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Abstract 
An efficient piezoelectric sandwich beam finite element is present-
ed here. It employs the coupled polynomial field interpolation 
scheme for field variables which incorporates electromechanical 
coupling at interpolation level itself; unlike conventional sandwich 
beam theory (SBT) based formulations available in the literature. 
A variational formulation is used to derive the governing equa-
tions, which are used to establish the relationships between field 
variables. These relations lead to the coupled polynomial field 
descriptions of variables, unlike conventional SBT formulations 
which use assumed independent polynomials. The relative axial 
displacement is expressed only by coupled terms containing con-
tributions from other mechanical and electrical variables, thus 
eliminating use of the transverse displacement derivative as a 
degree of freedom. A set of coupled shape function based on these 
polynomials has shown the improvement in the convergence char-
acteristics of the SBT based formulation. This improvement in the 
performance is achieved with one nodal degree of freedom lesser 
than the conventional SBT formulations.  
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1 INTRODUCTION 

Piezoelectric smart structures are vital part of today's structural and vibration control technology 
(Crawley and de Luis, 1987; Sulbhewar and Raveendranath, 2014b). Piezoelectric materials have 
coupling between electrical and mechanical fields which determines the response of the system. 
The piezoelectric material can be used in two modes of operation depending on the kind of elec-
tromechanical coupling present. Either the piezoelectric material can be surface bonded to the 
host structure or sandwiched between host layers. The surface bonded extension mode model is 
based on coupling between the longitudinal motion of transversely poled piezoelectric material 
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and the transverse electric field.  While in sandwich shear mode model, coupling between shear 
deformation of axially poled piezoelectric material and the transverse electric field is used (Ben-
jeddou et al., 1997; Zhang and Sun, 1996).  
 The advantages of shear mode sandwich beams over surface mounted extension mode beams 
were first reported by Sun and Zhang (1995). They proved the merits of shear mode beam over 
the conventional extension mode beam by comparative study with 2D finite element simulation 
using ANSYS software.  They also mentioned that shear mode beams are more suitable for high-
frequency low-amplitude cases, while extension mode surface mounted beams are suitable for low-
frequency high-amplitude cases.  
 Surface mounted actuators in the extension mode beams are placed at the extreme thickness 
positions of the host structure, thus actuator might be subjected to high bending stresses (Sun 
and Zhang, 1995; Abramovich, 2003).  The adaptive sandwich shear mode beam has the ad-
vantage of lower stresses in the actuator and along the interface between the actuator and the 
host structure. This minimizes debonding problems and is known to contribute to the structural 
integrity of the actuator (Benjeddou et al., 1997). 

Many researchers have provided analytical solutions using various theories to describe the be-
haviour of shear mode sandwich structures.  Vel and Batra (2001) proposed an exact 3D state 
space solution for the static cylindrical bending of simply supported laminated plates with em-
bedded shear mode piezoelectric layers.  Zhang and Sun (1996) used the classical sandwich beam 
theory (SBT) to give an analytical model for shear mode beams in which, conventional material 
faces are modeled by Euler-Bernoulli beam and the piezoelectric core by First-order Shear Defor-
mation Theory (FSDT). Zhang and Sun (1999) presented analytical solutions for a sandwich 
plate with a piezoelectric core using the principle of minimum potential energy and Raleigh-Ritz 
method. They validated the analytical solutions with finite element simulations. Abramovich 
(2003) and Edery-Azulay and Abramovich (2004) proposed  FSDT based closed form solutions for 
bending angle and  axial and lateral displacements for shear mode smart beams and carried out  a 
parametric study for various configurations, lay-ups and boundary conditions. Analytical solu-
tions using the state-space approach along with the Jordan canonical form were proposed by Al-
draihem and Khdeir (2000; 2003) to solve beam bending problem for beams with continuous and 
segmented piezoelectric actuators, respectively. They provided both FSDT and HSDT (Higher-
order Shear Deformation Theory) based solutions. By numerical experiments, they showed that 
FSDT based solutions are very sensitive to shear correction factor and has pronounced difference 
with HSDT solutions. Khdeir and Aldraihem (2001) extended this formulation with discontinuity 
function to perform the parametric study of shear actuated beams. Aldraihem and Khdeir (2006; 
2012) proposed  analytical solutions for bending deformations of antisymmetric angle ply laminat-
ed plates with thickness shear piezoelectric actuators based on FSDT and HSDT,  respectively 
using L`evy method, in conjunction with the state-space approach.  Poizat and Benjeddou (2006) 
presented analytical formulae for shear monomorphs which were validated by 3D finite element 
simulation using commercial package.  
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Baillargeon and Vel (2005) carried out an experimental and numerical assessment of vibration 
suppression of smart structure using shear mode piezoelectric actuators. The results obtained 
were validated by comparison with 2D finite element simulations using ABAQUS software. 

Many researchers have reported different finite element formulations for shear mode sandwich 
beam. FSDT based beam finite element was proposed by Rathi and Khan (2012) to study vibra-
tion attenuation and shape control of smart beams.  Beheshti-Aval et al. (2013) developed a cou-
pled refined high-order global-local theory for static analysis of shear mode piezoelectric sandwich 
composite beams. Kapuria and Hagedorn (2007) proposed a unified layerwise theory for piezoelec-
tric smart beams and validated their formulation with finite element simulations using ABAQUS. 
The SBT has been favored by many researchers to formulate sandwich beam finite elements.   
Benjeddou et al. (1997; 2000) presented a unified finite element model for analysis of smart beams 
in both extension and shear mode, based on SBT. A parametric study carried out by Benjeddou 
et al. (2000) showed that the shear actuation mechanism has several promising features over con-
ventional extension mode beams for stiff structures with thick piezoelectric layers. Benjeddou et 
al. (1999) developed a SBT based finite element with improved kinematics to remove shear lock-
ing present in their earlier work (Benjeddou, 1997). Raja et al. (2002) used a generalized SBT by 
considering laminates (instead of single layer) for the faces, for dynamic analysis of smart beams. 
They showed that in active vibration control, shear mode beams are more effective than the con-
ventional extension mode beams, for the same control effort. Trindade and Benjeddou (2006; 
2008) used a modified SBT with Third-order Shear Deformation Theory (TSDT) for core and 
Euler-Bernoulli beam theory for faces to investigate the effect of the induced potential on the 
structural behaviour of sandwich beams. 

 All SBT-based finite element models available in the literature have used assumed independ-
ent polynomials for interpolation of electric potential and mechanical field variables. These inde-
pendent polynomial based formulations show slower convergence. An efficient way to improve 
performance of finite elements is the use of coupled polynomials (Raveendranath et al., 1999; 
2000). Recently, Sulbhewar and Raveendranath (2014a) proposed a coupled polynomial field in-
terpolation scheme to improve convergence of HSDT based extension mode piezoelectric beam 
finite elements. 

In the present work, we introduce coupled polynomial expressions derived from governing 
equations, for interpolation of the field variables. Relative axial displacement of beam faces ( !u ) is 
expressed by a purely coupled polynomial having contributions from mid-plane transverse dis-
placement ( 0w ) and relative electric potential ( !! ) without any independent terms. As proved by 
the numerical experiments, the present coupled polynomial field SBT formulation gives better 
convergence of finite element results than the conventional independent polynomial field SBT 
formulations for static (both actuator and sensor configurations) and modal analyses. All conven-
tional SBT formulations have four mechanical degrees of freedom per node while the present for-
mulation requires only three, owing to a coupled polynomial interpolation scheme which interpo-
lates relative axial displacement of beam faces ( !u ) purely by coupled terms.  The accuracy and 
efficiency of present finite element beam formulation are verified using numerical test problems 
and comparing the results with solutions obtained from conventional SBT formulations, analyti-
cal solutions and 2D ANSYS simulations.  
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2 THEORETICAL FORMULATION 

Consider a three layered beam with piezoelectric core sandwiched between face layers as shown in 
Figure 1. The face layers can be of conventional homogeneous material or laminates of composite 
material. The beam layers are assumed to be of isotropic or specially orthotropic materials with 
perfect bonding between them. Faces of piezoelectric layers are assumed to be fully covered with 
electrodes. The mathematical model is based on sandwich beam theory (SBT) with layerwise 
electrical potential which follows linear theories of elasticity and piezoelectricity.  
 

 
 

Figure 1: Geometry of a general shear mode piezoelectric sandwich beam. 
 

 

2.1 Mechanical Displacements and Strains 

The improved kinematic field for SBT given by Benjeddou et al. (1999) is used here for further 
formulation: 
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where d = (ht ! hb ) / 4 and ! = ht + hb( ) / (2hc ) . u and !u are the mean and relative axial displace-

ments of upper and lower sandwich beam faces, defined as u = (ut +ub ) / 2 and !u = ut !ub , respec-
tively. ut and ub are the mid-plane displacements of upper and lower surface layers. ( ) ' denotes 
derivative with respect to x . , ,L B h  are the length, width and the total thickness of the beam, 
respectively. The indices , ,t b c  denote the top, bottom and core layers of the sandwich beam, 
respectively. 
The transverse deflection is taken as constant throughout the thickness given as: 
 

w (x , z ) =w0(x )  
(2) 
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Mechanical axial and shear strain fields are derived using usual strain-displacement relations as: 
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2.2 Electric Potential and Electric Field 

The through-thickness profile of the electric potential !(x , z ) in piezoelectric core is taken as line-
ar as used by Benjeddou et al. (1997; 1999; 2000). The electric field in transverse direction zE can 
be derived from electric potential as (Benjeddou et al., 1999): 
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"!(x , z )
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where !! is the difference of potentials at the top and bottom faces of piezoelectric core. 
 
3 REDUCED CONSTITUTIVE RELATIONS  

The piezoelectric material with orthotropic properties is considered here. It has axes of material 
symmetry parallel to beam axes, in which electric field is applied in the transverse direction. For 
shear mode beams, axially poled piezoelectric material layer is subjected to the transverse electric 
field. The elastic, piezoelectric and dielectric constants are denoted by Cij ,ekj (i , j =1.....6) and

!k (k =1,2,3) , respectively. The transformed coupled constitutive equations for axially poled piezo-
electric material are given as (Benjeddou et al. 1997): 
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(6) 
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where ! ,! ,!,! ,D and E denote normal stress (N/m2), shear stress (N/m2), normal strain, shear 
strain, electric displacement (C/m2) and electric field (V/m), respectively. 
 For a one-dimensional beam, plane stress condition exists and also width in y-direction is stress-
free. Hence we can set! z =! y = ! yz = ! xy = ! yz = ! xy = 0 , while !z ! 0; ! y ! 0 (Sulbhewar and 

Raveendranath, 2014a). Also, for electric fields, we can assume Ex = E y = 0 (Sulbhewar and 

Raveendranath, 2014a). Only the coupling between shear deformation and transverse electric field is 
effective for shear mode beams. Using these conditions in constitutive equation (6), we get: 
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4 VARIATIONAL FORMULATION 

Hamilton’s principle is used to formulate piezoelectric smart beam. It is expressed as (Sulbhewar 
and Raveendranath, 2014a): 
 

! (K !H +W )dt =
t1
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where, K =kinetic energy, H =electric enthalpy density function for piezoelectric material and me-
chanical strain energy for the linear elastic material and W =external work done. 
 
4.1 Electromechanical and Strain Energy Variations 

For faces made of conventional/composite materials, the mechanical strain energy variation is given 
as: 
 

( ) ,i i
i x x
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The electromechanical strain energy variation of piezoelectric core is given as: 
 

( )c c c c c c
c x x xz xz z z
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Using equations (3), (4), (5) and (7) in (9) and (10), variation of total potential energy of the 
beam is written as: 
 
 
 
 



1870    Litesh N. Sulbhewar and P. Raveendranath / Coupled polynomial interpolation scheme for shear mode sandwich beam finite element  

Latin American Journal of Solids and Structures 11 (2014) 1864-1885 

 

!H
t1

t2

! dt =
!Q11
b I 0

b + !Q11
c I 0

c + !Q11
t I 0

t"
#

$
%u

' + & !Q11
b I 0

b / 2+ !Q11
c I1

c / hc + !Q11
t I 0

t / 2"
#

$
% !u
' +

& !Q11
b I1

b & I 0
b zb( )+ !Q11c I 0cd + I1c!( )& !Q11t I1t & I 0t zt( )"

#'
$
%(w0

''

)

*

+
+
+

,

-

.

.

.
!u '

/

0
1

2
1x
! +

t1

t2

!

& !Q11
b I 0

b / 2+ !Q11
c I1

c / hc + !Q11
t I 0

t / 2"
#

$
%u

' + !Q11
b I 0

b / 4+ !Q11
c I 2

c / hc
2 + !Q11

t I 0
t / 4"

#
$
% !u
' +

!Q11
b I1

b & I 0
b zb( ) / 2+ !Q11c I1cd / hc + I 2c! / hc( )& !Q11t I1t & I 0t zt( ) / 2"

#'
$
%(w0

''

)

*

+
+
+

,

-

.

.

.
! !u ' +

& !Q11
b I1

b & I 0
b zb( )+ !Q11c I 0cd + I1c!( )& !Q11t I1t & I 0t zt( )"

#'
$
%(u

'

+ !Q11
b I1

b & I 0
b zb( ) / 2+ !Q11c I1cd / hc + I 2c! / hc( )& !Q11t I1t & I 0t zt( ) / 2"

#'
$
%(
!u ' +

!Q11
b I 2

b & 2I1
b zb + I 0

b zb
2( )+ !Q11c I 0cd 2 + 2I1c!d + I 2c!2( )+ !Q11t I 2t & 2I1t zt + I 0t zt2( )"

#'
$
%(w0

''

)

*

+
+
+
+
+
+

,

-

.

.

.

.

.

.

!w0
'' +

!Q55
c I 0

c / hc
2( ) !u + !Q55

c I 0
c (! +1) / hc

"
#

$
%w0

' + !e15I 0
c / hc

2( ) !!( )! !u +
!Q55
c I 0

c (! +1) / hc
"
#

$
% !u +

!Q55
c I 0

c (! +1)2"
#

$
%w0

' + !e15I 0
c (! +1) / hc( ) !!( )!w0' +

!e15I 0
c / hc

2( ) !u + !e15I 0c (! +1) / hc( )w0' & !31 I 0c / hc2( ) !!( )! !!}dx dt

 (11) 
 

 
 

where for thk layer I q
k = B zk +1

q+1 ! zk
q+1
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(k = b,c ,t )  . bz and tz are the distances of the top and 

bottom layer mid-surfaces from beam centerline. 
 
 
4.2 Variation of Kinetic Energy 

Total kinetic energy of the beam is given as (Sulbhewar and Raveendranath, 2014a): 
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where !k =volumic mass density of k th layer in kgm!3and k =(b, c, t). Substituting values of u
and w  from equations (1) and (2) and applying variation, to derive at: 
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where ( )
.
 denotes ! !t . 

 
4.3 Variation of Work of External Forces 

Total virtual work of the structure can be defined as product of virtual displacements with forces 
for the mechanical work and the product of the virtual electric potential with the charges for the 
electrical work. The variation of total work done by external mechanical and electrical loading is 
given by (Sulbhewar and Raveendranath, 2014a): 
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in which f V , f S , f C  are volume, surface and point forces, respectively. q0 and S!  are the charge 

density and area on which charge is applied. 
 
5 DERIVATION OF COUPLED FIELD RELATIONS  

The relationship between field variables is established here using static governing equations. For 
static conditions without any external loading, the variational principle given in equation (8) reduc-
es to (Sulbhewar and Raveendranath, 2014a): 
 

0Hδ =  (15) 
 

 

Applying variation to the basic variables in equation (11), the static governing equations are ob-
tained as: 
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The equations (16)-(18) can be written in a simplified form as: 
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u u '' + A2

u !u '' + A3
uw0

''' = 0  (19) 
 

! !u : ! A1
uu '' ! A2

u !u '' ! A3
uw0

''' + A4
u !u + A5

uw0
' + A6

u !! = 0  (20) 
 

!w0 : A1
wu ''' + A2

w !u ''' + A3
ww0

'''' ! A4
w !u ' ! A5

ww0
'' ! A6

w !! ' = 0  (21) 
 

 

From equation (21), neglecting higher-order terms, we get: 
 

!u '' = ! A5
w

A4
w

"

#
$
$

%

&
'
'w0

''' !
A6
w

A4
w

"

#
$
$

%

&
'
' !!

''  (22) 
 

 

Using equation (22) in (19), the relationship of mean axial displacement u with transverse dis-
placement 0w and electric potential ϕ is written as: 
 

u '' = !1
mw0

''' +!2
m !! ''  (23) 

 
 

where !1
m =

A2
u

A1
u
A5
w

A4
w
!
A3
u

A1
u

 and !2
m =

A2
u

A1
u
A6
w

A4
w

. 

 
Using equations (22) and (23) in equation (20), the relative axial displacement can be expressed in 
terms of transverse displacement 0w and electric potential ϕ as: 
 

!u = !1
rw0

' +!2
rw0

''' +!3
r !! +"4

r !! ''  (24) 
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where !1
r = !

A5
u

A4
u
; !2

r =
A1
u

A4
u
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u

A1
u
A5
w

A4
w
!
A3
u
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u
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$
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&
'
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+
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u
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r =
A1
u

A4
u
A2
u

A1
u
A6
w

A4
w
!
A2
u

A4
u
A6
w

A4
w

. 

 
From equations (23) and (24) it is clear that the coupling constants !i

m (i =1,2) and ! j
r ( j =1,2,3,4)

depend only on material and geometric properties of the beam. They relate all field variables by 
properly accommodating all couplings in a variationally consistent manner. These relations are used 
in the next section to derive coupled polynomials for field variables. 
 
6 FINITE ELEMENT FORMULATION 

Using the variational formulation described above, the finite element model is developed here. For 
finite element formulation, the degrees of freedom consist of three mechanical (u , !u ,w0 ) and an elec-
trical ( !! ) variables. In terms of natural coordinateξ , a cubic polynomial is assumed for 0w and a 
linear polynomial for !!  as given in equations (25a) and (25b), respectively. The transformation 
between the coordinate ! and global coordinate x is given as ! = [2(x ! x1) / (x2 ! x1)]!1with

2 1( )x x l− = , being the length of the beam element. 
 

w0 = b0 +b1! +b2!
2 +b3!

3  (25a) 
 

!! = c0 +c1"  (25b) 
 

Using these polynomials for 0w and !! in equation (23) and integrating with respect toξ , we get the 
coupled polynomial expression for mean axial displacement u as: 
 

u = (6!1
m / l )! 2( )b3 +a1! +a0  (26) 

 
 

Substituting equations (25a) and (25b) in (24), the coupled polynomial for relative axial displace-
ment !u  is obtained as: 
 

!u = !1
r (2 / l )( )b1+ 2!1r (2 / l )!( )b2 + 3!1r (2 / l )! 2 +6!2r (2 / l )3( )b3 + !3

r( )c0 + (!3r! )c1  (27) 
 

 

Equation (27) interpolates the relative axial displacement !u by purely coupled terms and no inde-
pendent terms are present in it. The above set of interpolation polynomials consists of a total 8 
generalized degrees of freedom, which is consistent with the total number of nodal degrees of free-
dom for the element. Figure 2 shows the comparison of nodal degrees of freedom for the present 
SBT based element and SBT based element of Benjeddou et al. (1999). It may be noted that the 
use of '

0w as degree of freedom is eliminated by the use of coupled polynomial interpolation in the 
present formulation.  
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Figure 2: Comparison of conventional and proposed beam elements. 
 
Using the above polynomial expressions, the coupled shape functions Ni
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equation (28) are derived by usual method. 
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The polynomial expressions for these shape functions in natural coordinate system are: 
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Now the variation on basic mechanical and electrical variables can be transferred to nodal degrees 
of freedom. Substituting equation (28) in equations (11), (13), (14) and using them in an equation 
(8), the following discretized form of the model is obtained: 
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 (29) 

 

 
where M is mass matrix, , , ,uu u uK K K Kϕ ϕ ϕϕ are global stiffness sub-matrices. ,U Φ are the global 

nodal mechanical displacement and electric potential degrees of freedom vectors, respectively.  F
and Q are global nodal mechanical and electrical force vectors, respectively.  Now the general for-
mulation has been converted to matrix equation which can be solved according to electrical condi-
tions (open/closed circuit), configuration (actuator/sensor) and type of analysis (static/dynamic).  
 
 
7 NUMERICAL EXAMPLES AND DISCUSSIONS 

The finite element model proposed above is validated for static (actuation/sensing) and modal 
analyses by comparing the numerical results for test problems with the results obtained by con-
ventional SBT finite element formulations, analytical solutions published in the literature and 2D 
simulation using ANSYS software. The numerical implementation of present formulation has been 
done in MATLAB environment. The present SBT formulation with coupled polynomial interpola-
tion (designated hereafter as SBT-CPI) is compared against the conventional SBT finite element 
formulation of Benjeddou et al. (1999) with independent polynomial interpolation (designated 
hereafter as SBT-IPI).  

Shear mode beams are generally used with thick piezoelectric core (Benjeddou et al., 1999). 
The particular test problem chosen here is the beam with thick piezoelectric material sandwiched 
between aluminum layers as described by Figure 3.   
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Figure 3: Geometry of a sandwich shear mode beam. 

 
The geometric properties of the beam are: hp = 9mm , hal = 9mm . 

The material properties of the beam are (Kapuria and Hagedorn, 2007): 
Aluminum: E = 70.3GPa ; ! = 0.345; " = 2710 kgm!3  
PZT 5H: C11 =C22 =126GPa ;C12 = 79.5GPa ;C13 =C23 = 84.1GPa ;C33 =117GPa ;  
C44 =C55 = 23GPa ;C66 = 23.25GPa ; e31 = e32 = !6.5Cm

!2 ; e33 = 23.3Cm
!2 ;e15 = e24 =17Cm

!2 ;  

!1=1.503"10
#8 Fm#1; ! = 7500kgm#3

 
Two sets of mechanical boundary conditions are considered here: 
(a) Clamped-Free (C-F): u ,w , !u = 0 , at the clamped end. 
(b) Simply Supported (S-S): u ,w = 0 , at both ends. 
 
For simulation in ANSYS software, each aluminum layer is meshed with PLANE 183 element 
with 9 elements along the thickness and piezoelectric core with PLANE 223 element with 18 ele-
ments along the thickness. One element per mm along the length of the beam is used for all simu-
lations. 
 
7.1 Static Analysis: Sensor Configuration 

In this section, the beam shown in Figure 3 is evaluated for mechanical loading with clamped free 
(C-F) and simply supported (S-S) boundary conditions. The bottom surface of piezoelectric layer is 
grounded and a load of P=1000 N is applied at the free end for cantilever beam while at midspan 
for simply supported beam as shown in Figure 4. The results for maximum transverse deflection 
and potential developed in the beam with different aspect ratios are plotted in Figures 5 and 6, 
respectively for both beams. The thicknesses and composition of materials in the cross section is 
kept constant while length (L) is varied to obtain results for different L/h ratios. As seen from the 
plots, results by present SBT-CPI match with the results from analytical solutions by Zhang and 
Sun (1996), SBT-IPI of Benjeddou et al. (1999) and ANSYS 2D simulations.  

The beam with 100L mm= is chosen here for further study. The distributions of transverse de-
flection and potential developed along the length of sandwich beams are plotted in Figures 7 and 8, 
respectively. Also, the through-thickness variations of axial stress, shear stress and induced electric 
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field are plotted in Figures 9, 10 and 11, respectively. These results prove the validity of present 
SBT-CPI in sensor configuration.  

 
  
                 a) Clamped-Free (C-F)                                       b) Simply Supported (S-S) 

 

Figure 4: Sandwich shear mode beam in sensor configuration. 
 

  
                     a) Clamped-Free (C-F)                                                b) Simply Supported (S-S) 

 

Figure 5: Sensor configuration: Variation of maximum transverse deflection for various aspect ratios. 
 

  
 
                     a) Clamped-Free (C-F)                                              b) Simply Supported (S-S) 

 

Figure 6: Sensor configuration: Variation of maximum potential developed for various aspect ratios. 
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                      a) Clamped-Free (C-F)                                            b) Simply Supported (S-S) 

 

Figure 7: Sensor configuration: Variation of transverse deflection along the length of sandwich beam. 
 

  
                      a) Clamped-Free (C-F)                                                 b) Simply Supported (S-S) 

 

Figure 8: Sensor configuration: Variation of potential developed across piezoelectric layer along the length of sand-
wich beam. 

 

  
                      a) Clamped-Free (C-F)                                             b) Simply Supported (S-S) 

 

Figure 9: Sensor configuration: Through-thickness variation of axial stresses in the sandwich beam. 
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                    a) Clamped-Free (C-F)                                             b) Simply Supported (S-S) 

 

Figure 10: Sensor configuration: Through-thickness variation of shear stresses in the sandwich beam. 
 

  
                     a) Clamped-Free (C-F)                                               b) Simply Supported (S-S) 

 

Figure 11: Sensor configuration: Through-thickness variation of electric field in the sandwich beam. 
 

Now the efficiency of the present SBT-CPI over the conventional formulation is proved by the con-
vergence graphs plotted in Figures 12 and 13 for transverse deflections and stresses, respectively. 
These graphs prove the superiority of the present coupled polynomial based interpolation over the 
conventional independent polynomial based interpolation. 

  
                       a) Clamped-Free (C-F)                                              b) Simply Supported (S-S) 

 

Figure 12: Sensor configuration: Convergence characteristics of SBT based finite element models to predict the 
transverse deflection of the shear mode sandwich beam. 
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                           a) Clamped-Free (C-F)                                            b) Simply Supported (S-S) 

 

Figure 13: Sensor configuration: Convergence characteristics of SBT based finite element models to predict the 
stress developed in the shear mode sandwich beam. 

 
 

7.2 Static Analysis: Actuator Configuration 

The beam shown in Figure 3 is actuated by applying voltages of 10volts± at the top and bottom 
faces of the piezoelectric core for the clamped-free and simply supported boundary conditions, as 
shown in Figure 14. The distributions of transverse deflection along the length of the sandwich 
beams with 100L mm=  are shown in Figure 15. As seen from the graphs, for simply supported 
boundary condition, shear mode beams cannot produce transverse deflection which coincides with 
the findings by Beheshti-Aval et al. (2013). The values of tip deflection for various aspect ratios 
for cantilever beam are plotted in Figure 16. Also, the through-thickness variations of stresses and 
electric displacement developed in cantilever beam with 100L mm=  are plotted in Figures 17 and 
18, respectively. Results shown in these plots validate the use of present SBT-CPI in actuator 
configuration.  
 

  

 
                       a) Clamped-Free (C-F)                                       b) Simply Supported (S-S) 

 

Figure 14: Sandwich shear mode beam in actuator configuration. 
 

Now the convergence behaviors of present SBT-CPI and conventional SBT-IPI of Benjeddou et 
al. (1999) are compared to predict the results for tip deflection and stresses developed in a canti-
lever sandwich beam with 100L mm= . As seen from the convergence graphs in Figure 19, the pre-
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sent SBT-CPI shows quick convergence while conventional SBT-IPI takes a number of elements. 
This proves the efficiency of the present coupled polynomial field interpolation scheme over con-
ventional assumed independent polynomial based interpolations.  
 

  
                         a) Clamped-Free (C-F)                                         b) Simply Supported (S-S) 

 

Figure 15: Actuator configuration: Variation of transverse deflection along the length of sandwich beam. 
 

 
Figure 16: Actuator configuration: Variation of tip deflection of 

clamped-free (C-F) sandwich beam for various aspect ratios. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

                             a) Axial stress                                                         b) Shear stress 
 

Figure 17: Actuator configuration: Through-thickness variation of stresses developed in the C-F sandwich beam. 
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Figure 18: Actuator configuration: Through-thickness variation 
of electric displacement developed in the C-F sandwich beam. 

 

  
                   a) Tip deflection                                                                                   b) Axial stress 

 

Figure 19: Actuator configuration: Convergence characteristics of SBT based finite element 
models to predict finite element results for the shear mode sandwich beam. 

 
7.3 Modal Analysis 

The developed formulation is tested here for accuracy and efficiency to predict the natural frequen-
cies of the shear mode sandwich beam shown in Figure 3. The first three natural frequencies are 
evaluated in open circuit electrical boundary condition, in which bottom face of the piezoelectric 
layer is grounded while the top surface is left free. The converged results obtained by present SBT-
CPI, tabulated in Table 1 show good agreement with the results by SBI-IPI of Benjeddou et al. 
(1999) and ANSYS 2D simulation. This validates the use of present coupled shape function to gen-
erate consistent mass matrix also.  

    

 C-F S-S 
Reference First Second Third First Second Third 
SBT-CPI 1044 6107 8572 2892 10813 25784 
ANSYS 2D simulation 1043 5960 8536 2803 9720 26642 
SBT-IPI (Benjeddou et al., 1999) 1055 6168 8960 2921 10881 26884 

 

Table 1: Natural frequencies in Hz for shear mode sandwich beam ( 9 , 9 , 100p alh mm h mm L mm= = = ). 
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                           a) Clamped-Free (C-F)                                          b) Simply Supported (S-S) 
 

Figure 20: Convergence characteristics of SBT based finite element models to predict 
the first natural frequency of the shear mode sandwich beam ( hp = 9mm ,hal = 9mm ,L =100mm ). 

 
The advantage of present coupled field interpolation over conventional independent field interpola-
tion is depicted by convergence graph for first natural frequency plotted in Figure 20. The SBT-CPI 
converges quickly unlike SBT-IPI which takes a number of elements to reach the accurate value of 
first natural frequency.  The first three bending mode shapes for the cantilever sandwich beam, are 
shown in Figure 21. 

 

 
Figure 21: Natural bending modes of the shear mode sandwich beam with clamped-free boundary condition. 

 
8 CONCLUSION 

In the work presented here, a SBT-based finite element model with coupled polynomials for in-
terpolation of field variables has been proposed for the analysis of shear mode sandwich beam. 
These coupled polynomial expressions are derived from the governing equations obtained by va-
riational formulation. The derived polynomial interpolation for  the relative axial displacement of 
the beam consists of only coupled terms, having contributions from other mechanical and electri-
cal variables. This field variable does not require the use of generalized coefficients and hence 
reduces the number of nodal degrees of freedom from five to four. The coupled terms accommoda-
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te shear deformation and electromechanical coupling at the field interpolation level, in a variatio-
nally consistent manner. This novel way of coupled field interpolation imparts the proposed finite 
element improved convergence properties in comparison with the conventional SBT-based finite 
elements. The formulation is devoid of any locking effects and apparently the only SBT-based 
shear mode piezoelectric beam element which gives a single element convergence for deflection of 
the cantilevered sensor (tip loaded) and actuator configuration. The numerical results for the test 
problems applied to static and modal analyses prove the efficacy of the present formulation in 
modeling shear mode piezoelectric sandwich beams. 
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