESLs) are significantly less than LW and ZZ theories, researchers have 
constantly focused on the development and implementation of ESL theories despite their inability 
to predict ply level information. 
 The use of efficient numerical technique is further essential in order to ensure the suitability to 
general problems related to practical purposes since the analytical techniques such as Navier solu-
tion (Reddy, 1984; Aydogdu, 2009; Mantari et al., 2012; Grover et al., 2013), Levy solution (Khdeir 
et al., 1989) etc. are restricted to simple geometry and boundary conditions. The recent advance-
ments in computational technologies facilitate the development of efficient numerical techniques so 
as to solve the coupled differential equations arising due to implications of physical system equa-
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tions. Among the various numerical investigations, Ritz methods (Kitipornchai, 1993), finite strip 
methods (FSM) (Li et al., 1986; Dawe and Wang, 1995), discrete singular convolution (DSC) meth-
ods (Civalek, 2007), finite element methods (FEM) (Pandya and Kant, 1988; Maiti and Sinha, 
1996; Lal et al., 2008; Grover et al., 2013b; and Mantari et al., 2013), radial basis function (RBF) 
based methods (Ferreira et al., 2005; Roque et al., 2005; and Rodrigues et al., 2011), and isogeomet-
ric analysis (Hughes et al., 2005; Thai et al., 2013) have been frequently considered for structural 
behaviors of laminated composite and sandwich plates.  
 In view of the above, the improved structural kinematics of the laminated composite and sand-
wich plates is considered in terms of recently developed secant function based shear deformation 
theory (SFSDT) by the authors (Grover et al., 2013c). The theory possess non-linear shear stress 
distribution; satisfies the zero transverse shear conditions on top and bottom surfaces as a priori 
and therefore a shear correction factor is not required. However, the Navier solutions were imple-
mented to show the validity of the theory for cross-ply plates subjected to simply supported bound-
ary constraints. The finite element formulation of SFSDT is developed in the present work in order 
to assess the behavior of laminates subjected to different boundary constraints. However, the mini-
mum continuity requirement for the considered structural kinematics is C1.  The continuity re-
quirement is reduced to C0 by making the adequate choice of field variables. Due to implementation 
of independent filed variables, additional constraints are satisfied by employing the penalty parame-
ter. The methodology is validated for the flexural behavior of laminated-composite and sandwich 
plates by performing various numerical tests considering the influences of boundary conditions, 
loading conditions, span-thickness ratio, aspect ratio, and material orthotropic index in order to 
show the performance of secant function based shear deformable finite element. It is observed, by 
comparing the present results with those of published results, that the proposed approach is effi-
cient for the prediction of flexural behavior of laminated-composite and sandwich plates at the simi-
lar or less computational efforts as compared to other HSDTs. Furthermore, the generalized formu-
lation enables the implementation of all existing shear strain shape function based shear defor-
mation theories.  
 
2 MATHEMATICAL FORMULATIONS 

In order to consider the improved structural kinematics in terms of secant function based shear 
strain function and propose the methodology for a general laminated plate, we consider a multi-
layered plate with dimensions (a × b × h) in the Cartesian co-ordinates x-y-z as shown in Figure 1.  
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Figure 1   Schematic of a laminated plate 
 
2.1 Constitutive relations 

The material properties of the individual layers are expressed by stress-strain relations. Typically, 
the laminated composites are orthotropic in nature and the material behavior of kth orthotropic 
layer is governed by the following expression: 
 

  
σ{ }5×1

= Qij
⎡
⎣

⎤
⎦

(k )
ε{ }5×1

 (1) 

          

where 
 
σ{ } = σ xx σ yy τ xy τ yz τ zx{ }T

 
and 

 
ε{ } = ε xx ε yy γ xy γ yz γ zx{ }T

are the 

stresses and strain components respectively while 
  

Qij
⎡
⎣

⎤
⎦

(k )
is the transformed reduced stiffness ma-

trix expressed in terms of material properties (E1, E2, G12, G23, G13, ν12) and fiber orientation (α) of 
kth layer. It should be noted that the stress as well as strain in the transverse normal direction has 
been neglected in the present study. 
 

2.2 Strain-displacement relations 

The strain components given in Eq. (1) are further expressed in terms of displacement components 
assuming small displacements and rotations i.e., linear strain-displacements relations are considered 
as follows: 
 

  
ε{ } = u,x v,y u,y +v,x v,z +w,y u,z +w,x

⎡
⎣⎢

⎤
⎦⎥

T

 (2) 

 
where u, v, and w are the displacements in x, y, and z directions respectively. 
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2.3 Displacement field 

In the present work, the transverse normal after deformation is considered to be a function of 
thickness co-ordinate expressed in terms of a secant function based shear strain function (Grover et 
al., 2013c). Thus the hypothesis of straightness and normality is no longer valid as in case of CLPT 
and FSDT respectively. Moreover, the displacement field satisfies the zero transverse shear condi-
tions at top and bottom surfaces as a priori and hence the requirement of satisfying these conditions 
is also eliminated.  

 

  

u x, y, z( ) = u0 x, y( )− z
∂w0

∂x
+ z sec rz

h
⎛
⎝⎜

⎞
⎠⎟
− z

sec(r / 2)

1+ r
2

tan r
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

θ x x, y( )

v x, y, z( ) = v0 x, y( )− z
∂w0

∂y
+ z sec rz

h
⎛
⎝⎜

⎞
⎠⎟
− z

sec(r / 2)

1+ r
2

tan r
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

θ y x, y( )

w x, y, z( ) = w0 x, y( )

 
(3) 

 
 The in-plane displacement components (u, v) possess the through-thickness variation while the 
constant transverse displacement (w) is assumed over the thickness (h) of the plate as indicated in 
Eq. (3). The u0, v0, and w0 are the mid plane (z=0) displacement components in x, y, and z direc-
tion respectively while θx and θy are the shear deformations. The parameter r is the shape parame-
ter and its value is obtained as 0.1 in the post processing step by employing the inverse method 
(Grover et al., 2013c). 
 
2.4 Continuity requirement 

Due to presence of first order derivatives of w0 in the in-plane displacement terms as given in Eq. 
(3), the essential continuity requirement of the finite element is C1 continuity; however the compu-
tational efforts to incorporate C1 continuity are quite large. Therefore, independent degrees of free-
dom φx = w,x and φy = w,y,  are adequately imposed in the displacement field to ensure C0 continui-
ty requirement. The modified displacement field is then written as: 
 

  

u(x, y, z) = uo(x, y)− zφx (x, y)+ g(z)+Ωz⎡⎣ ⎤⎦θ x (x, y)

v(x, y, z) = vo(x, y)− zφy (x, y)+ g(z)+Ωz⎡⎣ ⎤⎦θ y (x, y)

w(x, y, z) = wo(x, y)

 (4) 

 
where g(z) = zsec(rz/h) and Ω = −sec(r/2)/(1+(r/2)tan(r/2)). The introduction of independent 
variables causes additional constraints given by Eq. (5). These artificial constraints are satisfied by 
using the variations and a penalty parameter approach as discussed in Sec. 2.6. 
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∂w0 / ∂x −φx = 0 ; ∂w0 / ∂y −φy = 0  (5) 

 
2.5 Element selection 

In the framework of finite element method, the physical body is visualized as an assembly of ele-
ments interconnected at nodes. The present displacement field possesses seven degrees of freedom 

given by 
  

q{ } = u0 v0 w0 θ x θ y φx φy
⎡
⎣⎢

⎤
⎦⎥

T

in order to ensure C0 continuity requirement. 

An eight noded isoparametric serendipity element with seven degrees of freedom at each node is 
implemented. The configuration of the element in natural co-ordinates (ξ−η) is described in Figure 
2. The interpolation functions at ith node of the element (Cook, 1995) are given in Eq. (6). 
 

  

Ni =

1
4

1+ ξξi( ) 1+ηηi( ) ξξi +ηηi −1( ) for i = 1,2,3,4

1
2

1−ξ 2( ) 1+ηηi( ) for i = 5,7

1
2

1−η2( ) 1+ ξξi( ) for i = 6,8

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 (6) 

 
Here, ξi and ηi are the values of natural co-ordinates at ith node. Since isoparametric formulation is 
employed, the geometrical co-ordinates and nodal degrees of freedom are expressed using the same 
shape functions as follows: 
 

  
x = Nixi

i=1

8

∑ y = Ni yi
i=1

8

∑  (7a) 
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v0
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⎭

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

 (7b) 

 
 where, xi, yi are the nodal co-ordinates, uoi, voi, woi, θxi, θyi, φxi, and φyi are the nodal degrees of 
freedom at ith node. 
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Figure 2   The configuration of eight-noded finite element 
 
2.6 Governing equations 

The governing equations for the analysis of laminated composite and sandwich plates are obtained 
by implementing Lagrange Equation which is as follows: 
 

   

∂Ul

∂ qi{ }
+
∂Uc

∂ qi{ }
+
∂W
∂ qi{ }

= 0  (8) 

 
 where Ul is the strain energy due to linear strains, Uc is the strain energy due to imposition of 
artificial constraints and W is the work done due to external loading. These terms are first ex-
pressed for the jth element and then assembled over the complete domain. In order to facilitate fi-
nite element implementation, the strains given by Eq. (2) are further expressed in terms of general-
ized linear strains{ }le as follows: 
 

  
ε{ }5x1

= H⎡⎣ ⎤⎦5x13
ε

l{ }
13x1

 (9) 

 

 where 
  
ε l{ }13x1

= ε1
0 ε2

0 ε6
0 k1

0 k2
0 k6

0 k1
1 k2

1 k6
1 ε4

0 ε5
0 k4

2 k5
2{ }T

 are 

the components of generalized strains and functions of nodal field variables which are given explicit-
ly in Appendix A along with the matrix [H]. The strain energy of the jth element due to linear 
strains is then obtained by implementing Eqs. (1), (4), (7) and (9) and written as follows: 
 

  

U
l

( j ) = 1
2

ε{ } j

T
σ{ }

v
∫ dv = 1

2
ε{ } j

T
Qij
⎡
⎣

⎤
⎦ ε{ } j

v
∫ dv = 1

2
ε l{ } j

T
H⎡⎣ ⎤⎦ j

T
Qij
⎡
⎣

⎤
⎦ H⎡⎣ ⎤⎦ j

ε l{ }
j

v
∫ dv

= 1
2

q{ } j

T
B⎡⎣ ⎤⎦ j

T
D⎡⎣ ⎤⎦ B⎡⎣ ⎤⎦ j

q{ }
s
∫

j

dxdy = 1
2

q{ } j

T
K j
⎡⎣ ⎤⎦ q{ } j

 (10) 
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where 
  

q{ } = u0 v0 w0 θ x θ y φx φy
⎡
⎣⎢

⎤
⎦⎥

T

 (11) 

 
 The elemental strain energy is evaluated for all the elements (nel) in the domain and then as-
sembled together to obtain total strain energy. The expression for total strain energy is given in Eq. 
(12) 
 

  
Ul = Ul

( j )

j=1

nel

∑ = 1
2

q{ }T
K⎡⎣ ⎤⎦ q{ }  (12) 

 
 The additional constraints (see Eq. (5)) due to incorporation of independent field variables are 
satisfied by employing the penalty parameter (γ, taken as 1×106) and this leads to their contribu-
tion towards the strain energy (Talha and Singh, 2010). The strain energy due to these constraints 
is obtained and given in the Eq. (13). 
 

  
Uc = U

c

( j )

j=1

nel

∑ = γ
2

q{ }T
Kc⎡⎣ ⎤⎦ q{ }  (13) 

 

  

U
c

( j ) = γ
2

∂w0

∂x
−φx

⎛
⎝⎜

⎞
⎠⎟ j

T
∂w0

∂x
−φx

⎛
⎝⎜

⎞
⎠⎟ j

+
∂w0

∂y
−φy

⎛
⎝⎜

⎞
⎠⎟ j

T
∂w0

∂y
−φy

⎛
⎝⎜

⎞
⎠⎟ j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥V∫ dV ( j )  (14) 

 
The work done due to external load is obtained as follows: 

 

  
W = Wj

(e)

j=1

nel

∑ = p
Aj

( e )∫ (x, y)w.dAj
(e)

j=1

nel

∑ = f (e){ }
j

j=1

nel

∑ q{ } j
= F{ } q{ }  (15) 

 

 Here 
  

f{ } j
= 0 0 p0 0 0 0 0⎡
⎣

⎤
⎦ ; with p0 as the transverse load on the plate. For 

uniformly distributed load (UDL), p0 = q0 while   p0 = q0 sin(π x / a)sin(π y / b)  for sinusoidal load 
(SSL). The following system of algebraic equations is obtained which can be solved to obtain the 
flexural response by substituting Eqs. (12), (14), and (15) in Eq. (8). 
 

 K + γ KC⎡⎣ ⎤⎦ q{ } = F{ }  (16) 
 
 The direct solution of the above system of equations yields nodal field variables which are sub-
stituted back in the Eq. (4) to obtain the displacement components. The strain displacement rela-
tions given by Eq. (9) are used to obtain the strains and using these strains in the constitutive rela-
tions (Eq. (1)), corresponding stresses are evaluated. However, the stresses are derived quantities in 
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the displacement based formulation; therefore special attention is required to evaluate the accurate 
nodal stresses. 
 
3 NUMERICAL RESULTS AND DISCUSSIONS 

The present secant function based shear deformable finite element is assessed for flexural responses 
of laminated composite and sandwich plates. A generalized code is programmed in MATLAB envi-
ronment using the present generalized finite element formulation. The plate is discretized with eight 
noded serendipity quadrilateral elements using an automatic mesh generation scheme. An automat-
ed generated mesh for a square plate is shown in Figure 3 indicating the node numbering and ele-
ment numbering scheme for a particular mesh size of 4×4. Selective integration Gauss-Quadrature 
technique is implemented to evaluate the domain integral since the direct application of the present 
finite element may induce shear locking especially for thin plates.  

 
Figure 3   Node numbering1 and element numbering2 for a discretized plate with mesh size 4×4 

The following degrees of freedom are restrained for different types of boundary conditions: 
 

• Clamped condition (C): 
  
u0 = v0 = w0 = θ x = θ y = φx = φy = 0  

• Simply supported condition (S): 
o Edge parallel to x-axis:   u0 = w0 = θ x = φx = 0  

o Edge parallel to y-axis: 
  
v0 = w0 = θ y = φy = 0  

 
 The common material models used for the analyses are: Material Model 1 (MM1) - E1/E2 =25, 
G12/E2=0.5, G13/E2 =0.5, G23/E2 = 0.2, ν12 = 0.25 and Material Model 2 (MM2) - E1/E2 = C (var-
iable), G12/E2=0.6, G13/E2 =0.6, G23/E2 = 0.5, ν12 = 0.25. 
 The displacements are evaluated at the nodal points while the stresses are primarily obtained at 
the Gauss points since the Gauss point stresses are most accurate (Cook, 1995). Gauss point stress-

                                                
1 Cross mark ‘×’ indicate the node positions and corresponding numbers  
2 Element number is shown at the middle of each quadrilateral element	
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es are then extrapolated to the nodal points and then nodal averaging is performed in order to 
evaluate accurate nodal stresses. Non-dimensional forms given in Eq. (17) are implemented to ob-
tain non-dimensional results to ensure the comparison with the existing results. 
 

  

w = w0

a
2

, b
2

⎛
⎝⎜

⎞
⎠⎟

100E2h
3

b4q0

⎛

⎝⎜
⎞

⎠⎟

σ xx σ yy τ xy τ yz τ yz
⎡
⎣

⎤
⎦ =

h
bq0

⎛
⎝⎜

⎞
⎠⎟

h
b
σ xx

h
b
σ yy

h
b
τ xy τ yz τ yz

⎡

⎣
⎢

⎤

⎦
⎥

 (17) 

 
3.1 Four layered simply supported symmetric laminated plate 

The flexural behavior of a four layered symmetric square laminated plate [0/90/90/0] subjected to 
transverse SSL is investigated. Simply supported boundary constraints are assumed over all the 
edges of the plate. All four laminas are orthotropic in nature possessing material properties as 
MM1. The analysis is performed by varying the mesh size (4×4, 6×6, 10×10, 14×14, and 16×16) in 
order to ascertain the converged solution of the present finite element model. The non-dimensional 
deflection and stresses are obtained at critical points for the plate with different span-thickness ratio 
(a/h = 4, 10 and 100) and listed in Table 1. It is observed from the results that the converged solu-
tion for deflection is obtained at mesh size 10×10 while the stresses converge at finer mesh size 
(16×16). This can be accounted towards the fact that the stresses are derived quantities in the pre-
sent displacement based formulation. A comparison of the present results with well known Reddy’s 
theory (Reddy, 1984), hybrid theory of Mantari et al. (2012), analytical solutions of SFSDT 
(Grover et al., 2013c), Fiedler et al. (2010) and the exact solution (Pagano and Hatfield, 1972) is 
also shown in Table 1. The comparison of the results ensures the performance of the SFSDT for 
thick (a/h = 4), moderately thick (a/h = 10) and thin (a/h = 100) plates. It is observed that over-
all percentage difference (for a/h = 4, 10, and 100) of the present results from exact solution (Pa-
gano and Hatfield, 1972) is 3.71% as compared to 7.51% of Mantari et al. (2012), 6.66% of Reddy 
(1984) and 5.75% of Fiedler et al. (2010). The comparison of these results indicates the performance 
and efficiency of the present methodology to examine bending characteristics of laminated compo-
site plates. 
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Table 1   Flexural behavior of simply supported laminated plate [0/90/90/0] subjected to SSL 
  
a/h Source 

 w   σ xx   σ yy   σ xy   σ yz   σ xz  

(a/2,b/2,0) (a/2,b/2,h/2) (a/2,b/2,h/4) (0,0,h/2) (a/2,0,0) (0,b/2,0) 
4 Present (4×4) 1.8904 0.5838 0.5216 0.0543 0.2759 0.2464 
 Present (6×6) 1.8995 0.6457 0.5772 0.0501 0.2854 0.2414 
 Present (10×10) 1.9013 0.6829 0.6104 0.0476 0.2899 0.2379 
 Present (14×14) 1.9015 0.6938 0.6202 0.0469 0.291 0.2369 
 Present (16×16) 1.9015 0.6965 0.6226 0.0467 0.2913 0.2367 

 Grover et al. (2013c) 1.8935 0.665 0.6322 0.0441 0.2389 0.2063 
 Mantari et al. (2012) 1.894 0.664 0.631 0.044 0.239 0.206 
 Reddy (1984) 1.893 0.665 0.632 0.044 0.239 0.206 
 Fiedler et al. (2010) 1.835 0.678 0.630 0.0453 0.270 0.237 
 Exact (Pagano, 1972) 1.954 0.72 0.663 0.047 0.291 0.219 
10 Present (4×4) 0.7188 0.4639 0.3234 0.032 0.181 0.3516 
 Present (6×6) 0.7199 0.5132 0.3578 0.0296 0.1889 0.3454 
 Present (10×10) 0.7201 0.5427 0.3784 0.0282 0.1921 0.3405 
 Present (14×14) 0.7201 0.5514 0.3844 0.0278 0.1929 0.3389 
 Present (16×16) 0.7201 0.5535 0.386 0.0277 0.1931 0.3386 
 Grover et al. (2013c) 0.7147 0.5456 0.3888 0.0268 0.1531 0.2639 
 Mantari et al. (2012) 0.715 0.545 0.388 0.027 0.153 0.264 
 Reddy (1984) 0.715 0.546 0.389 0.027 0.163 0.294 
 Fiedler et al. (2010) 0.723 0.558 0.395 0.0274 0.180 0.234 
 Exact (Pagano, 1972) 0.743 0.559 0.401 0.028 0.196 0.301 
100 Present (4×4) 0.4338 0.4445 0.2235 0.0253 0.1255 0.3821 
 Present (6×6) 0.4342 0.493 0.2478 0.0232 0.1328 0.3839 
 Present (10×10) 0.4342 0.5214 0.2621 0.0221 0.1362 0.3826 
 Present (14×14) 0.4342 0.5298 0.2663 0.0217 0.137 0.3813 
 Present (16×16) 0.4342 0.5318 0.2674 0.0216 0.1372 0.3809 
 Mantari et al. (2012) 0.435 0.539 0.271 0.021 0.112 0.289 
 Reddy (1984) 0.434 0.538 0.27 0.021 0.112 0.29 
 Fiedler et al. (2010) 0.434 0.539 0.271 0.0214 0.115 0.315 
 Exact (Pagano, 1972) 0.439 0.539 0.276 0.022 0.141 0.337 

 
 Further, the variation of transverse deflection is obtained over the length and width of the plate 
(a/h = 10) and the behavior is depicted in Figure 4. Figure 4(a) shows the variation of transverse 
deflection across x-axis at y = b/2 while Figure 4(b) represents the behavior at x= a/2 across y-axis. 
It is clear that maximum deflection is achieved at x = a/2 and y = b/2.  
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Figure 4   Variation of transverse deflection across length and width of simply supported laminated plate [0/90/90/0] for a/h=10 (a) 
y = b/2 (b) x = a/2 

 

 
Figure 5   Variation of normal stress,  σ xx  across thickness for the laminated plate [0/90/90/0] 

 

 
Figure 6   Variation of transverse shear stress  γ yz  across thickness for the laminated plate [0/90/90/0] 
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The variation of normal stress ( σ xx ) across thickness is obtained for the same plate with a/h = 
4, 10 and the behavior is presented in Figure 5 along with analytical solution of SFSDT [59]. The 
distribution of transverse shear stress ( τ yz ) across transverse direction along with those obtained 
from FSDT and HSDT (Reddy, 1984) implementing constitutive as well as equilibrium equations 
is shown in Figure 6. The comparison of the behavior ensures the efficiency of the present finite 
element method in the framework of SFSDT. 
 

3.2 Influence of loading conditions 

A three layered square laminated plate [0/90/0] constituted of equal thickness orthotropic (MM1) 
layers is analyzed under the influence of SSL and UDL. All the edges of the plate are simply sup-
ported. Firstly, the plate is subjected to transverse SSL.  
 

Table 2   Flexural behavior of three layered laminated plate [0/90/0] subjected to SSL. 
 

a/h Source  w   σ xx   σ yy   σ xy   σ yz   σ xz  
(a/2,b/2,0) (a/2,b/2,h/2) (a/2,b/2,h/6) (0,0,h/2) (a/2,0,0) (0,b/2,0) 

4 Present 1.9253 0.7569 0.5012 0.0505 0.1568 0.2243 
 Mantari et al. (2012) 1.9222 0.733 0.502 0.05 0.183 0.202 
 Karama et al. (2009) 1.944 0.775 0.502 0.0516 0.191 0.22 
 Reddy (1984) 1.9218 0.734 -- -- 0.183 -- 
 Exact (Pagano, 1970) 2.006 0.755 0.556 0.0505 0.217 0.282 
10 Present 0.7173 0.5771 0.2677 0.0284 0.0896 0.3138 
 Mantari et al. (2012) 0.7131 0.568 0.269 0.028 0.103 0.244 
 Karama et al. (2009) 0.723 0.576 0.272 0.0281 0.108 0.272 
 Reddy (1984) 0.7125 0.568 -- -- 0.103 -- 
 Exact (Pagano, 1970) 0.7405 0.59 0.288 0.0289 0.123 0.357 
20 Present 0.5055 0.5435 0.2024 0.0234 0.07 0.335 
 Mantari et al. (2012) 0.5049 0.546 0.204 0.023 0.08 0.254 
 Karama et al. (2009) 0.508 0.548 0.205 0.0231 0.086 0.285 
 Exact (Pagano, 1970) -- 0.552 0.21 0.0234 0.094 0.385 
50 Present 0.4432 0.5336 0.1814 0.0218 0.0638 0.3416 
 Mantari et al. (2012) 0.4439 0.54 0.184 0.022 0.076 0.258 
 Karama et al. (2009) 0.444 0.54 0.183 0.0216 0.079 0.289 
 Exact (Pagano, 1970) -- 0.541 0.185 0.0216 0.084 0.393 
100 Present 0.4341 0.5321 0.1783 0.0216 0.0628 0.3425 
 Mantari et al. (2012) 0.4351 0.539 0.181 −0.021 0.075 0.258 
 Karama et al. (2009) 0.435 0.538 0.18 0.0213 0.078 0.289 
 Reddy (1984) 0.4342 0.539 -- -- 0.075 -- 
  Exact (Pagano, 1970) -- 0.539 0.181 0.0213 0.083 0.395 
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Table 2 shows the transverse displacement and stresses of the plate in the non-dimensional forms at 
critical points along with the existing results for various span-to-thickness ratio (a/h = 4, 10, 20, 50, 
100). The efficiency and applicability of present methodology is ascertained by comparing the re-
sults with Mantari et al. (2012), Karama et al. (2009), Reddy (1984), and the exact solution (Pa-
gano, 1970) for thick to thin laminates. 
  The same plate is then subjected to UDL and maximum transverse deflection is evaluated for 
the plate with various span-thickness ratios (a/h = 2, 4, 20, 20, 50, and 100). The obtained results 
are compared in Table 3 with the results obtained by Sheikh and Chakrabarti (2003), Reddy 
(1984), and Ghosh and Dey (1990). The comparison shows the applicability of SFSDT for the bend-
ing behavior of laminated plates subjected to UDL. 
 

Table 3   Flexural behavior of three layered laminated plate [0/90/0] subjected to UDL. 
 

Source a/h 
2 4 10 20 50 100 

Present 7.763 2.9094 1.098 0.7785 0.6842 0.6706 
Sheikh and Chakrabarti (2003) 7.767 2.9093 1.091 0.7763 0.6841 0.6708 
Reddy (1984) 7.7671 2.9091 1.09 0.776 0.6838 0.6705 
Ghosh and Dey (1990) ---- ---- 0.965 0.7572 ---- 0.6823 

 
3.3 Anti-symmetric cross ply laminated plates 

In order to investigate the influence of boundary conditions, a two layered anti-symmetric laminat-
ed plate [0/90] is considered. Both the orthotropic layers are of material, MM1 and have equal 
thickness. 

 
Figure 7   Influence of boundary conditions on the non-dimensional deflection of anti-symmetric laminate [0/90] subjected to SSL. 

  
The plate is subjected to SSL and the bending analysis is performed for the plates (a/h =5 and 10) 
with the following combination of boundary conditions: All edges simply supported (SSSS), one 
edges is clamped while other three edges are simply supported (SCSS), and One pair of opposite 
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edges is clamped while the other pair is simply supported (SCSC). Non-dimensional deflection is 
obtained and the results are shown in Figure 7 along with the HSDT results (Reddy, 2002). The 
comparison shows the efficiency of SFSDT for the flexural behavior of laminates subjected to differ-

ent combination of boundary constraints. Also, the behavior of normal stress  σ xx  across thickness 
of the two layered simply supported plate (a/h=4) is obtained and presented in Figure 8. 
 

 
Figure 8   Variation of normal stress  σ xx  across thickness for simply supported anti-symmetric plate [0/90] subjected to SSL 

(a/h=4) 

 
Figure 9   Simply supported anti-symmetric [0/90] laminated plate subjected to UDL 

 
 The effect of uniform load on the non-dimensional deflection of the same plate (however, the 
orthotropic layers are constituted of material MM2 with C=40) with simply supported boundary 
conditions is also examined for span-thickness ratio of 5, 10, and 40. The behavior is characterized 
in Figure 9 along with the existing results of Pandya and Kant (1988b) obtained using PSDT and 
the exact solution presented by Turvey et al. (1977). It is concluded that the present results are in 
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absolute agreement with the existing results especially for thin plates (a/h=40). Moreover, they are 
more accurate than the results obtained by other equivalent single layer shear deformation theory 
for thick plates (a/h= 4, 10). 
  
3.4 Angle ply plates 

Flexural behavior of anti-symmetric angle ply plates [α/−α/…n layers] is investigated in this sec-
tion. At first simply supported angle ply plates are considered. The non dimensional deflection of 
two layered and four layered square plates (b = a) with lamination sequences as [30/−30/…] and 
[45/−45/…] are obtained for the plates with span-thickness ratio of 4 and 10. The obtained results 
are presented in Table 4 along with the results by Swaminathan and Patil (2007) and the exact 
results by Ren (1990). It should be noted that Swaminathan and Patil (2007) implemented Reddy’s 
HSDT which possesses the same number of field variables as in the present SFSDT. It is concluded 
from the table that the present results are significantly different from Swaminathan and Patil 
(2007); however, the comparison with the exact solution (Ren, 1990) ensures the accuracy of the 
present results for thick plates. Moreover, the flexural analysis of two layered rectangular plates (b 
= 3a) is also performed and the results are presented in Table 4.   

 
Table 4   Flexural behavior of anti-symmetric angle-ply plates. 

 
θ a/h Source Square Plates Rectangular plate 

(b=3a) 
n=2 n=4 n=2 

30 4 Present 1.1926 0.9904 2.397 
Swaminathan and Patil (2007) 1.1082 0.9494 2.3752 
Ren (1990) 1.4865 1.0943 2.8881 

10 Present 0.6337 0.3717 1.4845 
Swaminathan and Patil (2007) 0.5985 0.3291 1.4872 
Ren (1990) 0.6731 0.3543 1.5787 

45 4 Present 1.1233 0.9275 3.3722 
Swaminathan and Patil (2007) 1.0203 0.8747 3.1562 
Ren (1990) 1.4471 1.016 3.9653 

10 Present 0.611 0.3515 2.3425 
Swaminathan and Patil (2007) 0.5581 0.2956 2.244 
Ren (1990) 0.6427 0.3201 2.3953 

 
Further, a four layered square angle ply plate [45/−45/45/−45] with a/h =10 is considered to 

study the effect of boundary conditions and material orthotropic index (C). The influence of bound-
ary conditions and material orthotropic index is shown in Figure 10. It is clear that increasing the 
material orthotropic index decreases the non-dimensional deflection for a particular boundary condi-
tion. This is accounted towards the fact that a plate with higher orthotropic index possesses higher 
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stiffness and therefore lower deflections. Moreover, the decrement in transverse deflection is also 
observed from simply supported to clamped plate for a particular orthotropic index. 
 

 
Figure 10   Effect of material orthotropic index on non-dimensional deflection. 

 

3.5 Three layered sandwich plate subjected to uniform pressure 

The flexural behavior of a sandwich plate constituted of two orthotropic face sheets and one ortho-
tropic core [0/C/0] with its all edges simply supported under the influence of uniform pressure is 
examined in terms of deflection and stresses at critical points. The ratio of core-thickness (hc) to 
total thickness (h) of the plate is 0.8 while the thickness of each face-sheet (hf) is 0.1 times the 
thickness of plate. The material properties of the orthotropic core are given in Eq. (18).  
 

[ ]

0.999781 0.231192 0 0 0
0.231192 0.524886 0 0 0

0 0 0.262931 0 0
0 0 0 0.266810 0
0 0 0 0 0.159914

core
Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
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   (19) 

 
 The parameter R is multiplied with the reduced stiffness coefficients of core to obtain the face 
sheets properties. The static analysis is performed for R= 5, 10, and 15 for the plate with a/h 
=10 and non-dimensional deflection and stresses as described in Eq. (19) are evaluated. Table 5 
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shows the comparison of the present results along with the established results. The comparison 
of the present results and the existing results with the exact solution reveals the superiority of 
the present theory. It is observed that the percentage difference of the present results from the 
exact solution (Srinivas, 1973) is 1.38% as compared to 3.03% of Pandya and Kant (1988), 
2.26% of Touratier theory (Xiang et al, 2009), 1.83% of Karama’s theory (Xiang et al, 2009), 
1.88% of Ferreira et al. (2003), 1.66% of Mantari et al. (2012) and 1.32% of ZZ results presented 
by Sahoo and Singh (2013). Thus, with the similar or less computational cost, SFSDT evaluates 
more accurate and efficient results for the flexural behavior of sandwich plates. 
 

Table 5   Simply supported sandwich plate [0/C/0] subjected to uniform pressure. 
  
R Theory w  

1
xxσ  

2
xxσ  

3
xxσ  

1
yyσ  

2
yyσ  

3
yyσ  

5 Present 257.31 60.2354 46.7334 9.347 38.3672 30.104 6.021 
 Exact (Srinivas, 1973) 258.97 60.353 46.623 9.34 38.491 30.097 6.161 
 Pandya and Kant (1988a) 258.74 62.38 46.91 9.382 38.93 30.33 6.065 
 Touratier (Xiang et al., 2009) 253.989 60.123 47.097 9.419 38.249 30.187 6.037 
 Karama (Xiang et al., 2009) 253.638 60.124 46.703 9.34 38.242 30.02 6.004 
 Ferreira et al. (2003) 257.11 60.366 47.003 9.401 38.456 30.242 6.048 
 Mantari et al. (2012) 256.706 60.525 47.061 9.412 38.452 30.177 6.035 
 Sahoo and Singh (2013) 258.4292 60.0154 47.3145 9.4629 38.4372 30.4693 6.0939 
10 Present 155.88 65.3656 49.4118 4.9412 43.3023 33.4607 3.3461 
 Exact (Srinivas, 1973) 159.38 65.332 48.857 4.903 43.566 33.413 3.5 
 Pandya and Kant (1988a) 152.33 64.65 51.31 5.131 42.83 33.97 3.397 
 Touratier (Xiang et al., 2009) 153.139 65.05 50.206 5.02 43.015 33.653 3.365 
 Karama (Xiang et al., 2009) 153.357 65.1 49.499 4.949 43.059 33.379 3.337 
 Ferreira et al. (2003) 154.658 65.381 49.973 4.997 43.24 33.637 3.364 
 Mantari et al. (2012) 155.498 65.542 49.708 4.971 43.385 33.591 3.359 
 Sahoo and Singh (2013) 159.1948 66.2209 49.5346 4.9535 44.1045 33.881 3.3881 
15 Present 116.91 66.9887 49.3823 3.2922 45.9188 34.9904 2.3327 
 Exact (Srinivas, 1973) 121.72 66.787 48.299 3.232 46.424 34.955 2.494 
 Pandya and Kant (1988a) 110.43 66.62 51.97 3.465 44.92 35.41 2.361 
 Touratier (Xiang et al., 2009) 113.964 66.544 50.679 3.378 45.431 35.278 2.351 
 Karama (Xiang et al., 2009) 114.585 66.621 49.663 3.31 45.546 34.919 2.327 
 Ferreira et al. (2003) 114.644 66.92 50.323 3.355 45.623 35.17 2.345 
 Mantari et al. (2012) 115.919 67.185 49.769 3.318 45.91 35.081 2.339 
 Sahoo and Singh (2013) 121.56 67.667 48.9433 3.2629 47.0219 35.4735 2.364 

 
3.6 Sandwich plate subjected to SSL and different boundary constraints 

In order to study the behavior of sandwich plates subjected to different boundary conditions, we 
consider a sandwich plate with five orthotropic laminas. The face sheets of the plate [0/90/C/0/90] 
are stacked in such a fashion that the plate configuration is anti-symmetric. A transverse sinusoidal 
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load is applied on the top surface of the plate. The face sheets of the plate under consideration are 
constituted of the material MM1, while the orthotropic core properties are taken as: E1c = E2c = 
0.04E2, G12c = 0.016E2, G23c = G13c = 0.06E2 and ν12c =0.25. The thickness distribution of each 
layer is as [0.05h/0.05h/0.8h/0.05h/0.05h]. The flexural analysis is examined by assuming the SCSC 
and CCCC boundary conditions.  

 
Figure 11   Five layered sandwich plate [0/90/C/0/90] subjected to SSL and different boundary conditions. 

 
The effects of span-to-thickness ratio the boundary constraints on the transverse deflection are 

obtained and the behavior is characterized by implementing a double y-axis plot as indicated in 
Figure 11. The left y-axis shows the behavior of SCSC plate while right y-axis describes the behav-
ior of CCCC plate. The results are also compared with the published results of Pandit et al. (2008) 
obtained using higher order zig-zag theory. It is observed that for thick plates (a/h < 10), SFSDT 
under-predicts the deflection as compared to zig-zag theory while for a/h >10, the behavior is in 
excellent agreement with Pandit et al. (2008). 

 
4 CONCLUSIONS 

In the present work, a secant function based shear deformable finite element model is developed for 
the accurate flexural assessment of laminated composite and sandwich plates. A recently developed 
displacement formulation based equivalent single layer theory comprising shear deformation in 
terms of a secant function of thickness co-ordinate is employed to express the structural kinematics 
of the plates. The SFSDT possesses non-linear distribution of transverse shear stresses and also 
stratifies zero transverse shear conditions on top and bottom surfaces. The field variables are ade-
quately chosen in order to limit the continuity requirement to C0 which results in the computation-
ally efficient finite element model. The penalty approach is implemented to accurately consider the 
constraints due to independent field variables. The precise evaluation of stresses has been ensured 
by employing the extrapolation of the Gauss-point stresses to the nodal points. Numerous numerical 
tests have been performed to justify the validity and efficiency of the present approach.  The influ-
ences of boundary conditions, span-thickness ratio, lamination sequence, and loading conditions on 
the flexural behavior of laminated composite and sandwich plate have been examined. It is conclud-
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ed that the present finite element model in the framework of SFSDT is efficient in the computa-
tional aspects as well as in terms of accuracy. Moreover, the proposed formulation enables the im-
plementation of all existing shear deformation theories since it is presented in a generalized sense 
and thus it is more suitable for practical purposes. 
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