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Abstract

Nowadays there is great interest in structural damage detection using non- destructive
tests. Once the failure is identified, as for instance a crack, it is possible to plan the next
step based on a predictive maintenance program. There are several different approaches that
can be used to obtain information about the existence, location and extension of the fault in
mechanical systems by non destructive tests. Among these methodologies, one can mention
different optimization techniques, as for instance classical methods, genetic algorithms, arti-
ficial neural networks, etc. Most of these techniques, which are based on element-by-element
adjustments of a finite element (FE) model, take advantage of the dynamic behavior of the
system. These approaches are known as parameter updating methods, and are well described
in the literature. The main goal of this paper is to use H2 and H∞ norms to obtain dam-
age locations information. The proposal allows the identification of damaged elements in
the structure, and provides information about the influence of these damages on the natural
modes of the system. The paper concludes with a numerical simulation in an aluminum plate
represented by a model of second order written in modal coordinates. Four structural damage
cases were simulated using stiffness reduction. The results show with clarity the localization
of each simulated damage; so, proving the viability of the presented methodology.

Keywords: damage location, PVDF sensors, PZT actuators, predictive maintenance, system
norms, H2 and H∞ norm.

1 Introduction

Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret
adverse “changes” in a structure. The aim of this program is to improve reliability and reduce
life-cycle costs. There are several advantages for using a SHM system over traditional inspection
cycles, such as reduced down-time, elimination of component tear-down inspections and the
potential prevention of failure during operation. Aerospace structures have one of the highest
investments for SHM applications, since damage can lead to catastrophic and expensive failures,
and the vehicles involved undergo regular costly inspections. Currently 27% of an average

∗Corresp. author email: vicente@dem.feis.unesp.br Received 22 May 2006; In revised form 13 September 2006



394 D.D. Bueno, C.R. Marqui and V. Lopes Junior

aircraft’s life cycle cost, both for commercial and military vehicles, is spent on inspections and
repairs. This cost excludes the opportunity cost associated with the time the aircraft is grounded
for scheduled maintenance [15].

New materials have been investigated for damage characterization in mechanical structures
using specific SHM program. Most popular are the ones that show the piezoelectric effect, in
special the ceramics, PZT (Lead Zirconate Titanate) and plastic films, PVDF (PolyVinyliDeno
Floride). Piezoelectric materials develop an electric field when submitted to a force (direct effect)
and present a deformation when are submitted to an electric field (inverse effect). Generally,
PVDF’s are used as sensors for being malleable and to admit complex forms [13]. Damage loca-
tion using PVDF sensors based on methods of vibration analysis consists basically of monitoring
parameters that characterize the condition of structures or machines (predictive maintenance).
Many authors use PZT and PVDF material for damage locations in mechanical structures.
Inman proposes the use of intelligent materials (piezoelectric material) combined with control
techniques in order to form a self-healing structure [7].

Different approaches have been proposed for SHM, as for instance, passive control technique
and piezoelectric materials can be combined to detect damage [11]. In this method, the natural
frequencies of the system are identified to detect damage in a closed loop system, and the stability
is ensured. System’s damping usually increases when a virtual passive controller is added.
Another branch of research investigates evolutionary algorithm based on natural observation, as
for instance, artificial neural networks, genetic algorithm, simulated annealing, particle swarm
optimization, etc. Techniques based on neural networks require a model in the training process
to be able to detect damage [5], or sufficient amount of data that represent very well every
damage situation under analysis [17]. Neural networks have been used to investigate damage
detection in composite ship hulls [3]. The authors developed a Finite Element model for a
stiffened plate to simulate dynamic response of the structure with and without damage, and the
technique was successfu1 for identifying crack length and location on the faceplate.

Adaptive on-line control algorithm was used for both vibration suppression and damage
detection [16]. The method was demonstrated on a simulated three degree of freedom system
with an actuator. Large control efforts are required when an abrupt change in system properties
occur, as the controller attempts to compensate and return the monitored responses to their
initial values. These efforts may, therefore, be used as indicators of damage.

Modal and sensor norms also can be used to determine damage locations [21]. Following
this branch of research that has a small amount of related work in the literature, the present
paper proposes the use of H2 and H∞ norms to characterize damage in flexible structures. This
approach localizes damaged elements in the structure, and also provides information about the
changes in the natural modes of the damaged system. The numerical application considers an
aluminum plate represented for a model of second order written in modal coordinates. Four
structural damage cases were simulated using stiffness reduction.

The fundamental equations governing the equivalent piezoelectric actuators and sensors are
also derived. Piezoelectric finite elements are developed based on shell elements, since any
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variation in modal properties can be misinterpreted as damage. Systems that require more
sophisticated modeling techniques are considered in the literature [2, 18].

2 Structural modeling

Flexible structures can be represented by a mathematical model in the form of ordinary dif-
ferential equations involving the input, the output, and possibly some additional variables that
are intermediary between the input and output. The standard form of the state equations of a
linear time-invariant (LTI) system is given by

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1)

where A, B and C are the dynamic, input and output matrices, respectively; x(t), y(t) and
u(t) are the state vector, output vector and input control vector, respectively, and D is the
input-output coupling matrix, which will be considered zero.

With the representation of the model in the nodal form it is possible to write the system in
mass terms, nodal stiffness, damping, displacements and velocity

q̈(t) + M−1Daq̇(t) + M−1Kq(t) = M−1B0u(t)
y(t) = Coqq(t) + Covq̇(t)

(2)

In this equation q(t) is the nd x 1 displacement vector, u(t) is the s x 1 input vector, y(t)
is the output vector, r x 1, M is the mass matrix, nd x nd, Da is the damping matrix, nd
x nd, and K is the stiffness matrix, nd x nd. The input matrix B0 is nd x s, the output
displacement matrix Coqis r x nd, and output velocity matrix Cov is r x nd. The mass matrix
is positive definite, and the stiffness and damping matrices are positive semi definite, nd is the
number of degrees of freedom of the system (linearly independent coordinates describing the
finite-dimensional structure), r is the number of outputs and s is the number of inputs.

Through the classic procedure of modal analysis [18], it is possible to write the motion
equations in modal coordinates, qm(t). Thus, the modal model of second order is given in its
final form

q(t) = Φqm(t)
q̈m(t) + 2ZΩq̇m(t) + Ωqm(t) = Bmu(t)
y(t) = Cmqqm(t) + Cmvq̇m(t)

(3)

where Φ is the modal matrix and Z is the coefficients damping modal matrix (ζi)

Ω2 = M−1
m Km

Z = 0.5M−1
m DmΩ−1 = 0.5M−1/2

m K−1/2
m Dm

(4)

where Ω is the natural frequencies matrix.
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The matrices Mm, Km and Dm are diagonals modal matrices of mass, stiffness and damping,
respectively. These matrices are given by

Mm = ΦTMΦ
Km = ΦTKΦ
Dm = ΦTDaΦ

(5)

Matrix Da is assumed to be proportional to mass and stiffness matrices.

Da = αM + βK (6)

Matrix Bm in Eq. (3) is the input modal matrix, or participation modal matrix and is given by

Bm = M−1
m ΦTB0 (7)

Cmq e Cmv are the output displacement and velocity modal matrices

Cmq = CoqΦ
Cmv = CovΦ

(8)

The state equation, usually written in a vector-matrix format, allows the equations to be ma-
nipulated more easily. In this format the preceding matrices become

A =
[

0 I
−Ω2 −2ZΩ

]
, B =

[
0

Bm

]
, C =

[
Cmq Cmv

]
(9)

The modal state-space realization is characterized by the block-diagonal dynamic matrix and
the related input and output matrices [12].

Am = diag
(
Ami

)
, Bm =




Bm1
Bm2

...
Bmn


 , Cm =

[
Cm1 Cm2 · · · Cmn

]
(10)

where i=1,2,. . . ,n, Ami, Bmi and Cmi are 2 x 2, 2 x s and r x 2 blocks, respectively.
These blocks can be obtained by several different forms and also it is possible to convert

in another realization through a linear transformation. One possible form to block Ami can be
written by

Ami =
[ −ζiωi ωi

−ωi(ζ2
i − 1) −ζiωi

]
(11)

The state vector x(t) of the modal coordinates system consists of n independent components,
xi(t), that represent a state of each mode. The xi(t) (ith state component), related to Eq. (11),
is defined by [19]

xi(t) =
{

qmi(t)
qmoi(t)

}
, where qmoi(t) = ζiqmi(t) + q̇mi(t)

/
ωi

(12)
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3 H2 norm index for damage location

Norms of systems are as measure of size and can be used for diverse applications. It can be
detached the use for damage locations [21], reduction of models [8,20], control [4,10] and optimal
placement of sensors and actuators [9, 19].

Considering (A, B, C) the representation in space of states of a system where the transfer
function G is given by

G(ω) = C(jωI−A)−1B (13)

where ω is the excitation frequency. The H2 norm of the system is defined by

||G||22 =
1
2π

+∞∫

−∞
tr(GT (ω)G(ω))dω (14)

where tr is the trace of the matrix.
A convenient way to calculate the value of the norm is to consider (Ai, Bi, Ci) the represen-

tation in space of states of the ith mode of the system. Using this representation it is possible
to approach the H2 norm by [19]

||Gi||2 ∼= ||Bi||2||Ci||2
2
√

ζiωi

∼= ||Bi||2||Ci||2√
2∆ωi

(15)

where ∆ωi is defined as a half-power frequency at the ith resonance, ∆ωi = 2ζiωi [6].
The H2 norm of the system is the RMS sum of all modes. The H2 norm with more than

one actuator, or sensor, is the RMS sum of the norms for the system with each one of them
separately.

‖G‖2 =

√√√√
n∑

i=1

||Gi||22 (16)

where n is the number of modes. It is denoted the jth sensor norm of the healthy structure by
||Gshj ||2, and the jth sensor norm of the damaged structure by ||Gsdj ||2. The jth sensor index
to characterize structural damages is defined as a weighted difference between the jth sensor
norm of the healthy and the damaged structure. The sensor index reflects the impact of the
structural damage on the jth sensor [21]

σsj =

∣∣∣‖Gshj‖2
2 − ‖Gsdj‖2

2

∣∣∣
‖Gshj‖2

2

(17)

Similarly, denoting the ith mode norm of the healthy structure by ||Gmhi||2, and ith mode norm
of the damaged structure by ||Gmdi||2. The ith mode index to characterize structural damage
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is defined as a weighted difference between the ith mode norm of the healthy and the damaged
structure. The ith mode index reflects the impact of the structural damage on the ith mode

σmi =

∣∣∣‖Gmhi‖2
2 − ‖Gmdi‖2

2

∣∣∣
‖Gmhi‖2

2

(18)

4 H∞ norm index for damage location

The H∞ norm of stable system is defined as

‖G‖∞ = max
ω

σmax (G (ω)) (19)

where σmax(G(ω)) is the largest singular value of G(ω ) [12].
For flexible structures in modal representation the H∞ norm is expressed in terms of the

norms of modes. Considering the ith mode (Ai, Bi, Ci), the H∞ norm is estimated as:

||Gi||∞ ∼= ||Bi||2||Ci||2
2ζiωi

(20)

The H∞ norm of a single-input-single-output system is the peak magnitude of the transfer
function, in terms of its singular values. Due the independence of the modes, the H∞ norm of
the system is the largest value of the mode norms, i.e.,

‖G‖∞ = max
i

‖Gi‖∞ , i = 1, · · · , n (21)

The H∞ norm of the ith mode of a structure with r sensors is the RMS sum of the norms in
this mode for each sensor separately.

‖Gi‖∞ =

√√√√
r∑

k=1

‖Gki‖2
∞ , i = 1, · · · , n (22)

The H∞ norm of the system is given by the RMS sum of all modes. The H∞ norm for a system
with more than an actuator, or sensor, is the RMS sum of the norms for the system with each
one of them separately.

Similarly to the previous section, it is defined a damage index of the sensor for H∞ norm. It
represents the impact of damages on the structure due the position of the ith sensor

σsj =

∣∣∣‖Gshj‖2
∞ − ‖Gsdj‖2

∞
∣∣∣

‖Gshj‖2
∞

(23)

where ||Gshj ||∞ denote the H∞norm of the jth sensor for the healthy structure and ||Gsdj ||∞
the H∞ norm of jth sensor for the damaged structure; sis the sensor’s number.

Latin American Journal of Solids and Structures 3 (2006)



Damage location using H2 and H∞ norm approaches 399

The mode index is also defined similarly for H∞ norm. Eq. (24) reflects the impact of the
structural damage in the ith mode

σmi =

∣∣∣‖Gmhi‖2
∞ − ‖Gmdi‖2

∞
∣∣∣

‖Gmhi‖2
∞

(24)

where ||Gmhi||∞ denote the norm of the ith mode for the healthy structure and ||Gmdi||∞ the
norm of the ith mode of the damaged structure.

5 Finite element modeling considering the electromechanical coupling

The basic idea of the Finite Elements Method consists in using as parameters the nodes variable
of a finite number of points previously chosen, called nodes points or, simply, nodes. Effecting
this procedure, the displacements “u” of a finite element can be written in function of the
displacement of the nodes, ui, using appropriate interpolation functions. This relation is given
in matrix form as

u = Nuui; u̇ = Nuu̇i; ü = Nuüi (25)

where Nu is the matrix that contains the interpolation functions that relate the displacements
that occur to the long one of the longitudinal axle with the nodes displacements of the element.

Besides of displacements ui, also the electric potentials φi must be considered as nodes
variable. Therefore, it can be written by analogy with the displacement in matrix form.

ϕ = Nϕϕi (26)

where Nφ is the matrix that contains the interpolation functions that relate the electric potentials
that occur to the long one of the PZT with the nodes potentials of the element.

Usually, Hamilton’s principle is used to obtain the motion equations in a system electrome-
chanically connected. The idea in this work was to apply the equations of Lagrange in order to
find the motion equations of the piezostructure. In the formulation it is considered the mechani-
cal degrees of freedom (displacements) in each structural element, defined by ui, and the electric
degrees of freedom (electric potentials) defined by ϕi. The Lagrange’s equations are given by

∂

∂t

(
∂L
∂u̇i

)
− ∂L

∂ui
= Fe (27)

∂

∂t

(
∂L
∂φ̇i

)
− ∂L

∂φi
= Qe (28)

where Fe is the of applied external forces in the element, Qe is the electric charge induced for
an electric potential applied in the piezoelectric ceramic and L is the Lagrangian that is defined
as

L = T−U + We (29)
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where T is the kinetic energy, U is the potential energy and We denotes the work done by
electrical forces. The kinetic energy is written as

T =
∫∫∫

Vs

1
2
ρs u̇T u̇dVs +

∫∫∫

Vp

1
2
ρp u̇T u̇dVp (30)

where ρ is the specific mass (kg/m3), u and u̇ are displacement and velocity vectors, respectively,
and V the volume (m3). The superscript T means transposed and the subscripts s and p are
relative to the host structure and the piezoelectric ceramic, respectively. Substituting Eq. (25)
in Eq. (30)

T =
∫∫∫

Vs

1
2
ρsu̇T

i NT
uNuu̇idVs +

∫∫∫

Vp

1
2
ρpu̇T

i NT
uNuu̇idVp (31)

The potential energy can be written as the addition of the potential energies of the structure
and the piezoelectric material

U = Us + Up =
∫∫∫

Vs

1
2
ST σsdVs+

∫∫∫

Vp

1
2
ST σpdVp (32)

where S and σ are the strain and stress tensors, respectively. The constitutive relations of the
structure in matrix form

σ = GS and G =
E

(1 + υ) (1− 2υ)




1− υ υ υ 0 0 0
υ 1− υ υ 0 0 0
υ υ 1− υ 0 0 0
0 0 0 1−2υ

2 0 0
0 0 0 0 1−2υ

2 0
0 0 0 0 0 1−2υ

2




(33)

where G is the matrix that contains the elastic coefficients of the material. E denotes the
Young’s modulus and υ is the Poisson rate. The strain can be represented in matrix form

S = Luu;





Sx

Sy

Sz

Sxy

Sxz

Syz





=




∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y








ux

uy

uz



 ; S = LuNuui (34)

or
S = Buui (35)
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and
Bu = LuNu (36)

Substituting Eq. (35) into (33), the stress tensor for the host structure is given by

σs = GsS = GsBuui (37)

Now, substituting equations (35) and (37) in the domain Vs of the Eq. (32)

Us =
∫∫∫

Vs

1
2
uT

i BT
uGsBuuidVs (38)

Similarly to the host structure, the potential energy must be found to the ceramic material. In
this work the following linear constitutive relations for piezoelectric materials are employed

D = eTS+ ∈S E (Sensor’s Equation or Direct Effect) (39)

σp = cES− eE (Actuator’s Equation or Inverse Effect) (40)

or





D1

D2

D3



 =




0 0 0 0 e15 0
0 0 0 e24 0 0

e31 e23 e33 0 0 0








S11

S22

S33

2S23

2S31

2S12





+



∈S

11 0 0
0 ∈S

22 0
0 0 ∈S

33








E1

E2

E3



 (41)

Sensor’s Equation: Direct effect




σ11

σ22

σ33

σ23

σ31

σ12





=




cE
11 cE

12 cE
13 0 0 0

cE
12 cE

22 cE
23 0 0 0

cE
13 cE

23 cE
33 0 0 0

0 0 0 cE
44 0 0

0 0 0 0 cE
55 0

0 0 0 0 0 cE
66








S11

S22

S33

2S23

2S31

2S12





−




0 0 e31

0 0 e23

0 0 e33

0 e24 0
e15 0 0
0 0 0








E1

E2

E3



 (42)

Actuator’s Equation: Inverse effect
where the superscript S means that the values are measured at constant strain and the super-
script E means that the values are measured at constant electric field, σp is the stress tensor, D
is the electric displacement vector, E is the electric field, cE is the elastic constants at constant
electric field, e denotes the piezoelectric stress coefficients and ∈S is the dielectric tensor at
constant mechanical strain.
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The electric field can be written similarly the strain tensor form by

E = Lϕ ϕ (43)

where Lϕ is the matrix that contains the derivative operators. Substituting Eq. (26) into (43)

E = LϕNϕϕi (44)

or
E = Bϕϕi (45)

where
Bϕ = LϕNϕ (46)

Substituting equations (35) and (45) into (40) (mechanics stress in the PZT), then

σp = cEBuui − eBϕϕi (47)

Now, substituting equations (35) and (47) in the Vp domain of the Eq. (32) it is obtained

Up =
∫∫∫

Vp

1
2
uT

i BT
u cEBuuidVp −

∫∫∫

Vp

1
2
uT

i BT
ueBϕϕidVp (48)

The total potential energy of the piezostructure is given by adding equations (38) and (48)

U =
∫∫∫

Vs

1
2
uT

i BT
u GsBuuidVs +

∫∫∫

Vp

1
2
uT

i BT
u cEBuuidVp −

∫∫∫

Vp

1
2
uT

i BT
u eBϕϕidVp (49)

The work done by electrical forces is given by

We =
∫∫∫

Vp

1
2
ET DdVP (50)

where D, the electric displacement vector of the PZT, is obtained substituting equations (35)
and (45) into Eq. (39)

D = eTBuui+ ∈S Bϕϕi (51)

Now, substituting equations (45) and (51) in Eq. (50), on obtain

We =
∫∫∫

VP

1
2
ϕT

i BT
ϕeTBuuidVP +

∫∫∫

VP

1
2
ϕT

i BT
ϕ ∈S BϕϕidVP (52)
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Substituting equations (31), (49) and (52) into (29), one obtain the Lagrangian as

L =
∫∫∫
Vs

1
2ρsu̇T

i NT
uNuu̇idVs +

∫∫∫
Vp

1
2ρpu̇T

i NT
uNuu̇idVp −

∫∫∫
Vs

1
2u

T
i BT

uGsBuuidVs−
∫∫∫
Vp

1
2u

T
i BT

u cEBuud
i Vp +

∫∫∫
Vp

1
2u

T
i BT

ue BϕϕidVp +
∫∫∫
Vp

1
2ϕT

i BT
ϕ eTBuud

i Vp+
∫∫∫
Vp

1
2ϕT

i BT
ϕ ∈S BϕϕidVp

(53)

Appling Lagrange’s Equation in (53) for the generalized velocity, on obtain

∂L
∂u̇i

=




∫∫∫

Vs

ρsNT
uNudVs


 u̇+

i




∫∫∫

Vp

ρpNT
uNudVp


 u̇i (54)

∂

∂t

(
∂L
∂u̇i

)
=




∫∫∫

Vs

ρsNT
u NudVs


 üi +




∫∫∫

Vp

ρpNT
uNudVp


 üi (55)

or
∂

∂t

(
∂L
∂u̇i

)
= Me

sü
+
i Me

püi (56)

where Me
s and Me

p are the elementary matrices (local) of mass of the host structure and of the
PZT, respectively that are given by

Me
s =

∫∫∫

Vs

ρsNT
uNudVs (57)

Me
p =

∫∫∫

Vp

ρpNT
u NudVp (58)

Now, applying Lagrange’s Equation for the generalized displacement

∂L
∂ui

= −
(

∫∫∫
Vs

BT
uGsBd

uVs

)
u−i

(
∫∫∫
Vp

BT
u cEBudVp

)
u+

i

(
∫∫∫
Vp

1
2B

T
ueBϕdVp

)
ϕi +

(
∫∫∫
Vp

1
2B

T
ϕeTBudVp

)
ϕT

i

(59)

or
∂L
∂ui

= −Ke
sui −Ke

pui + Ke
uϕϕi (60)

where Ke
s and Ke

p are local stiffness matrices of the host structure and of the PZT, respectively,
and Ke

uϕ is the electrical-mechanical coupling stiffness matrix. These matrices are given by

Ke
s =

∫∫∫

Vs

BT
uGsBd

uVs (61)
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Ke
p =

∫∫∫

Vp

BT
u cEBudVp (62)

Ke
uϕ =

∫∫∫

Vp

BT
u eBϕdVp (63)

Appling Lagrange’s Equation for the electric potential, one obtain

∂

∂t

(
∂L
∂φ̇i

)
= 0 (64)

∂L
∂φi

=




∫∫∫

Vp

1
2
BT

ueBϕdVp


 u+

i




∫∫∫

Vp

1
2
BT

ϕeTBudVp


 u+

i




∫∫∫

Vp

BT
ϕ ∈S BϕdVp


φi (65)

or
∂L
∂ϕi

= Ke
ϕuui + Ke

ϕϕφi (66)

where Ke
ϕu is the electrical-mechanical coupling stiffness matrix and Ke

ϕϕ the dielectric stiffness
matrix. These matrices are given by

Ke
ϕu =

∫∫∫

Vp

BT
ϕeTBudVp (67)

Ke
ϕϕ =

∫∫∫

VP

BT
ϕ ∈S Bd

ϕVP (68)

It can be observed from equations (63) and (67) that Ke
ϕu =

(
Ke

uϕ

)T . Equations (57), (58),
(61), (62), (63), (67) and (68) are integrated, getting thus the local matrices. Substituting these
equations into (27) and (28) the matrices of elements can be written as

{ (
Me

s + Me
p

)
üi +

(
Ke

s + Ke
p

)
ui −

(
Ke

uϕ

)
ϕi = Fe

− (
Ke

ϕuϕi + Ke
ϕϕϕi

)
= Qe (69)

From the technique of finite elements, the global matrices are mounted. The global system of
motion equations of a piezostructure with the incorporated electrical-mechanical coupling effect
is [

Muu 0
0 0

]{
ü
ϕ̈

}
+

[
Kuu Kuϕ

Kϕu Kϕϕ

]{
u
ϕ

}
=

{
F
Q

}
(70)

where the global matrices are defined by

Muu =
ne∑

i=1

(Me
s)i +

np∑

j=1

(
Me

p

)
j

(71)
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Kuu =
ne∑

i=1

(Ke
s)i +

np∑

j=1

(
Ke

p

)
j

(72)

Kuϕ = −
np∑

j=1

(
Ke

uϕ

)
j

(73)

Kϕϕ = −
np∑

j=1

(
Ke

ϕϕ

)
j

(74)

where ne is the number of elements of the host structure and np the number of PZTs inserted
in the structure. The symbol of addition in the above equations means the conventional finite
element assembly.

Structures in general present a certain degree of damping. This degree is difficult of being
defined with precision, but it can be estimated. In this work, it is considered that the damping
Da is proportional to the mass and the stiffness. Many authors show in details that structures
with small non proportional damping can be approached by proportional damping without
causing significant errors [1].

The algorithm for damage location in a flexible plate is present bellow in a schematic way:

1. Obtain the dynamic model of second order by finite elements for the structure without
damage;

2. Transform to modal domain;

3. Use the space of states realization;

4. Calculate H2 and H∞ norms of the system considering two first modes (it is possible to
consider all the structural modes, however, it can increase the computational time);

5. Calculate H2 and H∞ norms for each mode, considering all sensors;

6. Obtain the dynamic model of second order by finite elements for the structure with damage;

7. Repeat steps 2, 3, 4 and 5 for the structure with damage;

8. Calculate the sensor index using H2 and H∞ norms obtained in steps 4 and 7, as show
equations 17 and 23;

9. Calculate modal index using H2 and H∞ norms obtained in steps 5 and 7, as show equations
18 and 24.
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6 Numerical application

The proposed methodology will be verified in a plate structure. For practical situations, the
system norms can be obtained directly from the measured signals, as for instance, the matrices A,
B, C and D can be estimated through eigensystem realization algorithm (ERA). In the following
application, the matrices of mass and stiffness are described using the theory of Kirchhoff plate.
The theory statements that a normal plan to the neutral axis before the strain remains normal
to the neutral axis after the deformation, Fig. 1. 

 

x,y

z z
x

z
y

u
u z

x

u
u z

y

∂= −
∂
∂= −
∂

zu

z

z

u

,z z
x y

u u

x y
θ θ∂ ∂= =

∂ ∂

 

Figure 1: Displacement of points on normal lines to the plans xz and yz.

Consequently, the following relations of displacement can be written

ux = −z ∂uz
∂x

uy = −z ∂uz
∂y

uz = uz(x, y)
(75)

the strain can be written in terms of the transversal displacements uz, [14]

Sx = ∂ux
∂x = −z ∂2uz

∂x2

Sy = ∂uy

∂y = −z ∂2uz
∂y2

Sxy = ∂ux
∂y + ∂uy

∂x = −2z ∂2uz
∂x∂y

(76)

The modeling considers an element of plate with four nodes and three structural degrees of
freedom per node (transversal displacement uz in direction z, rotation θx around axis x, and
rotation θy around axis y) and one electrical degree of freedom per node (electric potentialφ).
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The displacement vector uiand electric potentialϕi of the element are written as

ui = [uz1 θx1 θy1 uz2 θx2 θy2 uz3 θx3 θy3 uz4 θx4 θy4]
T

ϕi = [φ1 φ2 φ3 φ4]
(77)

The positive directions are indicated in figure 2.
 

 
 

Figure 2: Rectangular structural element with electromechanical coupling.

where ξ and η are generalized coordinates of the element in function, respectively, of global
coordinates x and y. The length and the width of the element are aand b, respectively. The
interpolation function, Nu, for displacement in the plate element has the form [14]

NT
u =




1− ξη − (3− 2ξ)ξ2(1− η)− (1− ξ)(3− 2η)η2

(1− ξ)η(1− η)2b
−ξ(1− ξ)2(1− η)a

(1− ξ)(3− 2η)η2 + ξ(1− ξ)(1− 2ξ)η
−(1− ξ)(1− η)η2b

−ξ(1− ξ)2ηa

(3− 2ξ)ξ2η − ξη(1− η)(1− 2η)
−ξ(1− η)η2b

(1− ξ)ξ2ηa

(3− 2ξ)ξ2(1− η) + ξη(1− η)(1− 2η)
ξη(1− η)2b

(1− ξ)ξ2(1− η)a




(78)
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The interpolation function for electric potential, Nϕ, is considered as

Nϕ =




1− ξ − η + ξη

η − ξη

ξη

ξ − ξη




T

(79)

Substituting the variable functions and the piezoceramic patch properties, in the corresponding
equations, defined in the former section, one can get the final motion equations written in the
state space form as defined in Eq. (1).

An aluminum plate, as shown in Fig. 3, was considered to verify the proposed methodology.
The plate is discretized by FEM in 100 elements and 363 structural dof’s (121 nodes). The plate
is clamped in one end, so considering this boundary condition, the system has N=660 states.
Table 1 shows the physic and geometric properties of the plate used in the FEM modeling. 

 

 

Figure 3: Finite element model for a cantilever plate.

Table 1: Geometric and physic properties of the plate.

Dimensions (m)
Length Width Thickness

0.5 0.03 0.005
Density (kg.m−3) 2710

Young’s Modulus (GPa) 70

Four damage cases were analyzed. The first one considers 10% of reduction in the stiffness of the
element 6, the second one 20% of reduction in the stiffness of the element 18, the third one 30%
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of reduction in the stiffness of the element 22, and fourth one 20% of reduction in the stiffness
in elements 3 and 20. The concept of this methodology requires a measurement points for each
region under analysis. For practical situations is not necessary the monitoring of every element.
The engineer must choose some probable positions to occur damages. This application, only
to verify the sensitivity of each sensor position, considers PVDF sensors placed in first thirty
element positions. A vertical force (F), representing a disturbance, was applied in – Z direction
in the free end of the plate, Fig. 4. 

 

 

Figure 4: Schematic picture showing the position of thirty PVDF sensors and the point of
application of the disturbance force (F).

Figure 5 shows the indices of the sensor for the first case of damage calculated with H2 norm,
and Fig. 6 shows the indices calculated with H∞ norm. One observes clearly that the structural
damage was located in element 6 for both approaches. In Fig. 7 it can be observed that mode
1 is mostly affected by this damage. 

 

 

Figure 5: H2 Sensor Indices for damage in element 6, first case.

Figure 8 shows the indices of the sensor for the second case of damage calculated with H2

norm, while Fig. 9 shows the indices calculated with H∞ norm. It can be observed that in this
case the sensor indices showed the region of damage location in both approaches, Fig. 10. In
Fig. 11 it can be observed that mode 1 is mostly affected by the damage.
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Figure 6: H∞ Sensor Indices for damage in element 6, first case.
 

 

Figure 7: Modal Indices for damage in element 6, first case. 
 

 

Figure 8: H2 Sensor Indices for damage in element 18, second case. 
 

 

Figure 9: H∞ Sensor Indices for damage in element 18, second case.
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Figure 10: Region of damage identified by sensor indices for the second case. 
 

 

Figure 11: Modal Indices for damage in element 18, second case.

Similarly, figure 12 shows the sensor indices for the third case of damage calculated with H2

norm, while Fig. 13 shows the indices calculated with H∞ norm. The structural damage was
located in element 22, but both approaches also identified a probable damage in element 2, 11,
and 21; Fig. 14 shows the position of these elements. In Fig. 15, one can observe that mode 1
is mostly affected by this damage. 

 

 

Figure 12: H2 Sensor Indices for damage in element 22, third case.
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Figure 13: H∞ Sensor Indices for damage in element 22, third case.
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Figure 14: Region of damage identified by sensor indices for the third case.

 
 

 

 

Figure 15: Modal Indices for damage in element 22, third case.
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In the fourth case are simulated simultaneous damages in two elements. Figure 16 shows
the sensor indices calculated with H2 norm, while Fig. 17 shows the indices calculated with
H∞ norm. It can be observed that the damage in element 20 was clearly identified, as well as
a region of damage near of element 3, Fig. 18. In Fig. 19, it can be observed that mode 1 is
mostly affected by these simultaneous damages. 

 

 

Figure 16: H2 Sensor Indices for damage in elements 3 and 20, fourth case.

 
 

 

Figure 17: H∞ Sensor Indices for damage in elements 3 and 20, fourth case.
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Figure 18: Region of damage identified by sensor indices for the fourth case.
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Figure 19: Modal Indices for simultaneous damages in elements 3 and 20, fourth case.

7 Final remarks

Structural systems are susceptible of structural damage over their operating lives from impact,
operating loads, and fatigue. Identifying the location of structural damage leads to improved
safety and offers the possibility of extending the service life of the structure by repairing com-
ponents only when necessary.

The advances in the instrumentation area, new material and advanced techniques in the
last years have had a great impact in new damage location proposals. The continuous growth
of the use of new materials to make lighter and stronger structures and projects of intelligent
maintenance, that will only effect the repair if really necessary, can economically be attractive.
Therefore, the methodology for structural damage detection using system norms is an important
approach that must be considered, since it is of easy evaluation and computational implemen-
tation. In despite of these features, there are a small number of related papers in the literature
using system norms to locate damages. The authors do not know experimental work using the
proposed approach, so, it must be the next step. It is worth to mention that one of the most
important feature of this technique is the possibility of identify simultaneous damage locations.
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