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Abstract 
Wave propagation in heat conducting thermo elastic plate of ellip-
tical cross-section is studied using the Fourier expansion colloca-
tion method based on Suhubi’s generalized theory. The equations 
of motion based on two-dimensional theory of elasticity is applied 
under the plane strain assumption of generalized thermo elastic 
plate of elliptical  cross-sections composed of homogeneous iso-
tropic material. The frequency equations are obtained by using the 
boundary conditions along outer and inner surface of elliptical 
cross-sectional plate using Fourier expansion collocation method. 
The computed non-dimensional frequency, velocity and quality 
factor are plotted in dispersion curves for longitudinal and flexural 
(symmetric and antisymmetric) modes of vibrations. 
 
Keywords 
Wave propagation in plate; vibration of thermal plate; Fourier 
collocation method; generalized thermo elastic plate; thermal re-
laxation times. 
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1 INTRODUCTION 

The plates of elliptical cross-sections are frequently used as structural components and their vi-
bration characteristics are important for practical design. The propagation of waves in thermoe-
lastic material has many applications in various fields of science and technology, namely, atomic 
physics, industrial engineering, thermal power plants, submarine structures, pressure vessel, aero-
space, chemical pipes, and metallurgy. The importance of   thermal stresses in causing structural 
damages and changes in functioning of the structure is well recognized whenever thermal stress 
environments are involved.  
 A method, for solving wave propagation in doubly connected arbitrary and polygonal cross-
sectional plates and to find out the phase velocities in different modes of vibrations namely longi-
tudinal, torsional and flexural, by constructing frequency equations was devised by Nagaya 
(1981a; 981b; 1983a; 1983b; 1983c). He formulated the Fourier expansion collocation method for 
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this purpose, the same method is adopted in this problem. The generalized theory of thermo elas-
ticity was developed by Lord and Shulman (1967) involving one relaxation time for isotropic ho-
mogeneous media, which is called the first generalization to the coupled theory of elasticity. 
These equations determine the finite speeds of propagation of heat and displacement distribu-
tions, the corresponding equations for an isotropic case were obtained by Dhaliwal and Sherief 
(1980). The second generalization to the coupled theory of elasticity is what is known as the theo-
ry of thermo elasticity, with two relaxation times or the theory of temperature-dependent ther-
moelectricity. A generalization of this inequality was proposed by Green and Laws (1972). Green 
and Lindsay (1972) obtained an explicit version of the constitutive equations. This theory con-
tains two constants that act as relaxation times and modify not only the heat equations, but also 
all the equations of the coupled theory. The classical Fourier’s law of heat conduction is not vio-
lated if the medium under consideration has a center of symmetry. Erbay and Suhubi (1986) 
studied the longitudinal wave propagation in a generalized thermoplastic infinite cylinder and 
obtained the dispersion relation for a constant surface temperature of the cylinder.  
 Sharma and Pathania (2005) investigated the generalized wave propagation in circumferential 
curved plates. Asymptotic of wave motion in transversely isotropic plates was analyzed by Shar-
ma and Kumar (2012). Tso and Hansen (1995) have studied the wave propagation through cylin-
der/plate junctions. Heyliger and Ramirez (2000) analyzed the free vibration characteristics of 
laminated circular piezoelectric plates and disc by using a discrete-layer model of the weak form 
of the equations of periodic motion. Thermal deflection of an inverse thermo elastic problem in a 
thin isotropic circular plate was presented by Gaikward and Deshmukh (2005). Verma and 
Hasebe (2001) investigated the wave propagation in plates of general anisotropic media in gener-
alized thermo elasticity. Later, Verma (2002) has presented the propagation of waves in layered 
anisotropic media in generalized thermo elasticity in an arbitrary layered plate. The free vibration 
of non-homogeneous transversely isotropic magneto-electro-elastic plates was studied by Chen et 
al. [19]. Kumar and Partap (2007) presented the free vibration of microstretch thermoelastic plate 
with one relaxation time. Ponnusamy and Selvamani (2012) have studied the dispersion analysis 
of generalized magneto-thermo elastic waves in a transversely isotropic cylindrical panel using the 
wave propagation approach. Later, Selvamani (2012) performed mathematical modeling and 
analysis for damping of generalized thermoelastic waves in a homogeneous isotropic plate. 
 In this paper, the in-plane vibration of heat conducting thermo elastic elliptical cross-sectional 
plate of homogeneous isotropic material is studied. The solutions to the equations of motion for 
an isotropic medium is obtained by using the two dimensional theory of elasticity. To satisfy the 
boundary conditions, the Fourier expansion collocation method is performed to the equations of 
the boundary conditions and the frequency equations are obtained for longitudinal and flexural 
(symmetric and antisymmetric) modes of vibrations. The computed non-dimensional frequency, 
velocity and quality factor are plotted in dispersion curves for longitudinal and flexural (symmet-
ric and antisymmetric) modes of vibrations.  

 

2 FORMULATION OF THE PROBLEM 

We consider a homogeneous, isotropic, thermally conducting elastic plate of elliptical cross -
sections with uniform temperature 0T  in the undisturbed state initially. The system displace-
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ments and stresses are defined in polar coordinates r and q  in an arbitrary point inside the plate 
and denote the displacements ru  in the direction of r  and uq  in the tangential direction q . 

 

 
Figure 1: Geometry of ring-shaped elliptical plate. 

 
The two dimensional stress equations of motion, and strain –displacement relations and heat con-
duction equation in the absence of body force for a linearly elastic medium are    
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where , , rr rqq qs s s  are the stress components, , , rr re e eqq q  are the strain components, T  is the 
temperature change about the equilibrium temperature 0T , r  is the mass density, vc  is the spe-
cific heat capacity, b  is a coupling factor that couples the heat conduction and elastic field equa-
tions, K  is the thermal conductivity , , h t  is the thermal relaxation times, t  is the time, l  and  
m  are Lame’ constants.  
The strain ije  related to the displacements are given by 
 

 ,rr r re u= , ( )1
,re r u uqq q q

-= + , ( )1
, ,r r re u r u uq q q q

-= - -  (3) 

 
in which ru  and uq  are  the displacement components along radial and circumferential directions, 
respectively. The comma in the subscripts denotes the partial differentiation with respect to the 
variables.  
Substituting Eqs. (3) and (2) in Eq. (1), the following displacement equations of motions are ob-
tained 
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3 SOLUTIONS OF THE PROBLEM 

Eq. (4) is a coupled partial differential equation with two displacements and heat conduction 
components. To uncouple Eq.(4), we follow Mirsky (1964) by assuming the vibration and dis-
placements along the axial direction z equal to zero. Hence assuming the solutions of Eq. (4) in 
the form 
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where 1 2ne =   for 0n = ,  1ne =  for  1n ³ ,  1i = - ,  w  is the frequency, ( ),n rf q , 

( ),n ry q , ( ),nT r q , ( ),n rf q , ( ),n ry q  and ( ),nT r q  are the displacement potentials.  
Introducing the dimensionless quantities such as aT t am r= , x r a= , ( )2

1 2c l m r= + , 

1c a Ka¢ = , 2 2 2 2
1a cwW = , ( )2 2

1 0 1vT a c c Ke b r= , ( )2
2 1c c Kne t= , and 3 1c ae h=  and using  

Eq. (5) in Eq. (4), we obtain 
 

 ( )4 2 0A B C f +  + =   (6) 

 
where 
 

 1A = , ( ) ( )2 '
1 3 2 11B ie e e a e= W + + - W + , ( )2 '

2c ie a= W - W  (7) 

 
and 
 

 ( )( )2 2 22 0nl V y + + W - =   (8) 

 
where 2 2 2 1 2 2 2x x x x q- - º ¶ ¶ + ¶ ¶ + ¶ ¶  
 The parameters defined in Eq. (7) namely, 1e  couples the equations corresponding to the elas-
tic wave propagation and the heat conduction which is called the coupling factor; the  coefficient

2e , which is introduced by the theory of generalized thermo elasticity, may render the governing 
system of equations hyperbolic. The parameter 3e  is the coefficient of the term indicating the 
difference between empirical and thermodynamic temperatures.  Solving the partial differential 
equation (6), the solutions for symmetric mode is obtained as                                      
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and the solution for the antisymmetric mode nf  is obtained by replacing cosnq  by sinnq  in Eqs. 
(9a) and (9b), we get 
 

 ( ) ( )
2

1

sinin inn n i n i
i

A J ax B Y ax nf a a q
=

é ù= +ê úë ûå   (10.a) 

 ( ) ( )
2

1

sinn in ini n i n i
i

T d A J ax B J ax na a q
=

é ù= +ê úë ûå   (10.b) 

 
where nJ  is the Bessel function of first kind of order n  and nY  is the Bessel function of second 
kind of order n . Solving Eq. (8), we obtain 
 
 ( ) ( )3 3 3 3 sinn n n n nA J ax B Y ax ny a a qé ù= +ë û   (11.a) 

 
for symmetric mode, and for the antisymmetric mode ny  is obtained from Eq. (11a) by replacing 
sinnq  by cosnq . 
 

 ( ) ( )3 33 3 cosn nn n nA J ax B J ax ny a a qé ù= +ê úë û   (11.b) 

 
where ( ) ( )2 2 2

3 2aa l V= + W - . If ( )2 0iaa < ( 1,2, 3)i = , then the Bessel functions nJ  and nY  are 
replaced by the modified Bessel function nI  and nK  respectively . 

 

4 BOUNDARY CONDITIONS AND FREQUENCY EQUATIONS 

In this problem, the vibration of thick arbitrary cross-sectional plate is considered. Since the 
boundary is irregular in shape, it is difficult to satisfy the boundary conditions along both outer 
and inner surface of the plate directly. Hence, the Fourier expansion collocation method is applied 
to satisfy the boundary conditions. For the plate, the normal stress '

xxs , shearing stress '
xys  and 

thermal field 'T  along the inner surface of the plate is equal to zero. Similarly, normal stress xxs , 
shearing stress xys  and thermal field T  along the outer surface of the plate is equal to zero. 
Thus, the boundary conditions along the outer boundary of the plate are 

 

 ( ) ( ) ( ) 0xx xyi ii
Ts s= = =   (12) 

 
and for the inner boundary, the boundary conditions are 
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 ( ) ( ) ( )' ' ' 0xx xyi i i
Ts s= = =   (13) 

 
where x  is the coordinate normal to the boundary and y  is the coordinate tangential to the 
boundary, xxs , '

xxs  are the normal stresses, xys , '
xys  are the shearing stresses, T , 'T  are the 

thermal fields and ( )
i
 is the value at the i th-  segment of the outer and inner boundary re-

spectively.  Since the cross-section of the plate is irregular, it is difficult to find the transformed 
expression of the stresses in the thick arbitrary cross-sectional plates because the coordinate x  
and y  are vary with the angle q . Therefore, the inner and outer boundary of the thick arbitrary 
cross-sections is divided into small segments such that the variations of the stresses are assumed 
to be constant. Assuming the angle ig , between the normal to the segment and the reference axis 
to be constant, the transformed expressions for the stresses are followed by Nagaya (1983b) as 
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Substituting Eqs. (9)-(11)in Eqs. (12) and (13), the boundary conditions are transformed as fol-
lows: 
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for the inner surface and 
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for the outer surface, where 
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The coefficients for 

i i
n ne g-  are given in the Appendix A.            

 Performing the Fourier series expansion to Eqs. (12) and (13) along the boundary, the bound-
ary conditions along the inner and outer surfaces are expanded in the form of double Fourier se-
ries. When a plate is symmetric about more than one axis, the boundary conditions, in the case of 
symmetric mode can be written in the form of a matrix as given below: 
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where 
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Similarly, the matrix for the antisymmetric mode is obtained as 
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where 
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and where 1,2, 3, 4,5j =  and 6 , I  is the number of segments,  iR  is the coordinate r  at the inner 
boundary, iR  is the coordinate r at the outer boundary  and N  is the number of truncation of 
the Fourier series. For the nontrivial solution of the system of equations given in Eqs. (19) and 
(21), the determinant of the coefficient matrix must vanish and these determinants give the fre-
quencies of symmetric and antisymmetric modes of vibrations respectively. 
 
4.1 Elliptic cross-sectional plate 

The geometry of elliptic cross-sectional ring shaped plate is shown in Figure 1.The geometrical 
relations of an elliptic ring shaped plate given by Nagaya (1981b) are used for numerical calcula-
tion and are given below: 
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for the outer surface and 
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for the inner surface, where 1a  and 2a  are the length of inner and outer semi major axis, and 1b  
and 2b  are the length of semi minor axis of an elliptic cross-section. Also ( )*

1 2l l lq q q -= +  and 

iR  is the coordinate r  at the i th-  boundary, ig  is the angle between the reference axis and the 
normal to the segment. For in-plane vibration problem, there exist two types of vibrations; one of 
which is generated mainly by flexural motion and the other by longitudinal motion. 
 In the present problem, there are three kinds of basic independent modes of wave propagation 
have been considered, namely, the longitudinal and two flexural (symmetric and antisymmetric) 
modes.  
 
5 NUMERICAL ANALYSIS 

The numerical analysis of the frequency equation is carried out for heat conducting thermo elastic 
elliptic cross-sectional plates. The material properties of copper at 42 K are taken approximately 
as Poisson ratio n = 0.3, density r = 8.96x103 kg/m3, the Young’s modulus E =2.139x1011 N/m2, 
l = 8.20x1011 kg/m*s2, m = 4.20x1010 kg/m*s2, cn = 9.1x10-2 m2/K*s2, and K = 113x10-2 kg*m/K*s2. 
The thermal parameters such 'a , 1e , 2e , and 3e  are chosen by the following arguments are given 
by Erbay and Suhubi (1986). 
 In the numerical calculation, the angle q is taken as an independent variable and the coordi-
nate iR  and  iR  are at the i th- segment of the boundary is expressed in terms of q . Substitut-
ing iR ,  iR  and the angle ig , between the reference axis and the normal to the i th- boundary 
line, the integrations of the Fourier coefficients i

ne , i
nf , i

ng , 
i
ne , 

i

nf , and 
i

ng   can be expressed in 
terms of the angle q . Using these coefficients in to equations (20) and (22), the frequencies are 
obtained for heat conducting thermo elastic elliptical cross-sectional plate. 
 
5.1 Longitudinal mode 

The geometrical relations for the elliptic cross-sections given in Eq. (23) are used directly for the 
numerical calculations, and three kinds of basic independent modes of wave propagation are stud-
ied.  In case of the longitudinal mode of elliptical cross-section, the cross-section vibrates along 
the axis of the cylinder, so that the vibration and displacements in the cross-section is symmet-
rical about both major and minor axes. Hence, the frequency equation is obtained by choosing 
both terms of n  and m  as 0,2,4,6,...  in Eq. (19) for the numerical calculations. Since the bound-
ary of the elliptical cross-sections is irregular in shape, it is difficult to satisfy the boundary condi-
tions along the curved surface, and hence Fourier expansion collocation method is applied. In this 
method, the curved surface, in the range 0q =  and q p=  is divided into 20 segments, such that 
the distance between any two segments is negligible and the integrations is performed for each 
segment numerically by using the Gauss five point formula .The non-dimensional frequencies  are 
computed for 0 1.2< W £ , using the secant method. 
 
5.2 Flexural mode 

 In the case of flexural mode of elliptical cross-section, the vibration and displacements are anti-
symmetrical about the major axis and symmetrical about the minor axis. Hence, the frequency 
equations are obtained from Eq. (21) by choosing , 1, 3,5,...n m = . Two kinds of flexural (symmet-
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ric and antisymmetric) modes are considered. The computed non-dimensional frequencies are 
presented in the form of dispersion curves.  

 
5.3 Quality factor 

The ratio of the total elastic energy and the energy loss in one cycle of a material is defined as 
the quality factor. In engineering and physics, the quality factor of a material is a dimensionless 
parameter that compares the time constant for decay of an oscillating physical structure’s ampli-
tude to its oscillation period. Equivalently, it compares the frequency at which a structure oscil-
lates to the rate at which it dissipates its energy. The quality factor is defined as 
 

1

2FQ VQ

w
=  

 
where V  and Q  represents the phase velocity and attenuation coefficient, respectively. 

 
5.4 Dispersion curve 

The variation of non-dimensional frequency versus dimensinonless wave number of longitudinal  
modes of  thermo-elastic circular cross sectional plate with and without thermal field for the two 
values of aspect ratio 1 1 2 2 0.5,1.5a b a b= =  is shown in Figures 2 and 3 respectively. From Fig-
ure 2, it is observed that the dispersion linearly increase with respect to the wave number. For 
without thermal field, the relation between the wave number and frequency in both the cases of 
aspect ratios are alike, but for the thermal inclusion the behavior is oscillating throughout the full 
range of wave number. Figures 4 and 5 shows the dispersion characteristic of flexural (symmetric) 
modes of elliptic cross-sectional plate with and without thermal field.  It shows that, the disper-
sion is common for both the plate with and without thermal inclusion, where the higher aspect 
ratio attains higher frequency compared with lower aspect ratio.  

 

 
Figure 2: Non-dimensional wave number versus dimensinonless frequency of longitudinal modes of circular cross 

sectional plate. 
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Figure 3: Non-dimensional wave number versus dimensinonless frequency of longitudinal modes of thermo-elastic 

circular cross sectional plate. 

 

 
Figure 4: Non-dimensional wave number versus dimensinonless frequency of flexural symmetric modes of 

elliptical cross sectional plate. 

 

 
Figure 5: Non-dimensional wave number versus dimensinonless frequency of flexural symmetric modes of  

thermo-elastic elliptical cross sectional plate. 
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Figure 6: Non-dimensional wave number versus dimensinonless frequency of flexural anti symmetric modes of   

elliptical cross sectional plate. 

 

 
Figure 7: Non-dimensional wave number versus dimensinonless frequency of flexural anti symmetric modes of 

thermo-elastic elliptical cross sectional plate. 

 

A graph is drawn between non-dimensional wave number versus dimensionless frequency of flex-
ural (antisymmetric) modes of elliptic cross-sectional plate with and without thermal environment 
are shown in Figures 6 and 7 respectively. In both figures, it is observed that as the wave number  
increases, the non-dimensional frequencies also increases, also it could be inferred that, the disper-
sion characteristic are prominent only in lower orders with negligible variations in higher rang.  
From the figures, it is observed that the non-dimensionless frequency increases with respect to its 
wave number. It is also observed that, the cross over points between the modes of different aspect 
ratios of longitudinal and flexural symmetric and antisymmetric modes represents the transporta-
tion of energy between the two different vibration medium.    
 The variation of velocity versus dimensionless frequency of a flexural symmetric modes of el-
liptic cross-sectional plate with and without thermal environment are shown in Figures 8 and 9, 
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respectively. From the Figures 8 and 9, it is observed that, for the increasing values of the aspect 
ratio modes are merges and oscilating through entire range of frequency. The merging of thermal 
modes and oscillation of point between the vibrational modes shows that, there is an energy 
transportation between the modes of vibrations by the effect of aspect ratio and anisotropic of the 
material. 
 Figures 10 and 11 reveals that the variation of quality factor with the dimensionless frequency 
for the flexural symmetric modes with and without thermal signal. The quality factor is quite 
high at lower range of frequency and starts to decay with increasing frequency. The quality factor 
profile are dispersive in trend for  flexural symmetrical modes with thermal signal than in flexural 
symmetrical modes without  thermal signal and experience oscillation in the wave number range 
0.2 | | 0.6V£ £  for flexural symmetric thermal modes of vibration. The cross over points between 
the vibration modes represents the transfer of energy between the thermal modes.  

 

 
Figure 8: Variation of velocity versus dimensinonless frequency of flexural symmetric modes of elliptical cross 

sectional plate. 

 

 
Figure 9: Variation of velocity versus dimensinonless frequency of flexural symmetric modes of thermo-elastic 

elliptical cross sectional plate. 
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Figure 10: Variation of quality factor versus dimensinonless frequency of flexural symmetric modes of elliptical 

cross sectional plate. 
 

 
Figure 11: Variation of quality factor versus dimensinonless frequency of flexural symmetric modes of thermo-

elastic elliptical cross sectional plate. 

 
6 CONCLUSIONS 

In this paper, the wave propagation in a heat conducting thermo elastic plate of elliptical  shaped 
is analyzed by satisfying the boundary conditions on the irregular boundary using the Fourier 
expansion collocation method and the frequency equation for the longitudinal and flexural (sym-
metric and antisymmetric) modes of vibrations are obtained. The computed dimensionless fre-
quency, velocity and quality factor are plotted in graphs for longitudinal and flexural (symmetric 
and antisymmetric) modes with and without thermal signals. From the graphical representation, 
the effect of thermal energy with thermal relaxation times and the anisotropy of the material on 
the various considered wave characteristics are more significant and dominant in the flexural 
modes of elliptical cross sectional plate. 
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Appendix A 

The expressions 
i

i
nne k  used in Eqs. (20) and (22) are given as follows: 
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