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Abstract 

This paper presents a nonlinear stability analysis of piles under 

bilateral contact constraints imposed by a geological medium (soil 

or rock). To solve this contact problem, the paper proposes a 

general numerical methodology, based on the finite element meth-

od (FEM). In this context, a geometrically nonlinear beam-column 

element is used to model the pile while the geological medium can 

be idealized as discrete (spring) or continuum (Winkler and Pas-

ternak) foundation elements. Foundation elements are supposed to 

react under tension and compression, so during the deformation 

process the structural elements are subjected to bilateral contact 

constraints. The errors along the equilibrium paths are minimized 

and the convoluted nonlinear equilibrium paths are made tracea-

ble through the use of an updated Lagrangian formulation and a 

Newton-Raphson scheme working with the generalized displace-

ment technique. The study offers stability analyses of three prob-

lems involving piles under bilateral contact constraints. The anal-

yses show that in the evaluation of critical loads a great influence 

is wielded by the instability modes. Also, the structural system 

stiffness can be highly influenced by the representative model of 

the soil. 
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1 INTRODUCTION 

The structural elements used to transfer load from a super-structure to the geological medium 

include such elements as beams, piles, arches, plates, and shells. These elements, during the de-

formation process, can lose contact with the geological medium due to the medium’s incapacity to 

react under tension. This kind of problem, known as a unilateral contact problem, leads to im-

portant differences in the reactions of foundation elements and in the internal stress of structural 

elements. Such differences result in the remaining contact area being subjected to high stress con-

centrations. Researchers have, since the 70’s, actively studied the unilateral contact problem (Sil-

veira et al., 2013; Celep et al., 2011; Sapountzakis and Kampitsis, 2010; Silveira et al., 2008; Hol-

anda and Gonçalves, 2003; Silva et al., 2001; Silva, 1998; Silveira, 1995; Stein and Wriggers, 1984; 

Weitsman, 1970). A separate type of problem is the bilateral contact problem (Yu et al., 2013; 

Maciel, 2012; Shen, 2011 and 2009; Kien, 2004; Naidu and Rao, 1995). Bilateral contact problems 

involve support systems found in civil and mine engineering where structural elements are com-

pletely attached to the geological medium. Examples include piles embedded in soils, underground 

pipelines, and circular or parabolic tunnel roofs. In the context of physical and geometric lineari-

ty, these engineering problems can be treated as simple structural minimization problems; numer-

ical solutions, and even analytical solutions, can be easily achieved (Tsudik, 2013; Selvadurai, 

1979; Hetényi, 1946).  

Some contexts, however, involve non-linear effects. In recent years, many studies have consid-

ered such effects in their analyses of bilateral contact problems under extreme static and dynamic 

loads (Fazelzadeh and Kazemi-Lari, 2013; Challamel, 2011; Sofiyev, 2011; Roy and Dutta, 2010; 

Dash et al., 2010; Manna and Baidya, 2010). In nonlinear structural and geotechnical problems 

with bilateral constraints, the property and characteristics of the geological medium can highly 

influence the support systems’ equilibrium paths. Researchers trying to resolve these kinds of 

issues have made significant advances in several engineering fields leading to the development of 

new materials and techniques of analyses. Perhaps the greatest contribution in these advances has 

been the development of more precise computational tools, whose models allow a realistic simula-

tion of problems (Silva, 2009). To come up with slenderer and lighter support systems and con-

structions, without compromising quality and security standards, engineers have had to evaluate 

a structure’s behavior by considering its nonlinear effects as well as the structure’s interaction 

with the soil-structure (Kausel, 2010). 

Nonlinear bilateral structural contact problems are usually formulated by using numerical 

techniques (Maciel, 2012; Mullapudi and Ayoub, 2010; Matos Filho et al., 2005; Horibe and Asa-

no, 2001), such as finite element method (FEM) or boundary element method (BEM). Regarding 

the contact constraints, one is able to transform the contact problem—by using the usual formu-

lations of structural mechanics—into a minimization problem without constraint. As the prob-

lem’s solution depends heavily on the constitutive model of geological medium, one can expect to 

find the best results by adopting a more rigorous mechanical model. Kausel (2010), Wang et al. 

(2005), and Dutta and Roy (2002) provide a state-of-the-art review for soil-structure interaction. 

To solve this kind of contact problem, these researchers suggest bars and plates on elastic founda-

tion and soil modeling as well as analytical and numerical possibilities. 



252      R. A. M. Silveira et al. / Nonlinear equilibrium and stability analysis of axially loaded piles under bilateral contact constraints 

Latin American Journal of Solids and Structures 12 (2015) 250-270 

 

Classical references on structural stability (Brush and Almroth, 1975; Simitses and Hodges, 

2006) involve analytical solutions of piles under contact constraints imposed by Winkler-type 

foundations. These solutions provide the pinned-pile critical load expression as a function of the 

number of half-wave imperfection mode and the dimensionless foundation parameter. Ai and Han 

(2009) and Ai and Yue (2009) studied the behavior of piles embedded in a multi-layered soil and 

subjected to axial load. Researchers have also examined such subjects as load-deflection response, 

stability analysis, and the buckling and initial post-buckling behavior of bilaterally constrained 

piles, as found in Fazelzadeh and Kazemi-Lari (2013), Challamel (2011), Chen and Baker (2003), 

Sironic et al. (1999), Chai (1998), Budkowska (1997a,b), Budkowska and Szymczak (1997), West 

et al. (1997), and Naidu and Rao (1995). Recently, Tzaros and Mistakidis (2011) presented the 

critical loads and buckling modes of columns under unilateral contact constraints. Limkatanyu 

and Spacone (2002, 2006) presented three formulations of frame elements with nonlinear lateral 

deformable supports. To analyze the problem of a pile partially buried in an elastic medium, 

Aljanabi et al. (1990) developed a contact finite element that took into account the normal stiff-

ness of soil and the soil-structure friction. Badie and Salmon (1996) solved the same problem but 

by using a quadratic order elastic foundation finite element. Besides the normal stiffness of soil 

and the soil-structure friction, they considered the interaction between the individual springs, 

such as those used in the Pasternak-type foundation model. 

The importance of considering the Pasternak’s model to represent the ground was explored by 

Shirima and Giger (1992) using a Timoshenko-beam element that incorporated both stiffness pa-

rameters of the base. The model’s importance was also investigated by Mullapudi and Ayoub 

(2010) who analyzed a bar of finite size in contact with sandy clay based on a mixed formulation 

(approximations of forces and displacements). The stability of piles on a Pasternak foundation 

has also been examined in Naidu and Rao (1995), Kien (2004), and Shen (2011). Horibe and Asa-

no (2001) used the boundary element method (BEM) to study bars in contact with a Pasternak-

type base (or Filonenko-Borodich), considering large displacements. 

The main objective of this paper is twofold. First, it proposes a numerical methodology for the 

geometrically nonlinear analysis of piles under bilateral contact constraints. Second, it studies the 

influence of the geological medium and its stiffness on the piles’ nonlinear equilibrium path and 

buckling behavior. To model the piles, we use a nonlinear beam-column element (Alves, 1995; 

Silva, 2009); to approximate the geological medium’s behavior, we use individual springs (discrete 

model) or a bed of springs (continuum models) that exhibit a non-sign-dependent force-

displacement relationship (Silva, 1998; Maciel, 2012). 

An updated Lagrangian formulation is adopted to follow the system’s movement, ignoring the 

influence of friction in the contact area. The contact regions between the bodies are known a pri-

ori and the nonlinear problem involves as a variable only the pile-soil displacement field. To solve 

the resulting algebraic nonlinear equations with contact constraints, and to obtain the structural 

equilibrium configuration at each load step, the present work presents an iteration solution strat-

egy using the Newton-Raphson scheme coupled with the generalized displacement method (Cris-

field, 1991; Yang and Kuo, 1994). 

To verify the proposed numerical solution, this paper presents three problems. The first one 

investigates the influence of the position and stiffness of a spring elastic support on the pile’s crit-
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ical load (Brush and Almroth, 1975); the second analyzes the elastic stability behavior of slender 

pinned piles under contact constraint imposed by a Winkler-type foundation throughout its 

length (Brush and Almroth, 1975; Simitses and Hodges, 2006); the third studies the nonlinear 

behavior and stability of piles with different end conditions in contact with a Pasternak-type 

foundation (Naidu and Rao, 1995; Kien, 2004; Shen, 2011). These examples demonstrate the ac-

curacy and versatility of the present numerical strategy in the nonlinear solution of piles under 

bilateral constraints. 

 
2 THE BILATERAL CONTACT PROBLEM 

Consider the support system shown in Figure 1a and its mathematical model in Figure 1b. It 

consists of a pile and an elastic foundation. Assume that both bodies may undergo large deflec-

tions and rotations but with only small strains that are within the material’s elastic range. As-

sume also that the contact surface is bonded and frictionless, and the region Sc corresponds to the 

region where contact occurs, which is known a priori. Consider now that the variables are known 

at 0 and t equilibrium configurations, and the solution at t + t configuration is required (Figure 

1c). 

 

  
 

(a) Engineering problem (b) Mathematical model (c) Equilibrium configurations 
 

Figure 1: Pile under bilateral contact constraints imposed by an elastic foundation. 
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Particularly well suited for numerical analysis, the nonlinear bilateral contact problem can be 

solved through the following minimization problem (Maciel, 2012): 

Min (u, u
b
) (1) 

Subject to:  = 0, on Sc (2) 
 

with the functional written as: 
 

σ
1 1

( ) ( )
2 2

t t t t t
c f

t t t t t t t t t
b b b c i i f

V S S

d V d S d SS r r u F u  (3) 

 

in which  is the Cauchy’s stress vector; S is the 2nd Piola-Kirchhoff’s stress vector;  is the 

Green-Lagrange’s strain vector; rb is the reaction vector of the elastic foundation; ub is the dis-

placements vector of the elastic foundation; u is the displacements vector of the structure and F 

is the external forces vector specified on Sf and assumed to be independent of the bodies’ defor-

mations. In addition,  represents an incremental quantity while superscripts t and t + t define 

the reference configuration. 

The equality (2) gives the contact condition  the gap in the potential contact area is always 

zero  after the increment of the displacements, that must be satisfied on Sc in the configuration 

t + t. According to Figure 2, Sc can be one contact region, some regions, or even some discrete 

points. Thus, for a given load increment, the unknown variables in the configuration t + t may 

be obtained by solving the above minimization problem. What makes the problem difficult to 

solve directly is the geometrically nonlinear nature of this analysis. The following sections demon-

strate how this kind of nonlinearity may be treated. 

 

   

(a) One region (b) Some regions (c) Some discrete points 
 

Figure 2: Different domain situations for the definition of the contact region Sc. 
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3 THE GEOMETRICALLY NONLINEAR ANALYSIS 

This section presents the numerical solution process of the geometrically nonlinear problem. The 

first step is to discretize the structural problem by using the finite element method. In this con-

text, one can assume that, for a generic structural element, the incremental displacement field u 

within the element is related to the incremental nodal displacements û  by: 
 

ˆu H u  (4) 
 

where H  is the usual FE interpolation functions matrix. 

To evaluate the corresponding incremental strains and stresses, one can write the Green-

Lagrange increment tensor and the 2nd Piola-Kirchhoff stress increment tensor using the following 

expressions (Bathe, 1996): 

ˆ( )L NLB B u  (5) 

S C  (6) 

where BL is the same strain-displacement matrix as in the linear infinitesimal strain analysis and 

it is obtained by appropriately differentiating and combining the rows of H ; BNL depends on H 

and the incremental displacements; and C is the constitutive matrix. 

The foundation soil’s action, or simply the foundation’s action, on the structural elements de-

pends on the displacements and stresses on the foundation soil itself. However, as in many engi-

neering applications the designer is interested in only the response of the foundation at the con-

tact area and not in the stresses and displacements in the ground foundation, it is possible to 

develop a simple mathematical model to describe, with a reasonable degree of accuracy, the re-

sponse of the foundation soil at the contact zone. This can be done by using the well-known Win-

kler’s model (Kerr, 1964) or even the formulation for the elastic half-space (Cheung, 1977). Thus, 

the elastic foundation’s behavior for a generic element can be written by the following discrete 

equilibrium equation: 

b b br C u  (7) 
 

where rb and ub are the incremental elastic foundation reaction and displacement nodal val-

ues, respectively; and, C b is the constitutive matrix of the elastic foundation. Thus, for a generic 

elastic foundation element, the incremental displacement field ub may be related to its nodal 

values as: 

ˆ
b b bu B u  (8) 

 

where B b is the matrix containing the interpolation functions that describe the elastic base de-

formation. 

Using the previous definitions and assuming that in the contact area the structure and elastic 

foundation nodal displacements are identical (i.e., ˆ ˆ
bu u ) and do not change, one arrives at 

the discretized functional of the contact problem, Eq. (3), at the element level: 
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(9) 

 

Taking the appropriate variations of   with respect to the incremental nodal displacements, and 

adding the contributions of each finite element, one can write: 
 

t t t t
L NL b is ibK K K K U F F R  (10a) 

 

or, more concisely: 
 

t t t t
iF U R  

(10b

) 

where U contains the global nodal incremental displacements and t+tFi is the internal general-

ized forces vector of the support system in the load step t + t. Equation (10a) or (10b) is the 

equation that must be satisfied in an incremental process to obtain the system equilibrium. 

On the left side of (10a), KL is the global stiffness matrix for small displacement; the matrix 

K  is the initial stress matrix or geometric matrix; the matrix KNL is the large displacement ma-

trix, which contains only linear and quadratic terms in the incremental displacement; and K b is 

the stiffness matrix of the elastic foundation (Maciel, 2012). All these matrices contribute on the 

assemblage of the tangent stiffness matrix used in numerical solution procedure presented on the 

next section. Vectors tFis represents the internal force vector of the structure and vector tFib the 

elastic foundation in the equilibrium configuration t. They are typically computed by integrating 

the generalized stress resultants through the volume of each element and then summing the ele-

mental contributions (Bathe, 1996). 

On the right side of (10a), vector t+tR is the nodal external load vector in the step t+t and 

is given by: 
 

t t t t
rR R  

(11

) 
 

which is assumed to be independent of the structure’s deformation; R r is a fixed load vector, 

termed reference vector defining the load direction, and t+t is a scalar load multiplier which 

defines the intensity of the applied load. 
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4 NUMERICAL SOLUTION PROCEDURE 

This section presents the main characteristics of the numerical solution strategy adopted for the 

minimization problem defined by Eqs. (1) and (2), considering the geometric nonlinearity and the 

bilateral contact constraints.  

To obtain nonlinear equilibrium paths, this study considers an incremental and iterative solu-

tion strategy. It is assumed that perfect convergence was achieved in the previous load steps 

0,…,t (Figure 1c), i.e., the solution of the previous steps satisfied the equilibrium equations and 

all contact constraints. Therefore, considering the updated Lagrangian formulation  which is 

more appropriate to obtain the tracking of interfaces between different materials or surfaces and 

also due the nonlinear finite element formulation adopted (Section 5) , the known displace-

ments and stresses obtained at the conclusion of load step t are used as information to obtain the 

adjacent equilibrium configuration t + t. A cycle of the incremental and iterative strategy can 

be summarized in two steps: 

1. As a starting point, the strategy employs an approximate solution, called a “tangential incre-

mental solution.” This approximate solution involves selecting an initial increment of the load. To 

calculate the initial load increment, the strategy then considers an additional constraint equation, 

which uses the “generalized stiffness parameter” equation (Yang and Kuo, 1994); Sc defines the 

contact regions between the bodies and during the incremental process remains constant. To cal-

culate the initial increment of the displacements, the strategy employs this initial load increment 

approximation, 0; it also uses it to define what is called “tangential incremental solution,” a 

solution that rarely satisfies the equilibrium equations. Hence, the strategy must use a correction. 

2. This correction deals with the geometric nonlinearity of the problem. It can be achieved by 

coupling the Newton-Raphson method and path-following techniques (continuation methods; 

Crisfield, 1991). The strategy uses the generalized displacement method developed by Yang and 

Kuo (1994) to allow limit points to be passed and, consequently, to identify snap buckling phe-

nomena. If the convergence criterion is not satisfied, the correction procedure is repeated until it 

is.  The numerical solution procedure summarized above is detailed in Figure 3. 
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5 NUMERICAL APPLICATIONS 

In this section, the methodology presented for nonlinear static analysis is used to obtain the res-

ponses of three stability problems involving piles under bilateral contact constraints. Consistent 

units are used in all problems and the proposed numerical solution strategy considers a conver-

gence tolerance factor equal to 10-4. To model the piles, it is adopted the nonlinear beam-column 

element developed by Alves (1995) and improved by Silva (2009). Basically, the nonlinear beam-

column element formulation presents as main characteristics: the adoption of the Bernoulli-Euler 

simplifications (all sections remain normal to element axis and cross-sections remain plane after 

loading application); the shear deformation effect is disregarded; the geometrically nonlinear kin-

ematics follow, as already mentioned, the Green-Lagrange tensor; the internal force vector incre-

ment is obtained using the natural displacement approach; and linear material behavior. 

The proposed finite element contact problem formulation as well as the numerical solution 

methodology (Section 4) were implemented and adapted in FORTRAN language in a new com-

putational system for advanced structural analysis, CS-ASA, which performs the nonlinear static 

and dynamic analyses of steel members and framed system structures (Silva, 2009). 

 
5.1 Piles with Intermediate Elastic Spring Support 

Brush and Almroth (1975) presented the analytical solution for the critical load (Pcr) of a pinned 

pile, represented by a bar with length L and bending stiffness EI, with an intermediate elastic 

spring, represented by its linear stiffness Kx in the horizontal direction X, located at a distance c 

from the pile top, as depicted in Figure 4.  

To investigate the influence of the intermediate elastic spring on the pile’s critical load, several 

analyses were performed, maintaining as constant the length L and the bending stiffness EI of the 

pile and varying the position c and the linear stiffness Kx of the intermediate elastic spring. 
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Algorithm: SUPPORT SYSTEM NONLINEAR STABILITY ANALYSIS 

1: Read the input data: geometric, material and loading properties of the structural system 

2: Define the contact regions Sc and obtain the reference nodal load vector, Fr (loading direction) 

3: t = 0 

4: t1 = t 

5: Select the initial load increment (0)1, Crisfield (1981) 

6: for each load increment do                                             INCREMENTAL LOAD PROCESS 

7: t = t1                                                                                                                                  Previous load step 

8: t1 = t +                                                                                                                           Current load step 

9: Form the structural system tangent stiffness matrix: 
s bK K K  

10: Solve for the tangent displacement vector 
r rK U F :  

11: if t1 = 1 then  

12: 
1

r rU U ; 0 0
1  

13: else 

16: 0 0 1 1 1
1

T T
r r r rU U U U , Yang and Kuo (1994) 

17: end if 

18: Evaluate the initial incremental displacement vector: 0 0
rU U  

19: for k  1, maximum number of iterations (nmax) do                     ITERATIVE PROCESS 

20: Evaluate the internal forces vector: 1 1 1 1t k t k k
i i s bF F K U K U  

21: Evaluate the residual force vector:  

1 11 1 1 1t tk k k k
r ig F F  

22: if 1 1  k k
r tolerance factorg F then 

23: Exit the iterative process and go to line 34 

24: else 

25: if k = nmax then reduce 0 by half and restart the incremental process (go to line 18) 

26: end if 

27: if standard Newton-Raphson method then  

28: Update the tangent stiffness matrix s b K K K  

29: end if 

30: Update the load parameter correction k (Yang and Kuo, 1994) 

 
k t T k t T k

r g r rU U U U , with: 1 1k k
gU K g and 1k

r rU K F  

31: Evaluate the nodal displacement correction vector: 
k k k k

g rU U U   

32: Update the load parameter and the nodal displacement vector:  

1k k k+ and 1k k kU U U+                                    Incremental variables 

1t k t k+ and 1t k t kU U U+                                                           Total variables 
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33: end for 

34: Update the structural system variables (nodal coordinates and internal forces vector) 

35: end for 
 

Figure 3: Numerical strategy for support system nonlinear stability analysis.  
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Presented in Figure 4 are the results obtained by Brush and Almroth (1975), using differ-

ent dimensionless stiffness parameter  = 2KxL/PE, in terms of the normalized position 

(c/L) and normalized critical load (Pcr/PE), where PE = 2EI/L2 is the Euler's critical 

load. 

As can be observed in Figure 4, the numerical results obtained by this work are in good 

agreement with those presented by Brush and Almroth (1975). For a normalized position 

of 0.5 and  higher than 150, the elastic spring can be considered as a rigid support, with 

Pcr  4PE, which is the critical load of a pinned pile of length L/2. To behave as a rigid 

support, an intermediate elastic spring located at the normalized position less than 0.5 

should present a parameter higher than 150. For an elastic spring with high stiffness and 

located near the pile top (c/L  0), the value of Pcr tends to 2.05 PE, which is equal to the 

fixed-pinned pile buckling load. 

The same analyses performed with a pinned pile were conducted while adopting a fixed-

free end condition. Results are presented in Figure 5. It should be noted that for  higher 

than 100, the discrete elastic spring already behaves as if it were a rigid support, regardless 

of the spring location. As expected, for the elastic spring located near of top pile (c/L = 0) 

and with high values of  the critical load obtained is about 2.05 PE, which is the critical 

load of a fixed-pinned pile. 

 

 

 
Figure 4: Critical loads of pinned piles with intermediate elastic spring support. 
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Figure 5: Critical loads of fixed-free piles with intermediate elastic spring support. 

 

5.2 Pinned Piles in Contact with a Winkler Type Foundation 

Let us now look at the classical structural and geotechnical problem shown in Figure 6, i.e, the 

elastic stability analysis of slender pinned piles under a bilateral contact constraint imposed by a 

Winkler-type foundation throughout its length.  

Brush and Almroth (1975) and Simitses and Hodges (2006) showed that, as in the elastic in-

stability of plates and shells, the buckling mode plays an important role in the stability of this 

type of problem. This means that the number of semi-waves’ modes on the analytical solution has 

great influence on the pile’s critical load value. According to these authors, the pile’s critical load 

could be calculated by the following expression: 
 

2
2

cr w

E

P
n

P n
 (12) 

 

where n is the number of semi-waves considered, w = kL2/(2PE) is the dimensionless stiffness 

parameter, and PE = 2EI/L2 is Euler's critical load. 

For a pinned pile such as the one illustrated in Figure 6 with characteristics of L = 5, 

EI = 100 and k = 10 (all in compatible units) and considering n = 1 (one semi-wave), it is, ac-

cording to Eq. (12), possible to obtain a pile critical load of 64.8. 

To verify the influence of the discretization on the critical load, different analyses were con-

ducted varying the number of finite elements and the elastic base models (discrete and continuum 

or Winkler-type). Table 1 presents the pile critical loads and the errors (related to the analytical 

solution of 64.8) observed when varying the number of finite elements from 4, 6, 8, 10, and 20. 

Note the good agreement for both models for the mesh with eight finite elements. Figure 7 shows 

the support system equilibrium paths for the two models by using a mesh with four finite ele-

ments. 
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(a) Winkler model (b) Discrete model 
 

Figure 6: Pinned pile under bilateral contact constraints. 

 

To investigate the influence of the elastic foundation stiffness of a Winkler base model on the 

pile’s critical load, two analyses were performed maintaining as constant the length (L = 10) and 

the bending stiffness (EI = 100) of the pile and varying the dimensionless stiffness parameter βw. 

Figure 8 presents the numerical results in terms of the equilibrium paths for different numbers 

of semi-waves considering the dimensionless stiffness parameter βw of 16 and 48. The numerical 

results are in a good agreement with those presented by Brush and Almroth (1975). 

 

 

Number of finite 

elements 

Elastic base model 

   Discrete springs W inkler model 

P cr Error (% ) P cr Error (% ) 

4 41.96 35.26 64.67 0.21 

6 65.48 1.04 69.03 6.51 

8 64.57 0.37 64.55 0.40 

10 64.56 0.38 64.68 0.20 

20 64.63 0.28 64.69 0.18 

 

Table 1: Pile critical load: influence of the discretization. 
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Figure 7: Nonlinear equilibrium paths of pile - discrete and continuum models. 

 

 

Table 2 presents the results in terms of pile critical load and mode. It can be observed that for 

w = 16, the critical mode obtained was n = 2 and the critical load was Pcr = 78.51. For w = 48, 

the critical mode obtained was n = 3 and the critical load Pcr = 141.41. These results show how 

important initial imperfections and their shapes are regarding stability analysis of piles under 

contact constraints.  

 
Semi-wave number w = 16 Error (% ) w = 48 Error (% ) 

1 167.11 0.49% 480.47 1.15% 

2 78.51 0.61% 157.68 0.54% 

3 107.03 0.60% 141.41 0.23% 

4 167.39 0.24% 188 0.17% 

 

Table 2: Pile critical load and mode. 
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(a) n = 1 (b) n = 2 

  

(c) n = 3 (d) n = 4 

 

Figure 8: Nonlinear equilibrium paths of pile – Winkler type foundation. 

 
5.3 Piles under Contact Constraint Imposed by a Pasternak Type Foundation 

Finite element solutions of piles, with different end conditions, and under bilateral contact con-

straints of the Pasternak type (Figure 9) were initially presented by Naidu and Rao (1995). Kien 

(2004) and Shen (2011) also presented the buckling loads for the particular case of the pinned pile 

with bilateral constraints imposed by Winkler- and Pasternak-type foundations.  

These references are then used to validate the stability analyses carried out using the proposed 

numerical methodology, where for all piles the following were considered: 20 finite elements, 
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L = 31.4, EI = 10, and the dimensionless stiffness parameters of elastic base 1 = kL4/(EI) and 

2 = kGL2/(2EI).  

The nonlinear equilibrium paths for these analyses are presented in Figs. 8a-c, in terms of the 

dimensionless pile load  (= PL2/EI) considering four combinations of dimensionless parameters 

1 and 2: (1 = 1; 2 = 0); (1 = 100; 2 = 0); (1 = 100; 2 = 0.5); and (1 = 100; 2 = 2.5). The 

figures reveal the good agreement between the results obtained in this article with those of litera-

ture. Tables 3-5 present the dimensionless pile critical load cr for different combination of the 1 

and 2 stiffness parameter, different end conditions, and different authors. 

For the combination of 1 and 2: (0; 0), which represents the classical column stability prob-

lems (without contact constraints), note (Table 3-5) that the values obtained for the dimension-

less critical load cr through the present work, as well as in the literature, are quite close to those 

of the analytical solution for the three columns, namely: 2.4674, 9.8696, and 39.4784. 

For the 2 parameter equaling zero, combinations (1; 0) and (100; 0), the Pasternak models are 

reduced to Winker models. In this situation, for pinned pile, Brush and Almoth (1975) obtained 

the following values of the dimensionless critical load, cr: 9.9681 and 20.0051. The values found 

through the present work for cr show good agreement with those from the literature. 

For the elastic foundation represented by the Pasternak model and combination 1 and 2, 

(100; 2.5), the following values of the ratio cr (Pasternak)/ cr (without contact) were obtained 

for the three piles: 14.8, 4.5, and 1.8. Thus, the fixed-free pile was more sensitive to additional 

stiffness provided by the Pasternak elastic foundation. Good agreement can also be observed be-

tween the results of the present paper and those found in the literature. 

 
6 CONCLUSIONS 

This article evaluated the equilibrium and stability of piles under bilateral contact constraints 

imposed by a geological medium. The numerical strategy proposed for solving the geometric non-

linear problem was based on the finite element method and the Newton-Raphson method and the 

generalized displacement approach. The examples presented above validate the computational 

implementations. 

Basically, the nonlinear analyses carried out had as objectives: to evaluate the critical load of 

piles with a discrete elastic intermediate support; to evaluate the imperfection (unstable modes) 

influence in the assessment of piles critical loads in contact with a Winkler-type foundation; and 

verify the influence on the stiffness system when considering the elastic base second parameter, 

i.e., by adopting the Pasternak model in representation of the soil. The nonlinear results present-

ed have made it possible to establish some general conclusions that are summarized below: 
 

i. the higher the pile’s critical buckling load—in which sideways movement is constrained by a 

single elastic spring support—the higher the value of elastic spring stiffness that acts as a rigid 

support and, consequently, the geometric condition, specific to each case, changes the buckling 

mode; 
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(a) Fixed-free pile. 

 

 
 

(b) Pinned pile. 

 

 
 

(c) Fixed pile. 

 

Figure 9: Nonlinear equilibrium paths - Pasternak-type foundation. 
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(1; 2) Naidu and Rao (1995) Present work 

(0; 0) 2.4674 2.4629 

(1; 0) 2.6499 2.6450 

(100; 0) 11.996 11.972 

(100; 0.5) 16.931 16.891 

(100; 2.5) 36.670 36.569 

 

Table 3 Fixed-free pile: dimensionless critical load cr. 

 

 

(1; 2) Kien (2004) Naidu and Rao (1995) Shen (2011) Present work 

(0; 0) 9.9023 9.8696 9.8696 9.8556 

(1; 0) 10.0034 9.9709 9.9709 9.9566 

(100; 0) 20.0095 20.002 20.0017 19.950 

(100; 0.5) 24.9331 24.937 24.9365 24.8787 

(100; 2.5) 44.4883 44.676 44.6757 44.5922 

 

Table 4 Pinned pile: dimensionless critical load cr. 

 

 

(1; 2) Naidu and Rao (1995) Present work 

(0; 0) 39.479 39.374 

(1; 0) 39.555 39.449 

(100; 0) 47.007 46.887 

(100; 0.5) 51.492 51.804 

(100; 2.5) 71.681 71.471 

 

Table 5 Fixed pile: dimensionless critical load cr. 

 

ii. to analyze the pile’s instability with continuum bilateral contact constraint imposed by an 

elastic foundation, initial imperfections, together with the mathematical model used to represent 

the foundation, has great influence in determining the pile’s critical load; 

iii. the numerical formulation presented in this work was able to define with precision the pile’s 

critical load as well as the post-critical response; 

iv. when adopting the Pasternak model to represent the soil, the higher the pile’s critical buckling 

load, the smaller the influence of the model’s second parameter. 
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