
www.lajss.org
Latin American Journal of Solids and Structures 4 (2007) 19–38

Optimization of passive constrained layer damping treatments
applied to composite beams

Marcelo A. Trindade∗

Department of Mechanical Engineering, São Carlos School of Engineering,
University of São Paulo, SP – Brazil

Abstract

The geometrical optimization of passive damping treatments applied to laminated com-
posite beams is presented, using a sandwich/multilayer beam finite element model. The
frequency dependence of the viscoelastic material properties is modeled using Anelastic Dis-
placement Fields model. A complex-based modal reduction, followed by an equivalent real
representation, is considered. Passive damping treatments consisting of viscoelastic layers
sandwiched between two composite layers are studied, with the upper layer serving as a con-
straining layer (CL) and the lower one as a spacer (or stand-off) layer (SL). CL and SL plies
number, thickness and orientation are considered as design parameters and are optimized
using a genetic algorithm with eigenfrequency changes and weight constraints. A strategy for
multicriteria optimization is presented using, as performance indices, the integral of trans-
verse velocities and the damping factors of the first five eigenmodes and, as penalty functions,
the total mass and the variation of eigenfrequencies due to the treatment. The results show
that the use of a global cost function allows to improve the damping of structural vibrations
while minimizing structure modification due to the treatment.

Keywords: vibration control, constrained layer damping, viscoelastic materials, optimization,
genetic algorithms

1 Introduction

Sandwich structures with embedded viscoelastic materials are widely used in aerospace, aero-
nautical, automobile industries due to their benefic performance in attenuating structural vi-
brations [20]. The vibratory energy is dissipated through the shear strains induced in the soft
viscoelastic layer by the relative displacements of the stiffer surface layers. The mechanical
modeling of a three-layer metal-viscoelastic-metal beam was first developed by Kerwin [10] to-
wards the end of the fifties. He considered simply supported sandwich beams supposing only
transverse shear for the core and negligible bending rigidity for the core and the constraining
layer. DiTaranto [4] and Mead and Markus [18] extended the work of Kerwin to treat arbitrary
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Nomenclature

A State space dynamics matrix.

C State space output matrix.

D Damping matrix.

D̄ ADF augmented damping matrix.

∆i Viscoelastic material ADF parameter.

Fm Mechanical forces vector.

F̄m ADF augmented mechanical forces vector.

G∗(ω) Complex shear modulus of the viscoelastic core.

G0 Static shear modulus of the viscoelastic core.

hv Viscoelastic layer thickness.

hT Constraining layer laminaes thickness.

hB Spacer layer laminaes thickness.

HT Constraining layer total thickness.

HB Spacer layer total thickness.

J1 Squared-velocities integral performance index.

J2 Squared-damping factors performance index.

J3 Damping treatment mass penalty function.

J4 Squared-eigenfrequency variations penalty function.

Jg Global cost function.

K̄ ADF augmented stiffness matrix.

Kc Core stiffness matrix.

Kf Faces stiffness matrix.

M Mass matrix.

M̄ ADF augmented mass matrix.

nT Number of laminaes of constraining layer.

nB Number of laminaes of spacer layer.

η(ω) Viscoelastic loss factor.

Ωi Viscoelastic material ADF parameter.

p Vector of state space perturbations.

φT Orientation angle of the first ply of constraining layer.

φB Orientation angle of the first ply of spacer layer.

q Degrees of freedom vector.

x Vector of state variables.

x̂ Vector of reduced state variables.
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boundary conditions and forced vibrations. From these and more recent studies [17], it is clear
that the damping performance of such structures depends on geometrical and material proper-
ties of each layer. In some cases, passive damping performance may be limited by geometrical
and weight constraints so that it must be improved by active means [11,23,27].

One additional difficulty for the design and analysis of passive constrained layer damping
(PCLD) treatments is that viscoelastic materials properties are frequency- and temperature-
dependent. Hence, modeling of the frequency dependence of stiffness and damping properties
of viscoelastically damped structures has been studied by several research groups during the
last two decades. Methods based on fractional derivatives [1, 5] and internal variables, such as
Anelastic Displacements Fields (ADF) [12, 13] and Golla-Hughes-McTavish (GHM) [7, 16] were
proposed to allow precise time- and frequency-domain analyses of structures with viscoelastic
elements. Although more complex, these methods have proven to be superior to the tradi-
tional Modal Strain Energy (MSE) method used in most commercial softwares for finite element
analysis. A previous study [25] has shown that, although ADF and GHM models yield simi-
lar results for both time and frequency responses of beams with viscoelastic constrained layer
damping treatments, ADF should be preferred since it contains less parameters to be fitted and
it leads to smaller system dimensions. The use of these and other methods for the identification
of viscoelastic materials damping behavior also has received considerable attention in recent
years [3,5]. The temperature dependence has received much less attention based on the assump-
tion that temperature changes are slow compared to the structure’s dynamics [24]. However,
for applications with significant or fast temperature variations, proper modeling and analysis of
this effect should be performed [2,14,21].

The performance of viscoelastic PCLD treatments can be maximized by proper choice of
materials and geometry. This could be achieved by using some optimization methodology as
in [8,15,19,28]. Hao and Rao [8] presented a procedure for the optimization of simply supported
beams covered with a PCLD treatment with the objective of maximizing the damping while
minimizing the mass within given temperature and frequency ranges. Marcelin et al. [15] per-
formed an optimization study of PCLD treatments covering one and several portions of a beam.
They considered treatment dimensions and locations as design variables and the damping factor
as objective function. Zheng et al. [28] presented the optimization of the vibrational energy of
beams with PCLD treatments considering treatment location and length and viscoelastic mate-
rial shear modulus as design variables. They used a genetic algorithm (GA) based optimization
methodology. GAs were already used by other authors [22] for design optimization. Their main
advantage is that, unlike conventional optimization techniques, they do not require continuity
or differentiability of the objective function with respect to design variables and the probability
of finding a local optimum is smaller [6].

This work aims to present a study on the geometrical optimization of passive damping treat-
ments applied to laminated composite beams. This is made using a finite element (FE) model
proposed in [26], able to handle sandwich beams with laminated surface layers and viscoelastic
core. The frequency dependence of the viscoelastic material properties is modeled using ADF

Latin American Journal of Solids and Structures 4 (2007)



22 Marcelo A. Trindade

model [12, 13]. A complex-based modal reduction, proposed in [25], is used and an equivalent
real representation of the reduced-order system is constructed. The damping treatments con-
sist of viscoelastic layers sandwiched between two composite layers. The upper one serving as
constraining layer (CL) and the lower one as spacer (or stand-off) layer (SL). In the present
work, CL and SL plies number, thickness and orientation are considered as design parameters.
The performance of the viscoelastic damping treatment is optimized using a GA proposed by
Houck et al. [9] with eigenfrequency changes and weight constraints. A strategy for multicriteria
optimization is presented using as performance indices the integral of transverse velocities, to be
minimized, and the damping factors of the first five eigenmodes, to be maximized. In addition,
the total mass of the treatment and the variation of the structure eigenfrequencies due to the
treatment are used as penalty cost functions.

2 Sandwich/multilayer beam finite element model

In a previous work [26], a finite element model able to deal with sandwich beams with viscoelas-
tic core and multilayer faces was presented. The laminated faces are supposed to behave as
Bernoulli-Euler beams while Timoshenko hypothesis are retained for the core, to allow shear
strains to occur in the viscoelastic material layer. The axial (x direction) and transverse (z di-
rection) displacements of the top, bottom and core layers are written in terms of four main vari-
ables: mean ū(x) and relative ũ(x) axial displacements of the top and bottom layers midplanes,
constant through-thickness transverse displacement w(x), and bending rotation ∂w(x)/∂x. La-
grange linear shape functions are considered for the mean and relative axial displacements while
Hermite cubic ones are considered for the transverse displacement. A schematic diagram of the
finite element considered is shown in Figure 1.

Full three-dimensional constitutive matrices are considered for each material. These are
then tensor-transformed according to the corresponding layer orientation in the xy plane. The
transformed three-dimensional constitutive matrices are finally reduced using the xy plane-stress
assumption (see appendix). Consequently, composite material orientation is properly accounted
for in the FE model.

hbm

hb1

hc

ha1

han
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Figure 1: Schematic representation of the sandwich/multilayer beam finite element.

Considering constant material properties, the assembled equations of motion may be written
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in the form [26]

Mq̈ + Dq̇ + (Kf + Kc)q = Fm (1)

where q is the dofs vector, composed by the nodal mean and relative axial displacements,
deflections and bending rotations. q̇ and q̈ are respectively the velocity and acceleration vectors.
M, Kf and Kc are the mass and stiffness matrices, of the layered faces and core, obtained by
the FE model. D is a viscous damping matrix introduced a posteriori and Fm is a mechanical
load used as perturbation input.

It is known that the viscoelastic material properties depend on the excitation frequency
and operating temperature. In the present work, only frequency dependence of the viscoelastic
material is considered using ADF model [12, 13]. Hence, the operating temperature is assumed
constant and the self-heating of the viscoelastic material is neglected.

Supposing a frequency-independent Poisson’s ratio, one may assume Kc = G∗(ω)K̄c. Hence,
for a given frequency, the discretized equations of motion (1) may be rewritten as

{−ω2M + jωD + [Kf + G∗(ω)K̄c]}q̃ = F̃m (2)

where G∗(ω) is the complex frequency-dependent shear modulus of the viscoelastic layer, repre-
sented in the ADF model as a series of functions in the frequency-domain

G∗(ω) = G0 + G0

∑

i

∆i
ω2 + jω Ωi

ω2 + Ω2
i

(3)

and j states for j =
√−1. The material parameters G0, ∆i and Ωi must be curve-fitted relative

to the measurements of G∗(ω). Notice that, from Eq. (3), the relaxed or static modulus is clearly
G0 = G∗(0). In the present work, a nonlinear least squares optimization method was used to
evaluate the ADF parameters. Figure 2 shows the measured and approximated storage modulus
(G′) and loss factor (η) for 3M ISD112 viscoelastic material at 27oC, where

G∗(ω) = G′(ω) + jG′′(ω) = G′(ω)[1 + jη(ω)] (4)

As shown in Figure 2, both storage modulus and loss factor are well represented by three se-
ries of ADF parameters. Nevertheless, these material parameters are valid only in the frequency-
range considered, that is the frequency-range where material properties were measured or fur-
nished by the manufacturer. Therefore, it is necessary to ensure a reasonable behavior of ADF-
represented material properties outside the frequency-range, since arbitrary external perturba-
tions will generally excite modes lying on this interval. Required asymptotical properties are





lim
ω→0

G∗(ω) = G0

lim
ω→∞G∗(ω) = G∞

, where G∞ > G0 ∈ R+ (5)
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Figure 2: Frequency-dependence of 3M ISD112 viscoelastic material properties at 27oc (solid
line) and curve-fit using three series of ADF parameters (dashed line).

meaning that the shear modulus tends to its static (relaxed) and instantaneous (unrelaxed)
values at the boundaries 0 and ∞, respectively. This also imposes that η(0) = η(∞) = 0, that
is, dissipation only occurs in the transition region. One may notice from Figure 2 that these
properties are satisfied by the parameters considered. Hence, the three series of ADF parameters
presented in the appendix are used for the numerical analyses presented in this work.

The ADF model allows to eliminate the frequency-dependence of the stiffness matrix of
Eq. (2) while still accounting for the viscoelastic behavior. This is done through the inclusion of
n series of ADF dissipative dofs qd

i (i = 1, . . . , n), such that the global dofs vector q = qe+
∑

i q
d
i

(elastic + dissipative) is replaced by the elastic part only qe in the viscoelastic stiffness term.
Then, replacing Eq. (3) in Eq. (2), leads to the following time-domain augmented system [25]

M̄¨̄q + D̄ ˙̄q + K̄q̄ = F̄m (6)

with

M̄ =
[
M 0
0 0

]
; D̄ =

[
D 0
0 Ddd

]
; F̄m =

[
Fm

0

]

K̄ =
[
Kf + K∞

c Kqd

KT
qd Kdd

]
; q̄ = col

(
q, qd

1, . . . , qd
n

)
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where
Ddd = G∞ diag

(
C1
Ω1

Λ · · · Cn
Ωn

Λ
)

;

Kdd = G∞ diag (C1Λ · · · CnΛ) ; Kqd = [−K∞
c T · · · −K∞

c T]

and K∞
c = G∞K̄c, G∞ = G0(1 +

∑
i ∆i), Ci = (1 +

∑
i ∆i)/∆i. Λ is a diagonal matrix of non

vanishing eigenvalues of K∞
c and T is the corresponding eigenvectors matrix.

3 State space model construction

In order to eliminate the apparent singularity of the system in Eq. (6) and to provide a trans-
formation to an “elastic only” modal reduced model, Eq. (6) is then rewritten in a state space
form. Therefore, a state vector x is formed by the augmented vector q̄ and the time-derivative
of the mechanical dofs vector q̇. The time-derivatives of the dissipative dofs qd

i may not be
considered since these variables are massless. This leads to

ẋ = Ax + p

y = Cx
(7)

where the perturbation vector p is the state distribution of the mechanical loads Fm and the
output vector y is, generally, composed of the measured quantities, written in terms of the state
vector x through the output matrix C. The system dynamics are determined by the square
matrix A. Matrices and vectors of the system in Eq. (7) are

A =




0 0 · · · 0 I
Ω1
C1

TT −Ω1I 0 0
...

. . . 0
Ωn
Cn

TT 0 −ΩnI 0
−M−1(Kf + K∞

c ) M−1K∞
c T · · · M−1K∞

c T −M−1D




x =
[
q̄
q̇

]
; p =

[
0

M−1Fm

]
; C =

[
Cq̄ Cq̇

]
;

(8)

where Cq̄ and Cq̇ are the output matrices relative to the augmented dofs vector q̄ and mechanical
dofs derivatives q̇, respectively.

3.1 Complex modal reduction

The dimension of the state space system in Eq. (7) is generally too large for analysis and design.
Thus, a complex-based modal reduction is applied to this system, neglecting the contributions
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of the viscoelastic relaxation modes and the elastic modes related to eigenfrequencies out of
the frequency-range considered. Hence, the eigenvalues matrix Λ and, left Tl and right Tr,
eigenvectors of A are first evaluated from

ATr = ΛTr ; ATTl = ΛTl (9)

so that TT
l Tr = I, then decomposed as following

Λ =




Λr 0 0
0 Λn 0
0 0 Λd


 ; Tl = [Tlr Tln Tld] ; Tr = [Trr Trn Trd] (10)

where Λr is the retained elastic eigenvalues matrix and Tlr and Trr are its left and right cor-
responding eigenvectors matrices, respectively. Λn and Λd correspond to the neglected elastic
and relaxation eigenvalues, respectively. Tln, Trn, Tld and Trd are their corresponding left and
right eigenvectors. Consequently, the state vector is approximated as x ≈ Trrxr and, using
Eqs. (9) and (10), the Eq. (7) may be reduced to

ẋr = Λrxr + TT
lrp

y = CTrrxr

(11)

3.2 Real representation of the reduced model

The main disadvantage of the reduced state space system in Eq. (11) is that its matrices are
complex. Fortunately, since all overdamped (relaxation) modes were neglected, all elements of
the system in Eq. (11) are composed of complex conjugates, such that

Λr = diag(. . . , λj , λ̄j , . . .)

TT
lrp = col(. . . , ϕj , ϕ̄j , . . .) ; CTrr =

[· · · φj φ̄j · · ·]
(12)

where λj (j = 1, . . . , r) are the retained elastic eigenvalues and λ̄j their complex conjugates.
To construct a real representation of the state space system in Eq. (11), one may use a state
transformation x̂ = Tcxr, where Tc is defined as [27]

Tc =




. . .
−j 1

2Im(λj)
j 1
2Im(λj)

. . .
. . .

1
2 − j1

2
Re(λj)
Im(λj)

1
2 + j1

2
Re(λj)
Im(λj)

. . .




(13)
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so that the real state space system equivalent to Eq. (11) is

˙̂x = Âx̂ + p̂

y = Ĉx̂
(14)

where

Â = TcΛrT−1
c =




0 I
. . . . . .

−|λj |2 2Re(λj)
. . . . . .




p̂ = TcTT
lrp = col(. . . , Im(ϕj)

Im(λj)
, . . . , Re(ϕj) + Im(ϕj)

Re(λj)
Im(λj)

, . . .)

Ĉ = CTrrT−1
c

=
[· · · −2[Re(φj)Re(λj) + Im(φj)Im(λj)] · · · 2Re(φj) · · ·]

It is clear that the eigenvalues of the real matrix Â are exactly the elements of Λr. In the
form of Eq. (14), the new state variables x̂ represent the modal displacements and velocities.

4 Geometric optimization

To evaluate the geometric optimization of a PCLD treated beam, a host clamped-clamped
composite beam, made of a AS4/3501-6 carbon-epoxy laminate (0/90/0/90/0) is considered,
as shown in Figure 3. The beam length, width and thickness are b = 25 mm, L = 1000 mm
and hb = 5 mm. A passive damping treatment is proposed in order to minimize the structural
vibration of the beam. The passive treatment considered here consists of a viscoelastic material
layer sandwiched between two composite laminates, as presented in Figure 3. It has a length
a = 750 mm and is located at d = 125 mm of the left end. Material properties are given in the
appendix.

In this section, the state space system in Eq. (14), using the first ten bending modes, is
considered to perform a geometric optimization of the passive damping treatment. As shown
in Figure 3, hv, HT and HB are the thicknesses of viscoelastic, constraining and spacer layers,
respectively. The laminate constraining layer (CL) and spacer layer (SL) are made of, respec-
tively, nT and nB cross-ply AS4/3501-6 carbon-epoxy laminaes of equal thicknesses (hT and
hB). The angle of the first laminae is φT , for the CL, and φB, for the SL. These seven geometric
properties of the damping treatment (hv, hT , hB, nT , nB, φT , φB) are considered to be design
parameters.

Latin American Journal of Solids and Structures 4 (2007)



28 Marcelo A. Trindade

�
�

�
�

�
�

�
�

�

��

�����	
����	�����������������

��

�
	�����	�
���� ��!�

��"��#����$%������������

Figure 3: Composite base beam covered with a passive treatment (PT) made of a viscoelastic
layer between two composite laminates.

4.1 GA optimization

A GA optimization is considered here. GAs are search algorithms based on “survival of the
fittest” procedure among a structured set of parameters [6]. These algorithms, unlike conven-
tional optimization techniques, do not require continuity or differentiability. Moreover, since
they work with a population of points simultaneously, the probability of finding a local opti-
mum is reduced. The GA optimization method starts from an initial population that evolves
over a number of generations with the objective to produce better individuals. Basically, three
operations are performed by the method: selection, reproduction and evaluation. In the selection
phase, individuals of the population are compared using a payoff value, which is generally the
performance index. Reproduction may be achieved either by combining two selected individuals
or by mutation of some individuals. Notice that the population size does not change. The last
operation evaluates the evolution of the entire population and decides for termination. Several
techniques were developed for each GA operation. Details may be found in [6,9]. In the present
work, a GA implementation for MATLAB, namely Genetic Algorithm for Optimization Toolbox
(GAOT), developed by Houck, Joines and Kay [9], is used.

4.2 Performance index

Two objective functions were used. The first one is the sum of the integral of squared-velocities
in seven equally-spaced points in the beam, that is,

J1 = −1
2

∫ T

0
ẇT ẇdt (15)

where ẇ is the vector of transverse velocities for the following selected points: x/L = {0.125,
0.250, 0.375, 0.500, 0.625, 0.750, 0.875}. This cost function furnishes a measure of the power
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transmitted to the side opposite to the perturbation, which should be minimized. That is why,
a negative value is used. An impulsive transverse force is applied at the midpoint of the beam
(x = L/2) leading to a transient response of the transverse velocities, which are integrated in
the interval [0, T ]. T is the stabilization time of the structure output response.

The second objective function considered represents the sum of the squared damping factors
of the first five bending natural modes, such that

J2 =
1
2
ζT ζ (16)

where ζ is a vector containing the selected damping ratios ζ = [ζ1, ζ2, ζ3, ζ4, ζ5]. Only the first five
bending modes were considered since it is assumed that higher frequency modes contributions
to the pressure variation are much smaller.

In addition to these objective functions, due to practical reasons, two penalty functions are
considered, namely the negative of the total mass of the damping treatment

J3 = −m = −ba [ρvhv + ρc(HT + HB)] (17)

where b is the width of the structure, and the sum of the squared variations in the first ten
natural frequencies,

J4 = −1
2
(ωn − ωu)T (ωn − ωu) (18)

where ωn and ωu are the treated and untreated beam natural frequencies vector, respectively.
These two penalty functions represent conditions often required in practical applications, since
all modification in the properties of the structure must be minimized.

In addition to these objective and penalty cost functions, a global criterion method is consid-
ered in the present work. First, a global cost function is constructed using a linear combination
of the cost functions presented above. It is defined as

Jc =
∑

i

αiJi ; αi > 0 (19)

Through proper choice of the weight factors αi, the damping factors function may be maximized,
while transverse velocities, treatment mass and eigenfrequencies variation may be minimized.
The weight factors αi should be chosen according to design and operation conditions. However,
the global cost function Jc combines local cost functions with different dimensions and meanings,
hence the choice of factors αi is generally not easy. One possible solution to that is to perform
the optimization using several combinations of weight factors according to the application needs
and, then, choose the best suited combinations.

A second method to perform a multicriteria optimization consists in the minimization of
each local cost function separately leading to a set of optimal performance indices J∗1 , J∗2 , J∗3
and J∗4 . Then, the global cost function to be minimized is written as
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Jg =
∑

i

βi

∣∣∣∣
Ji − J∗i

J∗i

∣∣∣∣ ; βi > 0 (20)

where weight factors βi allow the prioritization of certain performance indices relative to the
others. This global index provides a measure of the distance from the local performance indices
for the global and local optimal solutions. This second method was preferred in the present
work.

5 Results and discussion

Following the method presented in Eq. (20) for multicriteria optimization, first a GA optimiza-
tion using local performance indices alone was performed. An initial population of 100 individ-
uals is considered and evolution is performed along 50 generations. Selection is performed using
normalized geometric ranking. Then, arithmetic crossover and non-uniform mutation operators
are applied to produce new generations. Results are shown in Table 1. Minimization of the
squared transverse velocities cost function J1 leads to a very thick treatment (hPT = 7.95 mm).
This may be explained by the fact that a thick treatment increases the mass of the structure and,
thus for a constant impulsive force, reduces the amplitude of transverse velocities. Although,
this does not improve damping of structural vibrations, as observed by the small damping cost
function (J∗2 = 0.07), the reduction of velocities amplitudes leads to small velocity integrals. The
increase of thickness yields a large treatment mass and a significant variation of eigenfrequen-
cies, as shown in Table 1 (J∗3 and J∗4 for min(J1), respectively). It is clear that this treatment
not only induce design complexities but also increases cost, since larger quantities of material
are needed (2.53 mm of ISD112 viscoelastic material and (0/90/0) at 0.74 mm per laminae and
(90/0/90/0) at 0.80 mm per laminae carbon-epoxy composite material).

The use of the cost function J2, based on the first five bending modes damping factors, leads
to a much thinner (hPT = 2.73 mm) treatment. This also yields to a more than 60% lighter
design as compared to the previous one. Nevertheless, the increase of mass, represented by the
normalized cost function J∗3 , is still significant, as shown in Table 1. One may also notice that,
although this optimization increases the damping factors and, thus reducing the stabilization
time of the structural vibrations, it does yield to relatively large J∗1 . This is due to the fact that
structural vibrations are quickly damped but output amplitudes are large compared to those
of the previous design. The major problem of the damping maximization is the consequent
variation of natural bending frequencies of the structure, as it can be observed by the largest
value for J∗4 in Table 1 (second column).

The third cost function considered J3, which is in fact a penalty function, is the total mass
of the passive damping treatment. It is worthwhile to notice that the additional mass included
in the structure may lead to serious problems since it may change the dynamic behavior of the
structure. Hence, it should be minimized. As expected, its minimization leads to almost no
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Table 1: Optimal geometric properties for the beam with passive damping treatment.

Parameter min(J1) min(J2) min(J3) min(J4) min(Jg)
J∗1 1.00 2.11 4.57 4.02 2.80
J∗2 0.07 1.00 0.25 0.20 0.99
J∗3 39.13 14.54 1.00 2.56 12.09
J∗4 3.63 5.37 2.68 1.00 8.39
hv (mm) 2.53 0.09 0.07 0.03 0.18
hT (mm) 0.74 0.53 0.02 0.39 0.42
φT (deg) 0 90 0 90 0
nT 3 4 2 1 3
hB (mm) 0.80 0.26 0.05 0.02 0.85
φB (deg) 90 0 90 0 90
nB 4 2 2 4 1

treatment at all, as shown in Table 1. Only a very thin treatment (hPT = 0.21 mm) is obtained.
It should be noticed that the obvious minimum for the treatment mass is the absence of it,
however in none of the cases studied in this work, the lower or upper bounds were attained. This
may be explained by the fact that the GA distributes the initial population in a random form
and only rarely will create new individuals near enough to the bounds, so that new generations
could attain it.

The consequences of reducing treatment mass are that structural vibrations damping factors
are diminished and the squared-velocity integral is the largest of all cases. However, it is clear
that this design, as it will also be the case for the next one, is not an optimal one but, on the
contrary, should be seen as a “counter-design” (or penalized design). Its importance relies on
the fact that it will be used as reference to the global optimization problem. As it can also be
observed in Table 1, this design leads to a significant variation in the natural frequencies of the
structure (J∗4 for min(J3)), although almost no vibration damping is achieved.

The minimization of the second penalty function J4 yields similar analysis as compared to the
previous case, that is, the treatment thickness is only lower-bounded by the numerical precision
of the GA used. One may notice, in Table 1, that, although incoherently, minimization of the
variation of eigenfrequencies does not lead to minimization of treatment mass, and vice-versa,
while both minimizations should lead to the absence of treatment.

The local optimal performance indices obtained are J∗1 = −1.7180 104, J∗2 = 1.5662 10−2,
J∗3 = −4.8162 10−3 and J∗4 = 6.7873 106. These indices were used to minimize the global cost
function defined in Eq. (20). It should be noticed that several solutions minimizing Jg may
be found, hence generally the optimization must be performed several times until satisfactory
results are obtained. The fifth column of Table 1 shows the optimal parameters and local
performance indices for a chosen design. The optimal design is represented in Figure 4. One
may notice that the normalized damping factor objective function is almost unitary. This is
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because the following weight factors were considered: β1 = β3 = β4 = 1 and β2 = 50, in order
to better improve the structural damping. Indeed, the first ten damping factors for the optimal
design are {7.19, 7.59, 7.73, 8.32, 8.54, 8.56, 8.47, 8.10, 7.65, 6.96}%.

Host beam (0/90/0/90/0 AS4/3501−6)

Spacer layer (90 AS4/3501−6)

Constraining layer (0/90/0 AS4/3501−6) 
Viscoelastic layer (ISD112)

Figure 4: Optimal configuration [min(Jg)] of the passive damping treatment.

Next, the evolution process corresponding to the chosen design is analyzed in detail. The
normalized global performance index (Jg) for the best and mean individuals of each generation
is shown in Figure 5. It can be observed that both best and mean individuals converge to an
almost optimality within less than 15 generations evolution. One may also notice, from Figure
5, that each “evolution” is first attained by the best individual and then, some generations after,
by the mean individual.
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Figure 5: Normalized global performance index (Jg) for the best and mean individuals of each
generation.
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Figure 6: Normalized global and local performance indices for the best individuals of selected
generations.

It is also worthwhile to analyze the behavior of the local performance indices along the
population evolution. Figure 6 presents the normalized global Jg and local Ji (i = 1, . . . , 4)
performance indices for the best individuals of selected generations. Notice that while the global
performance index converges monotonically to the optimal solution, local indices present some
oscillation. Although the squared-velocities and eigenfrequencies variation indices, J1 and J4,
should be minimized, one may see in Figure 6 that their minimum is for the initial population.
These indices increase within generations. However, damping factors index J2 is well maximized
within the limitations of treatment mass. Indeed, as it may be observed in Figure 6, J2 index is
maximized at the same time that treatment mass index J3 is minimized.

In Figure 5, it was shown that the optimization converges very quickly. Let us then analyze
the variation of CL and SL total thicknesses, that is HT and HB, along generations. Figure
7 shows CL and SL thicknesses for initial population and for evolved populations, after 3 and
50 generations. Notice that within 3 generations, the parametric space is already reduced to a
reasonably narrow optimal region. It reduces further then and, around the tenth generation, it
collapses into the optimal solution, represented by the cross in Figure 7.

Figures 8 and 9 show the total thicknesses of CL and SL versus the viscoelastic layer thickness.
It can be observed that the optimization converges very rapidly to a small viscoelastic layer
thickness range (below 0.5 mm), although viscoelastic layer thicknesses of up to 3 mm were
initially considered.
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Figure 7: CL and SL total thicknesses for individuals of initial population (circles) and evolved
populations, after 3 (triangle) and 50 (cross) generations.
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Figure 8: CL and viscoelastic layer thicknesses for individuals of initial population (circles) and
evolved populations, after 3 (triangle) and 50 (cross) generations.
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Figure 9: SL and viscoelastic layer thicknesses for individuals of initial population (circles) and
evolved populations, after 3 (triangle) and 50 (cross) generations.

6 Conclusions

The geometrical optimization of passive damping treatments applied to laminated composite
beams was presented. This is made using a finite element model able to handle sandwich beams
with laminated surface layers and viscoelastic core. The frequency-dependence of the viscoelastic
material properties was modeled using the Anelastic Displacement Fields model. A complex-
based modal reduction was used and an equivalent real representation of the reduced-order
system was constructed. The damping treatments consist of viscoelastic layers sandwiched be-
tween two composite layers. The upper one serving as constraining layer (CL) and the lower one
as spacer (or stand-off) layer (SL). CL and SL plies number, thickness and orientation were con-
sidered as design parameters and were optimized using a genetic algorithm with eigenfrequency
changes and weight constraints. A strategy for multicriteria optimization was presented using
as performance indices the integral of transverse velocities, to be minimized, and the damping
factors of the first five eigenmodes, to be maximized. In addition, the total mass of the treatment
and the variation of the structure eigenfrequencies due to the treatment were used as penalty
cost functions.

The results have shown that the use of a global cost function allows to optimize damping
factors of the structure while minimizing the total mass of the damping treatment. However, it
was found that less treatment mass may be obtained, with less damping also evidently, through
modification of the weight parameters βi. These should be valued according to design and
operation conditions. The choice of GA for the optimization was shown to be adequate for the
cases studied here, although for each generation the evaluation function must be calculated for
each individual. Future works will be directed to the study of other multicriteria optimization
techniques and the inclusion of decision rules to yield automatic updating of weight factors.
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Appendix A Material properties

A.1 AS4/3501-6 carbon-epoxy composite material

The mass density and constitutive matrix for the AS4/3501-6 composite material are

ρc = 1389.23 kg m−3

Q(0) =




1.494 0.057 0.057 0 0 0
0.057 0.108 0.034 0 0 0
0.057 0.034 0.108 0 0 0

0 0 0 0.041 0 0
0 0 0 0 0.041 0
0 0 0 0 0 0.035




1011 N m−2

When rotating the composite ply of an angle φ around the z-axis leads to the following
transformed constitutive matrix,

Q(φ) = TQ(0)TT

where

T =




(cosφ)2 (sinφ)2 0 −2 cosφ sinφ 0 0
(sinφ)2 (cos φ)2 0 2 cosφ sinφ 0 0

0 0 1 0 0 0
cosφ sinφ − cosφ sinφ 0 (cosφ)2 − (sinφ)2 0 0

0 0 0 0 cosφ − sinφ

0 0 0 0 sinφ cosφ




Then, after reduction of three-dimensional constitutive matrices due to the xy plane-stress
assumption, modified elastic constants become

Q∗
11 = Q11 − Q2

13

Q33

A.2 3M ISD112 viscoelastic material

The master curves for 3M ISD112 viscoelastic material at 27oC were given in Figure 2. The
three ADF series of parameters used to curve-fit the material data are as following

G0 = 0.50 MPa ; ∆ = [0.7456, 3.2647, 43.2840]

Ωi = [468.69, 4742.36, 71532.49] rad/s

Moreover, its Poisson’s ratio equals approximately 0.49. Hence, the Young’s modulus may be
evaluated from G∗(ω) such that E∗(ω) = 2.98G∗(ω). Its mass density is ρv = 1000 kg m−3.
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