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A numerical method for free vibration analysis of beams
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1 INTRODUCTION

The vibration analysis for structures is a very important field in engineering and computational
mechanics. These dynamic problems are classically described by a system of ordinary differential
equation associated with a set of boundary conditions. Mostly, these problems cannot be solved or
are difficult to solve analytically. Alternatively, the numerical methods can provide approximate
solutions. Numerical methods such as finite element (Thomas and Abbas (1975); Jang and Bert
(1989); Klasztorny (1992); Cleghorn and Tabarrok (1992); Friedman and Kosmatka (1993);
Boukhalfa and Hadjoui (2010); Hamedani et al. (2012)), finite difference (Popplewell and Chang
(1996); Laura and Gutierrez (1993); Fu-le and Zhi-zhong (2007)), differential quadrature (Liu and
Wu (2001); Bert et al. (1988); Bert and Malik (1996); Janghorban (2011); Mirtalaie et al. (2012);
Rajasekaren (2013)), the dynamic stiffness matrix (Banerjee (1998, 2001); Li et al. (2004); Hashe-
mi and Richard (1999)) and some other methods have been used in solving free vibration problems
of structures.

The present paper follows the approach that was first proposed by Hajdin (1958), and later
also used in further works by Krajcinovic and Herrmann (1970) and Hajdin and Krajcinovic (1972).
The main point of proposed method for numerical solutions of the ordinary differential equations
contains in choosing of the highest derivative in these equations for the basic unknown. The un-
knowns are determined through the corresponding integral equations which kernels are influence
function for bending moment of a beam.

In the present paper, the above approach is applied to a set of second-order ordinary differential
equations of variable coefficients, with arbitrary boundary conditions, and their application to the
free vibration of beams. In the formation of the system of linear algebraic equations from which can
be obtained a characteristic equation of natural frequencies, we use in this paper statically-
kinematic analogy that exists between the generalized displacements and cross section forces in the
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appropriate fictitious beam. In that case, the generalized displacements can be determined by
known methods of structural analysis used to determine the cross section forces. In contrast to
FEM where the displacement field is prescribed, in the present method, as already mentioned, the
field of highest derivative of function is assumed, so the solution is obtained through numerical
integration. With a relatively small number of points it can be achieved satisfactory accuracy of the
results.

2 THEORETICAL CONSIDERATIONS

Consider the problem governed by a system of homogeneous ordinary differential equations of se-
cond order, with suitable boundary conditions at both ends, z = 0 and z = L. This system of equa-
tions can be written in the matrix form as follow

Aq"+Bq'+ C+w’D q=0 (1)

where A, B, C and D are known N x N matrix function of z, q is a vector whose elements are N
unknown functions (displacement parameters)

4 =

4 2

q; 2

qy =2

and @ is circular frequency, which corresponds to the solution for the non-trivial case. Primes in
equation (1) denote differentiation with respect to z.
The second derivatives of any component g, (i=1 2,..., N) of vector q, shall be denoted

4 =—p; 2 (3)

In addition to differential equation (3) the following boundary conditions are given

% = Yo
for z=10 4
a4 = aj )
The solution of Eq. (3) may be written as (Byron and Fuller 1992)
!
q; * =f08 25 p; s ds +qjyz + gy (5)

where ¢ is the integration variable and s(S,s) is Green's function corresponding to the differential
equation (3), which obeys homogeneous boundary conditions (4). Function $(S,¢), known as kernel
of integral equation (5), is defined by
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- z—g ¢<z 6
S Z =
© 0 c>z (6)

If p, z is understood as external transverse load distributed along the axis of the beam, ¢,, and
q;, as a bending moment and a transversal force at the left end of the beam, respectively, and

q; z as bending moment along the beam, than integral equation (5) defines the dependence be-

tween the cross section bending moment and external load of the fictitious cantilever beam of length
I, fixed at the right end, Fig. 1. From this it follows that Green's function is the influence function
for the bending moment of a cantilever beam, well known to civil engineering.
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Figure 1: Fictitious cantilever beam.
Differentiating equation (5) we get
/ ! / / 7
q; z =fos zs p; s ds +qj (7)
where
, -1 ¢ <z
sz, = 8
’ 0 c>z (8)

is influence function for transversal force of the cantilever beam.

3 NUMERICAL SOLUTION

The values of definite integral in equation (5) can be expressed approximately, using method for
numerical integration. Unknown functionp, z , which by static analogy with beam in bending

represents the load, will be shown in the form of polygonal line with characteristic values p, at
selected points k (k = 0, 1, 2,.., M) of the equidistant spacing A

M
p; = :ZQk Z Py, 9)
k=0

where Q, is linear function which exists only along parts between the point &, where it takes the
value 1, and adjacent nodes, where it takes the value 0, Fig. 2. The ordinate p,, of function p, =z
at point k = 0, is determined by linear extrapolation, so that p,, = 2p,; — p,,-
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Fig. 2: Characteristic values Py and functions 2 (i = 1, 2,..., M)

Substituting Eq. (9) into Eq. (5) we obtain

M
4G 2 = ZS %5, Py + dio? +
k=0
where
!
S 2,6, =fs 2,6 ds
0

represents influence line for bending moment in section z of cantilever beam, caused by unit triangu-

lar load, Fig. 3.

Fig. 3: (a) Unit triangular 'load' and (b) influence line for bending moment of fictitious cantilever beam.
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The functional equation (10) may be transformed into a system of algebraic equations if the
argument z is assigned at discrete points j j =1, 2,..., M , in which the integration is performed

M
% = Z;)Sjkpik + qi/OZj + g (12)
where
9, = 4; 2
j J (13)
Sp =18 2,5
and
~ /6 i=k
S = 0 i<k (14)
—j—k XN j>k
Taking into account that p,, = 2p,; — p,, we have the additional members
—[] - %])\2 k=1
jk = 1 1 (15)
—lj—=- |\ k=2
2 3

Differentiating equation (10) with respect to z, and applying the previous transformations, in a simi-
lar way we obtain

M
qllj = Zsjl'kpik + a5 (16)
k=0
where
- /2 j=
Sl = 0 i<k (17)
- A j>k
o _ [ k=
ETN2 k=2 (18)
Also, from equation (3) it follows
9 = —Py (19)

Latin American Journal of Solids and Structures 11 (2014) 1432-1444



A. Proki¢ et al. / A numerical method for free vibration analysis of beams 1437

Equations (12), can be represented in matrix form as

or explicitly

q;
9
q;
q;

dy

Q

Q=SP +LQ,

S+ §11 I 5121 Py
Syp + 5y 1 Sgg 45y 1 Py
531 +S31 I 532 + 93 I 5331 p3
Sp+8; 1T 8, +85, 1T 8,1 Syl P
S+ §M1 I Sy, + §M2 I Syl SMjI Sy [Py
3 P

(20)
do
1% | (21)

Qo

where q, and P, (j =1, 2,..., M) are the vectors of nodal displacements and "load" of the element,

all of which, in general, has N components.
The matrix forms of Egs. (16) and (19) are given by

Conditions that differential equations (1) are satisfied at all discrete points j (j = 1, 2,..

can be expressed as

where

Q/ _ S/P + L/QO

Q//:_

A*Q”—i—B*Q'—l— C*+w2D* Q=0

2 . M
A 1
A 2
B
A M
2 M
C 1
C M

M

Substituting egs. (20), (22) and (23) into Eq. (24) yields

(22)
(23)
. M),

(24)

(25)
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~A"+B'S + C" +u?D" S]P + [B*L’ + C"+w" L|Q, =0 (26)
from which we obtain
P =-K'LQ, (27)
where

K=-A*+B'S + ¢ +uD" s

_ 2
L=BT+ C"+uD" L (28)

Taking into account equations (21) and (22) we can establish a connection between the values of
the vector q and q' on the right and left end of the element

Q| [ Sin+ S T Sly 5l TSl e ST e sp, 1] %
qy Sun 51 T Sy #8541 Syl o Syl (29)
Py
—_—
P
or
Q) =Sy P +TQ (30)
Substituting (27) into (30) we get
Qy = _SMKflf‘ +T Q, (31)

At the beam ends, depending on the support conditions, boundary conditions are given by the
forces and/or displacements. Consider the most general case of mixed boundary conditions at both
ends of the beam. Geometric quantities (displacement parameters), as before, will be marked with q
and static (cross-section forces) with r. For the left and right ends of the beam, we introduce gener-
alized vectors

q
Ty

dy

Ty

R, = Ry = (32)

Between vectors R, and Q,, and R,, and Q,, can be established a connection
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R, = EQ, (33)
R, = EQ,, (34)

Multiplying the left side of the matrix equation (31) with matrix E and taking into account the
equations (33) and (34), we obtain

R, =E —S, K'L+T E'R, (35)
or
R, = FR, (36)
where
F=E -S,,K''L+T E! (37)

This is a system of 2x N linear homogeneous algebraic equations for the 4x N unknowns. If homoge-
neous boundary conditions at the ends of the beam, which number is 2x N, enter in the equation
(36) we get the homogeneous system of 2x N equations with 2x N unknowns. This system, repre-
senting an algebraic eigenvalue problem, can have a nonzero solution only when the determinant of
the equation system vanishes.

4 NUMERICAL EXAMPLES

In this section, the introduced method will be employed in analyzing the free vibration of beams
with different boundary conditions. Two numerical examples are presented to demonstrate the ap-
plicability of the proposed method, and numerical results by the present study are compared to
those reported by other researchers.

4.1 Example 1

As the first illustrative problem, consider the transversely vibrating uniform Timoshenko beam. The
free harmonic vibrations of beam are defined by homogeneous differential equations of motion

EIV" + EGF V' = U + plu?*¥ =0
EGF V" — 0" 4+ muw?V =0

and appropriate end conditions
o The geometric boundary conditions:

v=v =0
e The natural boundary conditions:
Bending moment (M): Ely' =0
Shear force (Q): kGF v —¢ =0

In above equations V z and ¥ z denote the amplitudes of the sinusoidally varying transverse

displacement and flexural rotation, w the circular frequency, p the material density, F the cross
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sectional area, I the second area moment of inertia about the neutral axis of the beam cross section,
EI and kGF the flexural and shear rigidity of beam, respectively and m = pF the mass per unit

length. Primes denotes differentiation with respect to coordinate z.
Displacement state vector q, Eq. (2), consisting of 2 displacement parameters

R V z
1= 4y Tz
and matrix A, B, C, D and E are as follows
A EI kGF o —hGF| ol
~ |kGF B —kGF ] “|m
1
B 1
kPG —kFG
EI

For the cantiliver glass-epoxy composite beam of Han et al (1999), clamped at the left end

Vo=Y,=0
QM:MM:0

and for the structural and material properties as follows:

E =200 GPa

G =775 GPa

p = 7830 kg/m?
F = 0.0097389 m?
I =0.0001171 m*
L=10m

k = 0.53066

in Table 1 are listed the first six natural frequencies. In the same table, the results of Han et al
(1999) are also given for comparison.

Natural frequency @ (rad/s)

Mode

k=5 k=10 k=20 k =40 Han et al (1999)
1 1748.59 1709.61 1699.39 1696.82 1696.03
2 7111.95 6886.33 6798.68 6775.81 6768.24
3 14690.43 14683.53 14387.63 14297.80 14267.26
4 21190.22 20948.34 20604.33 20465.15 20415.37
) 26196.82 25677.57 25369.31 25208.17 25150.52
6 30250.93 30146.82 29641.34 29329.49 29211.86

Table 1: The first six natural frequencies of Timoshenko beam obtained by the present method for various numbers
of internal points k and by Han et al (1999)
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Close agreements in natural frequencies are obtained between the proposed method and method
of Han et al. (1999). For k = 12, the differences between the two methods are less than 3%. As can
be seen from Table 1, a small number of interior points are required for a good prediction of fre-
quencies.

4.2 Example 2

The governing partial differential equations of harmonic motion, with circular frequency w , for the
laminated composite Timoshenko beam exhibiting coupled flexure-torsion free natural vibration are
given by

EIU" + kGF V' =¥ + K®" + pl &*¥ =0
EGF V" =¥ +mw?*V =0
KU" + GJ®" 4+ 1 w*® =0

where V z , ¥ 2z and @ 2z are transverse deflection, bending rotation and twist angle of the

beam, respectively. Beside the above differential equations, geometric and natural boundary condi-
tions must be taken into account
e The geometric boundary conditions:

e The natural boundary conditions:
Bending moment (M): ELY' + K¢' =0
Shear force (Q): EGF v —+¢ =0
Torque (7): Ky'+GJp =0

Displacement state vector q, Eq. (2), is given by

q V z
q=|¢|=|¥ 2
qs D 2
Matrix A, B, C, D and E are as follows
El | K kGF —kGF pl,
A = |kGF B= —kGF C= D=|m
K |GJ 1,
1
1
E 1
kPG —kFG
EIy K
K GJ
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The beam model studied by Mirtalaie et al (2012) is solved in this study as an illustrative exam-
ple, by using proposed method. It is a cantilever glass-epoxy composite beam with a rectangular
cross section with width 12.7 mm and thickness 3.18 mm. Unidirectional plies each having fiber
angles of +15 are used in the analysis. The data used for the analysis are as follows:

bending rigidity (EIy) = 0.2865 Nm?;

torsional rigidity (GJ) = 0.1891 Nm?;

bending+torsion coupling rigidity (K) = 0.1143 Nm?;

shear rigidity (kF'G) = 6343.3 N;

mass per unit length (m) = 0.0544 kg/m;

mass moment of inertia per unit length (Is) = 0.7770 x10-6 kgm;

length of the beam (L) = 0.1905 m.

pl, = 4.584 107" kgm

Because of symmetry, only half of the beam is considered.

Natural frequency @ (rad/s)

Mode S-S C-C F-F
Present study Exact Present study Ref. [13] Present study Ref. [13]
1 541.683 540.735 1205.619 1203.500 1222.274 1220.371
2 2132.634 2128.709 3229.957 3223.950 3306.512 3300.886
3 4678.952 4669.661 6112.393 6100.096 6274.497 6262.882
4 8048.008 8030.457 8125.178 8125.010 8184.199 8183.620

Table 2: The first four natural frequencies of composite Timoshenko beam for various boundary conditions

For k = 60, the lowest four natural frequencies of the beam are presented in Table II, where they
are compared with the exact results obtained by the method of Proki¢ (2005 and 2006), for the
pinned-pinned boundary conditions. Also, in Table 2, for clamped—clamed and free—free boundary
conditions, the results of the present method are compared with the results by Mirtalaie et al (202).
The numerical results of the present study are in good agreement (the differences are less than
0.2%) with exact and results by Mirtalaie et al (2012).

4 CONCLUSIONS

In this paper a numerical method is proposed which can be applied to a wide range of problems
defined by a set of second-order ordinary differential equations with different boundary conditions.
The solution is obtained through numerical integration. The basic mathematical operation is simple
and can be readily solved by the application of matrix calculus. Numerical verification demonstrates
that the proposed method is reasonably accurate, e.i. the numerical approximations, in most cases,
is accurate for quite low values of k. Finally, it can be said that proposed method can serve as a
convenient alternative to the similar numerical techniques in the analysis of problems defined by a
system of second-order ordinary differential equations, with arbitrary boundary conditions.

The problems which are reduced to differential equations with variable coefficients and some
other integration schemes will be investigated in next work.
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