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Abstract

The stability of postbuckled equilibrium configurations and the nonlinear dynamic char-
acteristics of cross-ply laminated heated cylindrical shells are investigated employing semi-
analytical shell finite element. The presence of asymmetric perturbation in the form of small
magnitude load spatially proportional to the linear buckling mode shape is considered to
initiate the bifurcation of the shell deformation from axisymmetric mode to asymmetric one.
The frequencies of small oscillations about equilibrium configuration are obtained by solving
the eigenvalue problem formulated using tangent stiffness matrix of the converged equilibrium
configuration and mass matrix. The study reveals that the prediction of the postbuckling
equilibrium configuration from nonlinear static analysis depends on the nature (longitudi-
nally symmetric/antisymmetric) of initial disturbance. The longitudinally antisymmetric
postbuckled equilibrium configuration is stable whereas the longitudinally symmetric one is
unstable. The nonlinear dynamic response shows that the shell with longitudinally sym-
metric disturbance jumps from symmetric mode to antisymmetric mode and the predicted
equilibrium configuration is of antisymmetric nature irrespective of the type of initial distur-
bance. The nonlinear forced dynamic response of the heated shell in the prebuckling region
differs significantly from that in the postbuckling region.

Keywords: dynamics, stability, cylindrical shell, cross-ply, thermal, postbuckling, semi-
analytical finite element

1 Introduction

The advances in composite technology have lead to the increasing application of laminated struc-
tures tailored for the required performance as load-bearing members in the design of more and
more sophisticated futuristic structural systems such as in space shuttles, supersonic/hypersonic
vehicles, rockets, missiles, nuclear reactors, engine components etc. These structures may often
be subjected to dynamic loading environment coupled with the continuous and/or sudden ex-
posure to elevated temperature. In view of the utilization of postbuckling strength, aero-space
structures may be permitted to undergo elastic buckling and operate in postbuckling region.
The structures in their buckled state may be expected to survive under dynamic disturbances.
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The thermo-mechanical loading environment may cause instability and/or dynamic response
resulting in transverse deflections of the order of shell thickness or even higher necessitating
the inclusion of geometric nonlinearity for the adequate analysis. The induced thermal state
of stress in the pre-buckling and post-buckled configurations may significantly affect the vibra-
tion characteristics. Further, the frequency characteristics of small amplitude vibrations about
the post-buckled configuration as the mean configuration reveal the stability/instability of post-
buckling equilibrium path. Therefore, the study of vibration characteristics of thermally stressed
composite laminated structures in the pre-/post-buckling regions gains importance.

Few studies on the free vibration characteristics of laminated plates subjected to thermal
loading in the pre- and post-buckling configuration have been carried out [5, 8, 12–14]. The
vibration frequencies corresponding to first three modes of thermally stressed laminated plates
in pre- and post-buckled configurations have been analyzed using first order shear deforma-
tion theory and finite element approach by Lee and Lee [8]. The authors [8] have carried out
the vibration analysis using the tangent stiffness obtained from the converged nonlinear static
analysis. Similar study is carried out by Girish and Ramachandra [5] using higher-order shear
deformation theory and adopting the multi-term Galerkin’s approach. The vibration character-
istics of piezolaminated composite plates subjected to thermopiezoelectric loads are studied [12]
employing finite element based on layerwise theory in pre- and post-buckled regions. The com-
posite laminated plates embedded with the shape memory alloy fibers are investigated [13, 14]
for their free vibration behaviour in the pre- and post-buckled equilibrium configurations.

The investigation of vibration characteristics of thermally buckled composite laminated shell
panels has received attention of few researchers [9–11] wherein the cylindrical panels are an-
alyzed for their frequencies of free flexural oscillations about the deformed static equilibrium
configuration. The single term Galerkin’s approach is employed in Refs. [9, 10] and finite ele-
ment based on layerwise theory in Ref. [11]. The variation of asymmetric mode free vibration
frequencies of laminated cylindrical shells with temperature rise is studied in Refs. [3,4] wherein
the results are limited to pre-buckling configuration derived from linear static analysis.

To the best of the authors’ knowledge, the studies on the vibration characteristics of lami-
nated heated cylindrical shells in the post-buckled regions and the investigation on the stability
of post-buckling equilibrium configurations through dynamic analysis (eigenvalue and response
approaches) are not available in the open literature. Furthermore, the behaviour of the circum-
ferentially closed shells especially undergoing large deformation is significantly different from the
panels/plates.

Therefore, in the present work, the stability of postbuckled equilibrium configurations and
nonlinear dynamic characteristics of cross-ply laminated heated cylindrical shells are studied em-
ploying semi-analytical shell finite element used recently for thermoelastic buckling/postbuckling
studies of laminated conical/cylindrical shells [15, 16]. Geometric nonlinearity of von Kármán
type is incorporated in the formulation. The presence of asymmetric perturbation in the form
of small magnitude load spatially proportional to the linear buckling mode shape is consid-
ered to initiate the bifurcation of the shell from axisymmetric mode to asymmetric one. The

Latin American Journal of Solids and Structures 3 (2006)



Stability and nonlinear dynamic behaviour of cylindrical shells 247

frequencies of small oscillations about equilibrium configuration corresponding to each temper-
ature/displacement increment are obtained by solving the eigenvalue problem formulated using
tangent stiffness matrix of the converged configuration and mass matrix. The nonlinear dynamic
response of the heated shell in prebuckling and postbuckling regions is carried out incorporating
a small amount of proportional damping. The damping is introduced for two purposes: firstly
to incorporate the realistic situation wherin small amount of damping is always present and
secondly in order to facilitate the convergence to a new stable state after jump.

2 Formulation

A laminated composite circular cylindrical shell is considered with the co-ordinates s, θ and
z along the meridional, circumferential and radial/thickness directions, respectively. The dis-
placements u, v, w at a point (s, θ, z) from the median surface are expressed as functions
of middle-surface displacements u0, v0 and w0, and independent rotations βs and βθ of the
meridional and hoop sections, respectively, as

u(s, θ, z, t) = u0(s, θ, t) + zβs(s, θ, t)

v(s, θ, z, t) = v0(s, θ, t) + zβθ(s, θ, t)

w(s, θ, z, t) = w0(s, θ, t) (1)

where t is the time.
Using the semi-analytical approach, u0, v0, w0, βs, and βθ are represented by a Fourier series

in the circumferential co-ordinate θ. For the nth harmonic, these can written as [15,16]

u0(s, θ, t) = u0
0(s, t) +

M1∑

i=1

{uci
0 (s, t)cos(inθ) + usi

0 (s, t)sin(inθ)}

v0(s, θ, t) = v0
0(s, t) +

M1∑

i=1

{vci
0 (s, t)cos(inθ) + vsi

0 (s, t)sin(inθ)}

w0(s, θ, t) = w0
0(s, t) +

M2∑

i=1

{wci
0 (s, t)cos(inθ) + wsi

0 (s, t)sin(inθ)}

βs(s, θ, t) = β0
s (s, t) +

M2∑

i=1

{βci
s (s, t)cos(inθ) + βsi

s (s, t)sin(inθ)}

βθ(s, θ, t) = β0
θ (s, t) +

M2∑

i=1

{βci
θ (s, t)cos(inθ) + βsi

θ (s, t)sin(inθ)} (2)

where superscript 0 refers to the axisymmetric components of the displacement field variables,
and ci and si refer to the asymmetric components of the field variables having circumferential
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variation proportional to cos(inθ) and sin(inθ), respectively. The number of terms M1 in the
approximation of variables (u0, v0) is in general twice compared to M2 in (w0, βs, βθ) for the
converged solution.

Using von Kármán’s assumption for moderately large deformation, Green’s strains can be
written in terms of middle surface deformations as,

{ε} =
{

εL
p

0

}
+

{
zεb

εs

}
+

{
εNL
p

0

}
(3)

where, the membrane strains {εL
p }, bending strains {εb}, transverse shear strains {εs} and

nonlinear in-plane strains {εNL
p } in the Eq. (3) are written as [7]

{εL
p } =





∂u0
∂s

∂v0
r∂θ + w0

r
∂u0
r∂θ + ∂v0

∂s



 ; {εb} =





∂βs

∂s
∂βθ
r∂θ

∂βs

r∂θ + ∂βθ
∂s





;

{εs} =
{

βs + ∂w0
∂s

βθ + ∂w0
r∂θ − v0

r

}
; {εNL

p } =





1
2(∂w0

∂s )2
1
2(∂w0

r∂θ )2
∂w0
∂s

∂w0
r∂θ



 (4)

where r is the radius of the shell.
If {N} represents the stress resultants (Nss, Nθθ, Nsθ) and {M} the moment resultants

(Mss, Mθθ, Msθ), one can relate these to membrane strains {εp}(= {εL
p }+ {εNL

p }) and bending
strains {εb} through the constitutive relations as

{ {N}
{M}

}
=

[
[A] [B]
[B] [D]

]{ {εp}
{εb}

}
−

{ {N̄}
{M̄}

}
(5)

where [A], [D] and [B] are extensional, bending and bending-extensional coupling stiffness coef-
ficients matrices of the composite laminate. {N̄} and {M̄} are the thermal stress and moment
resultants, respectively.

Similarly, the transverse shear stress resultants {Q} representing the quantities (Qsz, Qθz)
are related to the transverse shear strains {εs} through the constitutive relation as

{Q} = [E]{εs} (6)

where [E] is the transverse shear stiffness coefficients matrix of the laminate.
For a laminated shell of thickness h, consisting of N layers with stacking angles θi(i =

1, ..., N) and layer thicknesses hi(i = 1, ..., N), the necessary expressions to compute the stiffness
coefficients and thermal stress/moment resultants, available in the literature [6] are used here.
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The potential energy functional U1(δ) (due to strain energy and transverse load) is given by,

U1(δ) =
1
2

∫

A

[{
εp

εb

}T [
[A] [B]
[B] [D]

]{
εp

εb

}
+ {εs}T [E]{εs}−

{
εp

εb

}T {
N̄

M̄

}]
dA−

∫

A
qw0dA

(7)

where δ is the vector of degrees of freedom associated to the displacement field in a finite element
discretisation and q is the applied pressure load.

The potential energy U2(δ) due to initial state of in-plane stress resultants {N0} = {N0
ss N0

θθ N0
sθ}T

is written as
U2(δ) =

∫

A
{εNL

p }T {N0}dA (8)

Following the procedure given in the work of Rajsekaran and Murray [17], the total potential
energy functional U(δ)[= U1(δ) + U2(δ)] can be expressed as

U(δ) = {δ}T [
1
2
[[K]− [K∆T ] + [KG]] +

1
6
[N1(δ)] +

1
12

[N2(δ)]]{δ} − {δ}T {FM} − {δ}T {FT } (9)

where [K] is the linear stiffness matrix, [N1] and [N2] are nonlinear stiffness matrices lin-
early and quadratically dependent on the field variables, respectively. [K∆T ] and [KG] are the
geometric stiffness matrices due to thermal and initial stress resultants. {FM} and {FT } are
mechanical and thermal load vectors, respectively.

The kinetic energy of the shell is given by

T (δ̇) =
1
2

∫

A
[p(u̇0

2 + v̇0
2 + ẇ0

2) + I(β̇s
2
+ β̇θ

2
)]dA (10)

where

p =
N∑

i=1

∫ zi+1

zi

ρidz, I =
N∑

i=1

∫ zi+1

zi

ρiz2dz

and ρi is the mass density of the ith layer. zi and zi+1 are the z coordinate of the inner and outer
surfaces of the ith layer. The dot over the variable denotes the partial derivative with respect
to time.

Substituting Eqs. (9) and (10) in Lagrange’s equation of motion, the governing equation for
the shell are obtained as:

[M]{δ̈}+ [C]{δ̇}+ [[K]− [K∆T ] + [KG] +
1
2
[N1(δ)] +

1
3
[N2(δ)]]{δ} = {FM}+ {FT } (11)

where [M] and [C] are the mass and damping matrices, respectively.
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The governing Eq. (11) can be employed to study the linear/nonlinear static/dynamic
response and eigenvalue analyses by neglecting the appropriate terms as:

Linear Static Analysis:
[K]{δ} = {FM}+ {FT } (12)

Nonlinear Static Analysis:

[[K]− [K∆T ] + [KG] +
1
2
[N1(δ)] +

1
3
[N2(δ)]]{δ} = {FM}+ {FT } (13)

Nonlinear Dynamic Analysis:

[M]{δ̈}+ [C]{δ̇}+ [[K]− [K∆T ] + [KG] +
1
2
[N1(δ)] +

1
3
[N2(δ)]]{δ} = {FM}+ {FT } (14)

Free Vibration Analysis about Deformed Equilibrium Configuration:

[Kt]{δ̄} = ω2[M]{δ̄} (15)

where [Kt] = [K]−[K∆T ]+[KG]+[N1(δ)]+[N2(δ)] is the tangent stiffness matrix, {δ̄} is the vector
representing the vibration mode shape measured from the deformed equilibrium configuration
and ω is the frequency.

Eigenvalue Buckling Analysis:

[K]{δ} = ∆T{K∗
G}{δ} (16)

where [K∗
G] is the geometric stiffness due to initial state of stress developed because of unit

uniform temperature rise and ∆T is the temperature rise.
It may be noted here that for the purpose of evaluating [K∗

G], firstly the static analysis of
the shell using Eq. (12) for unit load is carried out. The resulting deformation field is used to
calculate the initial state of stress resultants using Eq. (5) and in turn, for evaluating the [K∗

G]
matrix.

The description of finite element and its validation can be found in Refs. [15,16] and for the
sake of brevity, is not presented here.

3 Solution methods

3.1 Transient analysis

The Equation(14) for nonlinear dynamic response is solved using the Newmark’s numerical
integration scheme. If the solution is known at time t and one wishes to obtain the displacements
etc., at time t + ∆t, then the equilibrium equations considered at time t + ∆t are given as

[M]{δ̈}t+∆t + [C]{δ̇}t+∆t + [[N(δ)]{δ}]t+∆t = {F}t+∆t (17)
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where {δ̈}t+∆t, {δ̇}t+∆t and {δ}t+∆t are the vectors of the nodal accelerations, velocities and dis-
placements at time t+∆t, respectively; and {F}t+∆t = {FM}t+∆t +{FT }t+∆t. {[N(δ)]{δ}}t+∆t

is the internal force vector at time t + ∆t and is given as

{[N(δ)]{δ}}t+∆t = {[[K]− [K∆T ] + [KG] +
1
2
[N1(δ)] +

1
3
[N2(δ)]]{δ}}t+∆t (18)

In developing equations for the implicit integration, the internal forces [N(δ)]{δ} at the time
t + ∆t is written in terms of the internal forces at time t, by using the tangent stiffness approach,
as

{[N(δ)]{δ}}t+∆t = {[N(δ)]{δ}}t + [KT (δ)]t{∆δ} (19)

where [KT (δ)]t = [[K] − [K∆T ] + [KG] + [N1] + [N2]] is the tangent stiffness matrix and
{∆δ} = {δ}t+∆t−{δ}t. Substituting Eq. (19) into Eq. (17), one obtains the governing equation
at t + ∆t as

[M]{δ̈}t+∆t + [C]{δ̇}t+∆t + [KT (δ)]t{∆δ} = {F}t+∆t − {[N(δ)]{δ}}t (20)

The Eq. (20) is solved using Newmark’s numerical integration scheme.

3.2 Nonlinear static analysis

The nonlinear static equilibrium path is traced by solving Eq. (13) using Newton-Raphson
iteration procedure coupled with displacement control method [1]. The governing Eq. (13)
for the ith load/displacement step, treating ∆T also as unknown variable together with the
displacement vector {δ} and using the tangent stiffness approach, can be rewritten as

[KT ]{δi − δi−1} − (∆T i −∆T i−1){{F ∗
T }+ [K∗

∆T ]{δi−1}} = {Ri−1} (21)

where
{Ri−1} = {FM}+ ∆T i−1{F ∗

T } − [[K]−∆T i−1[K∗
∆T ] + 1

2 [N1(δi−1)] + 1
3 [N2(δi−1)]]{δi−1}

[KT ] = [K]−∆T i−1[K∗
∆T ] + [N1(δi−1)] + [N2(δi−1)]

Here, [K∗
∆T ] is the thermal geometric stiffness because of unit uniform temperature rise; ∆T i

and δi are the temperature rise and displacement vector in the ith step.
In the displacement control method, the qth component of incremental displacement vector

{δi−δi−1} is prescribed. The solution of the remaining displacement and temperature increments
is obtained by solving Eq. (21). The degree of freedom q having the highest increment in the
previous step is selected as a control parameter except the first step wherein the temperature
increment is specified.

The equilibrium iterations are continued for each load/displacement incremental step until
the convergence criteria suggested by Bergan and Clough [2] in terms of residual force and
iterative displacement increment norms are satisfied within the specific tolerance limit of less
than 0.001 percent.
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4 Result and discussion

The nonlinear thermoelastic static response, free vibration characteristics and dynamic response
of laminated circular cylindrical shells subjected to uniform temperature rise, which may typ-
ically be encountered during the cruise flight of a space vehicle, are investigated using the
semi-analytical finite element formulation. The buckling mode shapes evaluated from the eigen-
value analysis of a uniformly heated cylindrical shell, having identical support conditions at the
two ends, can be classified into longitudinally symmetric and antisymmetric ones for any cir-
cumferential wave number (n). The presence of small magnitude initial disturbance in the form
of a load spatially proportional to either the longitudinally symmetric or antisymmetric linear
buckling mode shape having maximum transverse displacement parameter (w̄0max/h) equal to
0.001, unless otherwise is specified, is considered here. The nonlinear prebuckling/postbuckling
response is presented as relationship between maximum outward normal displacement parameter
(wmax/h) versus temperature rise parameter λT (= 10−6∆Tr/h). The stability of the equilibrium
configurations is investigated from the variation of frequency parameter Ω2(= ω2r2ρ/ET ) with
temperature rise parameter (λT ). The positive and negative values of the frequency parameter
indicate the stable and unstable equilibrium configurations, respectively.

The material properties used here are
EL = 181 GPa, ET = 10.3 GPa, GLT = GTT = 7.17 GPa, νLT = νTT = 0.28, αL = 0.02× 10−6

/0C, αT = 22.5× 10−6/0C, ρ = 1600 Kg/m3.
where E, G, ν and α are Young’s modulus, shear modulus, Poisson’s ratio and coefficient

of thermal expansion, respectively. The subscripts L and T are the longitudinal and transverse
directions, respectively, with respect to the fibers.

All the layers are of equal thickness and the ply-angle is measured with respect to the
meridional axis (s-axis). The first layer is the innermost layer of the shell.

The simply supported immovable boundary conditions of the shells considered here are:
u0

0 = uc1
0 = us1

0 = uc2
0 = us2

0 = uc3
0 = us3

0 = uc4
0 = us4

0 = v0
0 = vc1

0 = vs1
0 = vc2

0 = vs2
0 = vc3

0 = vs3
0 =

vc4
0 = vs4

0 = w0
0 = wc1

0 = ws1
0 = wc2

0 = ws2
0 = β0

θ = βc1
θ = βs1

θ = βc2
θ = βs2

θ = 0 at s=0, L

Based on progressive mesh refinement, 48 elements idealization is found to be adequate to
model the complete length of the shells.

The nonlinear thermoelastic response and linear vibration characteristics about the deformed
configuration of eight-layered cross-ply laminated (00/900)4 simply supported cylindrical shell
(L/r=1, r/h=200, n=9) are shown in Figure 1. The stable part of the equilibrium path is de-
picted in Figure 1(a) as solid lines and unstable one with dashed lines. The pre-buckling path
(Equilibrium path I) is unstable after the bifurcation point. The equilibrium configurations of
the shell after bifurcation point follows the path-II or III depending upon whether the small
magnitude radial load (considered for initiation of bifurcation in the nonlinear static analy-
sis) is spatially proportional to longitudinally symmetric or antisymmetric linear buckling mode
shape. The post-buckled longitudinally symmetric/antisymmetric deformed configuration of the
shell, spanning full meridional length and circumferential sector (2π/n), are depicted in Figure 2
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Figure 1. Equilibrium configurations and free vibration frequencies of cross-ply (00/900)4 laminated 

heated cylindrical shell (L/r = 1, r/h = 200, n = 9) with longitudinally symmetric and anti-symmetric 

disturbance. 
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Figure 1: Equilibrium configurations and free vibration frequencies of cross-ply (00/900)4 lami-
nated heated cylindrical shell (L/r = 1, r/h = 200, n = 9) with longitudinally symmetric and
anti-symmetric disturbance.
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Figure 2. Deformed shape of postbuckled cross-ply laminated (00/900)4 simply-supported 

cylindrical shell (L/r = 1, r/h = 200, n = 9):  (a)  Longitudinally  symmetric  mode, (b) 

Longitudinally anti-symmetric mode.              
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Figure 2: Deformed shape of postbuckled cross-ply laminated (00/900)4 simply-supported cylin-
drical shell (L/r = 1, r/h = 200, n = 9): (a) Longitudinally symmetric mode, (b) Longitudinally
anti-symmetric mode

for two values of temperature parameter. The frequency parameter variation with tempera-
ture presented in Figure 1(b) and 1(c) reveals that the decrease in frequency corresponding to
different modes in prebuckling region is independent of type of disturbance (symmetric or anti-
symmetric). However, the variation of the frequency parameters with temperature significantly
depends on the nature (longitudinally symmetric or antisymmetric) of postbuckling equilibrium
configuration. The frequency parameter of one mode for longitudinally symmetric postbuckling
configuration is negative indicating that the longitudinally symmetric postbuckled configuration
is unstable for the entire temperature range considered here. Such behaviour brought out here
for circumferentially closed shells is not reported in the vibration characteristics of thermally
postbuckled plates/panels [5, 8–14]. The longitudinally antisymmetric postbuckled configura-
tion of the shell is unstable for small range of the temperature parameter as revealed from
the frequency parameter variation highlighted in the insert in Figure 1(c). The study carried
out considering different circumferential wave numbers (n), L/r and r/h ratios (results are not
shown here for the sake of brevity) reveals the similar qualitative behaviour.

To further investigate the stability of symmetric and antisymmetric post-buckled deformed
configurations, the dynamic analysis of the shells is carried out incorporating the proportional
damping of the form [C] = α([K] + [M ]). The dynamic response of the heated shell (λT =
0.2) in the presence of longitudinally symmetric disturbance is shown in Figures 3 and 4 for
α = 0.5 × 10−4 and 10−5, respectively. It can be observed from Figure 3 and 4 that the shell
response grows in the longitudinally symmetric deformation shape and exhibits the oscillations
about the mean configuration. The amplitude of these oscillations reduces with the time due
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Figure 3. Dynamic response of the heated shell (λ T  = 0.2) at s = L/2 with damping parameter

               α  = 0.5 x 10-4 in the presence of longitudinally symmetric disturbance.
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 Figure 3: Dynamic response of the heated shell (λT = 0.2) at s = L/2 with damping parameter
α = 0.5× 10−4 in the presence of longitudinally symmetric disturbance.

Figure 4. Dynamic response of the heated shell (λ T  = 0.2) at s = L/2 with damping parameter

               α  = 10-5 in the presence of longitudinally symmetric disturbance.
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 Figure 4: Dynamic response of the heated shell (λT = 0.2) at s = L/2 with damping parameter
α = 10−5 in the presence of longitudinally symmetric disturbance.

to the presence of damping, and when the amplitude of the oscillations is reduced to a certain
level depending upon the damping parameter α, the shell response jumps to oscillation about
longitudinally antisymmetric mean configuration. It may be noted here that in nonlinear static
analysis the longitudinally symmetric disturbance leads to the deformation in the same mode
that is predicted as unstable through the eigenvalue analysis. However, in the dynamic analysis,
the response of the shell jumps to oscillation about stable configuration even if the assumed initial
disturbance is longitudinally symmetric. The deformation shapes of the shell at different time
instants (as marked in Figure 3) are shown in Figure 5 depicting the change in the configuration
of the shell from longitudinally symmetric to antisymmetric one. The dynamic response shown
in Figure 6 for the case of longitudinally antisymmetric disturbance reveals that the shell settles
in the same mode without any jump in the response mode shape.
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Figure 5: Deformed shapes of shell at different time instants as marked in Figure 3.
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Figure 6. Dynamic response of the heated shell (λT = 0.2) at s = L/4 with damping  parameter α = 
0.5 x 10-4 in the presence of longitudinally anti-symmetric disturbance. 
 
 

Figure 6: Dynamic response of the heated shell (λT = 0.2) at s = L/4 with damping parameter
α = 0.5× 10−4 in the presence of longitudinally antisymmetric disturbance.

Next the forced nonlinear dynamic response analysis of the heated shell is carried out con-
sidering λT =0.1 (prebuckling region) and 0.2 (postbuckling region). The external radial load is
assumed as q = q0 sin(πs

L ) cos(nθ) sin(ωF t). The load amplitude q0 corresponds to a maximum
transverse displacement parameter (w̄0max/h) in linear static analysis of the shell subjected to
only radial load. The steady state response amplitude (wc1

0 /h) at s = L/2 versus forcing fre-
quency parameter ΩF (= ωF r

√
ρ

ET
) curves, extracted from the time response curves correspond-

ing to different forcing frequencies, are shown in Figure 7. It can be inferred from this Figure
that the shell heated in prebuckling region reveals jump phenomenon and forcing frequency
corresponding to the jump in the response decreases with the increase in the force magnitude
revealing the softening type of nonlinear effect. The response of the shell heated in postbuckling
region does not reveal distinct jump. The typical time responses [wc1

0 /h at s = L/2 versus

non-dimensional time τ = t
2πr

√
ET
ρ curves] are shown in Figure 8 for λT = 0.1 and in Figure 9

and 10 for λT = 0.2. The change in the nature of the response pattern is associated with the
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Figure 7: Steady state response amplitude (w0

c1/h) at s=L/2 versus forcing frequency 
parameter ΩF curves. 
 

Figure 7: Steady state response amplitude (wc1
0 /h) at s = L/2 versus forcing frequency parameter

ΩF curves.

-0.8

-0.4

0

0.4

0.8

0 50 100 150 200 250

Nondimensional Time (ττττ )

w
oc1

/h

(a) ΩΩΩΩ F  = 0.267

-3

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70 80
Nondimensional Time (ττττ )

w
oc1

/h

(b) ΩΩΩΩ F  = 0.312

 
 
Figure 8: Dynamic response of heated shell (λT = 0.1) at s=L/2 with damping parameter α = 0.5x10-4 in the 
presence of radial distributed load ( hw /max0 =0.1). 

 
 

Figure 8: Dynamic response of heated shell (λT = 0.1) at s = L/2 with damping parameter
α = 0.5× 10−4 in the presence of radial distributed load (w̄0max/h = 0.1).
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Figure 9: Dynamic response of heated shell (λT = 0.2) at s=L/2 with damping parameter α = 0.5x10-4 in the 
presence of radial distributed load ( hw /max0 =0.1). 

 

Figure 9: Dynamic response of heated shell (λT = 0.2) at s = L/2 with damping parameter
α = 0.5× 10−4 in the presence of radial distributed load (w̄omax/h = 0.1).
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change of mean equilibrium configuration from longitudinally symmetric to antisymmetric one.

-4
-3
-2
-1
0
1
2
3
4

0 20 40 60 80 100 120 140 160

Nondimensional Time (ττττ )

w
oc1

/h
(a) ΩΩΩΩ F  = 0.03

-4

-3

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80
Nondimensional Time (ττττ )

w
oc1

/h

(b) ΩΩΩΩ F  = 0.09

-4

-3

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80
Nondimensional Time (ττττ )

w
oc1

/h

(c) ΩΩΩΩ F  = 0.12

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80
Nondimensional Time (ττττ )

w
oc1

/h

(d) ΩΩΩΩ F  = 0.326

 
Figure 10: Dynamic response of heated shell (λT = 0.2) at s=L/2 with damping parameter α = 0.5x10-4 in the 
presence of radial distributed load ( hw /max0 =0.4). 

 

Figure 10: Dynamic response of heated shell (λT = 0.2) at s = L/2 with damping parameter
α = 0.5× 10−4 in the presence of radial distributed load (w̄0max/h = 0.4).

5 Conclusions

The vibration characteristics of cross-ply laminated heated cylindrical shells are investigated
and the stability of their postbuckled equilibrium configurations is studied. The study reveals
that the prediction of the postbuckling equilibrium configuration from nonlinear static analysis
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depends on the nature (longitudinally symmetric/antisymmetric) of initial disturbance. The
longitudinally antisymmetric postbuckled equilibrium configuration is stable whereas the lon-
gitudinally symmetric one is unstable for the shell parameters considered here. The dynamic
response of the shell reveals shift to stable longitudinally antisymmetric configuration even if
the assumed initial disturbance/dynamic radial pressure corresponds to unstable longitudinally
symmetric postbuckling configuration. The steady state amplitude - forcing frequency relation
depicts jump in the prebuckling region.
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