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An isotropic damage model to simulate collapse 
in reinforced concrete elements 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 INTRODUCTION 

The simulation of structures in their evolution to collapse is an interesting topic in engineering to 
know the remaining capacity of a structure after reaching the ultimate load, which is dependent on 
the constitutive behaviour of their construction materials. After concrete reaches its ultimate load, 
it presents a reduction of its load-carrying capacity, so the stresses decreases while the strains in-
creases; this behaviour is typically called strains softening. 
 The continuum damage mechanics can be used for modelling concrete failure, one of the pioneers 
of damage mechanics theory was Kachanov (1958), who introduced the fundamental concepts of the 
continuous damage mechanics, i.e., effective strain, effective stress and scalar damage variable. 
There are many local damage models based on the damage framework such as: isotropic damage 
models (Kachanov 1958, Krajcinovic 1984, 1985, Lemaitre 1986, Simo and Ju 1987a, Lubliner et al. 
1989, Mazars and Pijaudier-Cabot 1989, Lubarda et al. 1994, Faria et al. 1998, Lee and Fenves 
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Abstract 
A damage model with different failure surface in tension and 
compression is formulated, implemented and validated to study 
reinforced concrete elements under actions which induce their 
collapse. The constitutive behaviour of concrete considers the 
softening deformation after reaching a failure surface, whereas the 
hardening of the reinforcing steel is represented by a plasticity 
von Mises surface. The developed damage model does not exhibit 
the problem of stress locking as the smeared cracking model does; 
this guaranties an adequate energy release as the material fails. 
Numerical examples are presented showing the validity of the 
developed damage model for modelling the behaviour of rein-
forced concrete elements up to their collapse. 
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1998, Comi 2001, Jason et al. 2006, Contrafatto and Cuomo 2006, Wu et al. 2006 and Gopinath et 
al. 2012); anisotropic damage models (Dragon and Mroz 1979, Cordebois and Sidoroff 1979, Krajci-
novic and Fonseka 1981, Ortiz 1985, Simo and Ju 1987a, b, Ju 1989, 1990, Voyiadjis and Abu-
Lebdeh 1994, Govindjee et al. 1995, Halm and Dragon 1996, Fichant et al. 1999, Lemaitre et al. 
2000, Carol et al. 2001 and Cicekli et al. 2007). 
It is well kwon that local continuum damage models lead to a physically unrealistic description of 
the strain localization phenomenon. When the tangent stiffness matrix is not positive definite, the 
governing differential equations may lose ellipticity, which renders the boundary value problem ill 
posed (Needleman 1988, Jirásek 1998). In finite elements computations spurious mesh sensitivity 
problems occur, strain localizes into a narrow band whose width depends on the element size, the 
corresponding load-displacement curve always shows snapback for a fine mesh and the dissipate 
fracture energy converges to zero. To overcome the shortcomings of local theories for modelling 
strain softening, some alternatives have been proposed such as: non-local modelling of the constitu-
tive behaviour (Costa Mattos et al. 1992, Costa Mattos and Sampaio 1995, Da Costa Mattos et al. 
2009), gradient material description (Triantafylidis and Aifantis 1986, Peerlings et al. 1996), mi-
cropolar continuum theory (de Borst 1991, Steinmann 1995), viscous regularization (de Borst and 
Mühlhaus 1992) and local manipulations of the material properties depending on the element size 
(Bazant and Oh 1983, Crisfield 1986, Oliver 1989). Recently, Da Costa-Mattos et al. (2009) pro-
posed a special gradient-enhanced damage theory in which the material is considered to possess a 
substructure or microstructure, where the free energy is supposed to depend not only on the strain 
and the damage variable but also on the damage gradient. 
 If the concrete is modelled with the finite element method and local damage models, the damage 
of a cracking surface is distributed into the material volume of a finite element, which is incon-
sistent with the fracture energy dissipated per unit of area and per unit of volume. This disagree-
ment is overcome with a characteristic length such as the proposed one by Bazant and Oh (1983), 
who used a thickness of the cracking band, depending on the element area and on the propagation 
direction; Crisfield (1986) proposed a characteristic length defined by the Jacobian in each integra-
tion point; and Oliver (1989) developed a general method for computing the characteristic length 
depending on the element size and the elastic stress state.  
 The Software Ansys 12.0 uses a damage surface for concrete with different threshold values un-
der tension and compression, coherent with the behaviour reported in laboratory test such as Kup-
fer and Gerstle (1973). However, this model has as a drawback that fracture energy has a fixed 
value, which is not possible to modify, so the results are dependent on that fixed energy fracture. 
Also, Ansys only considers linear softening curve, even though there are other curves with a better 
approximation such as bilinear, trilinear and exponential. Alternatively, the Software Diana 9.0 uses 
the smear cracking model for concrete (Rashid 1968, Rots 1988), in which is possible to assign the 
value of the fracture energy density. Nevertheless, this model has problems of mesh dependency, 
stress locking and spurious kinematic modes. 
 In the attempt to simulate material failure by mesh independent models, Hillerborg et al. (1976) 
developed the discrete crack model, where a previous stress analysis must be performed to a priori 
localize the strain concentration zones, where interfaces are placed on the boundaries of the ele-
ments, bringing about that the results are mesh dependent. Another alternative to simulate materi-
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al failure is the strain localization model (Simo et al. 1993, Oliver 1996a, 1996b, Armero and 
Garikipati 1996, Juárez and Ayala 2009, Juárez-Luna and Ayala 2014), which considers that only 
one discontinuity (crack) may propagate into a finite element, so in the case that multi cracks ap-
pears, the computational cost of their propagation is high. 
 For the aforementioned reasons, this paper promotes the use of continuous damage models, 
which do not need computational costly tracking algorithms. A continuous damage model is devel-
oped and implemented to simulate the constitutive behaviour of the concrete in its evolution to 
collapse. This damage model, called different tension-compression (DTC), has a failure surface with 
the corresponding threshold values in tension and compression of the concrete. Additionally, in this 
model, it is possible to assign the density energy magnitude and it does not have the problems re-
ported by Rots (1988). 
 The proposed DTC damage model uses the failure surface proposed by Oliver et al. (1990). Nev-
ertheless, the tangent constitutive tensor is different to the one developed by Linero (2006). The 
DTC damage model was implemented into the subroutines of the Finite Element Analysis Program 
(FEAP) (Taylor 2008), then it was validated with the numerical reproduction of numerical exam-
ples and experimental reinforce concrete tests reported in the literature. It is important to mention 
that in this paper, the material failure is represented by a isotropic damage variable, which repre-
sents the degradation level, so the material degradation into the finite element analyses is presented 
as localization zones where important displacements occurs, but not as physical discontinuities 
(cracks). 

 
 

2 DAMAGE MODEL FORMULATIONS 

2.1 Equal tension-compression 

The isotropic continuum damage model by Simo and Ju (1987a) and Oliver et al. (2002) with a 
failure surface equal tension-compression (ETC) is shown in  
Figure 1 for 1D and 2D problems, where the ultimate tensile and compressive strength, σut, and, σuc, 
respectively, have the same magnitude. This model, typically used to simulate the constitutive be-
haviour of some metals, is defined by the following equations: 
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where Ψ is the free energy density, ε is the strain tensor, σ is the stress tensor and C is the elastic 
tensor. The damage variable, d, is defined in terms of hardening/softening variable q, which is de-
pendent on the hardening/softening parameter, H. The damage multiplier γ determine the loading-
unloading condition, the function, f(τσ,q), bounds the elastic domain defining the damage surface in 
the stress space. The value, ro, is the threshold that determines the limit of the initial elastic do-
main, i.e, q=ro. In this ETC damage surface, any stress state is transformed to a norm, bounded by 
ro, where every stress state outside of this circle is inelastic as shown in  
Figure 2. 
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Figure 1: ITC model: a) 1D behaviour and b) 2D failure surface. 
 
 
 




2

q

 q

 q

Elastic

ut

ut



uc El
as
ti
c

1

C  
Elastic

r 0 

ut

‐1



0

r 0 

ut

 
 

Figure 2: Transformation of the stress state to a norm. 

 
The tangent constitutive equation, in terms of rates, from the model in Eq. (1) is: 
 
 :T   C  (2) 

Where CT is the continuum tangent constitutive operator, relating the stress and the strains rates, 
of the nonlinear loading interval, which is defined by 
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and for the elastic loading and unloading interval( 0d  ): 
 
 ( )C C 1T d-   (4) 

 
2.2 Different tension-compression 

The formulation of the damage model with failure surface DTC is based on the ETC damage mod-
el. The main difference of this model is the definition of the norm, which is modified for a parame-
ter proposed by Lubliner et al. (1989). It is well known that concrete has a ratio between the com-
pression and tension strength of 10 to 20, i.e., n=σuc/σut, as shown in Figure 3. To have a failure 
surface with that characteristic, the norm given in Eq. (1)e, is modified by the parameter χ, then 
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 Also, the tangent constitutive tensor, CT, for the nonlinear interval is: 
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Figure 3: Constitutive behaviour of plain concrete: a) 1D and b) 2D 

 
 The parameter   in Eqs. (5) 
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 where ϕ a is weight factor, depending on the principal stresses, σi, given by: 
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Where the Maclauy 〈〉 operator and the symbol || consider, respectively, the positive and the abso-
lute magnitudes of the principal stresses. The interval of ϕ is [0,1], bounded by 0 for a triaxial com-
pression (σ3 ≤ σ2 ≤ σ1 ≤ 0) and 1 for triaxial tension (0 ≤ σ3 ≤ σ2 ≤ σ1). Consequently, the corresponding 
interval of χ is [1/n,1], bounded by 1/n for a triaxial compresion and 1 for triaxial tension. 
 The parameter χ scales down 1/n times the norm, as shown in Figure 4, in such a way it is com-

pared with the elastic interval [0,ro]. The value of ro=σut/  depends on the threshold value of σut 
and the Young's modulus E. Note that the initial elastic interval is the same for 1D, 2D and 3D 
problems, all with a limit point ro, and that for a 2D principal stress state, the parameter χ takes 
the value of 1 in the firts quadrant, 1/n in the third quadrant and the interval [1/n,1] in the second 
and fourth quadrants. 
The algorithm to implement the DTC damage model is as follows: 
 
1. Initial data 

 

  Material properties: n, Gf, σut, 
  Current values: εt+1, dt+1, rt+1 

 

2. Evaluate the effective stresses and norm 
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3. Identification of state (if t=0, then 0 /utr E  ): 

a) If τt+1 <rt, the elastic/unload/neutral load case, then 
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b) If τt+1>rt, the load case, then 
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4. Output values: rt, CT and σt+1. 
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Figure 4: Transformation of the stresses to a norm. 

 
Note that if the value of χ=1 in the norm and in the tangent constitutive tensor, the ETC continu-
ous damage model is recovered. An equivalent way of evaluate the damage criterion is proposed, 
modifying the threshold value of ro in the limit point for the value of rom=ro/χ. With this modifica-
tion, in a 2D principal stress state, the value of ro is scaled up 1 time in the first quadrant, n times 
in the third quadrant and 1 to n times in the second and fourth quadrants, as shown in Figure 5. 
Then, the algorithm for the ETC continuous damage needs only a modification in the threshold 
value of ro. Both ways of the DTC continuous damage model were implemented in the user routines 
of FEAP, having the same results. 
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Figure 5: Transformation of the stresses to a norm with a modified r0. 

 

3   NUMERICAL EXAMPLES 

In the three presented examples, the reinforcement was meshed with 3D linear elements with two 
nodes equipped with three degrees of freedom. The constitutive behaviour of the steel reinforcement 
was modelled with a plasticity surface of von Mises. The steel elements were placed on the bounda-
ry of the solid elements, coupling the degree of freedom of both kinds of elements and then perfect 
bond was considered. This DTC damage model was validated for plain concrete elements in Mén-
dez-Martínez and Juárez-Luna (2012). 

 

3.1 Lightly reinforced concrete beam 

In this example, a simple supported concrete beam is analysed, the dimensions of the reinforcement 
and boundary conditions are shown in Figure 6. A load is applied at the centre of the span by dis-
placement control, which is gradually imposed downwards. The mechanical properties of the con-
crete are: Young's modulus, Ec=24132 MPa, Poisson ratio ν=0.2, ultimate tensile strength com-
pressive σtu=2.41 MPa, ultimate compressive strength σcu=33.23 MPa and fracture energy density 
Gf=0.263 N/mm. The mechanical properties of the steel reinforcement are: Young's modulus, 
Es=203.4 GPa, yield stress σy=324 MPa, Poisson ratio ν=0.3, area A=5.07 cm2, hardening modulus 
H=6.9 GPa and strain at which tensile strength is achieved 10%. 
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Figure 6: Geometry and reinforcement. 
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The beam was meshed with hexahedral elements as shown in Figure 7a, where only a quarter of the 
beam was modelled because of its symmetry, reducing the time consuming of the computational 
cost. As can be seen, the failure started into the finite elements placed around the centre on the 
span, at the bottom of the beam as shown in Figure 7b, which is coherent with the experimental 
results reported by Burns and Seiss (1962). The load vs. displacement curves at the centre of the 
span are shown in Figure 8, where the curve computed with the DTC damage model is acceptable 
with the curve reported by Burns and Seiss (1962), showing the validity of the implemented DTC 
damage model to simulate reinforced concrete elements. 
 

 

        
 

(a) 
 

(b) 

Figure 7: Mesh: a) undeformed and b) deformed 
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Figure 8: Load vs. displacement curves. 

 
 

3.2 Reinforced concrete circular slab 

In this example, a reinforced concrete slab with circular shape was studied, in which a distributed 
uniform load is gradually applied downwards. Two boundary conditions were considered at the 
border of the slab, simple supported and fixed. The geometry and reinforcement of the slab with 
thickness of 0.10 m are shown in  
Figure 9. The mechanical properties of the concrete are: Young's modulus Ec=14710 MPa, Poisson 
ratio ν=0.2, ultimate tensile strength σtu=2.45 MPa, ultimate compressive strength σcu=29.42 M Pa 
fracture energy density Gf=0.098 N/mm. The mechanical properties of the steel reinforcement are: 
Young's modulus Es=196.13 MPa, yield stress σy=411.88 MPa, Poisson ratio ν=0.3, area A=0.71 
cm2 and hardening modulus H=2.871 GPa. 

Axis of 
symmetry 
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symmetry 



G. Juárez-Luna et al. / An isotropic damage model to simulate collapse in reinforced concrete elements      2453 

Latin American Journal of Solids and Structures 11 (2014) 2444-2459 
 

 

x

y

Axis of symmetry

A
xi

s 
of

 s
ym

m
et

ry

400

200 200

Measuring in cm

#3 @ 20

a) b)

 
 

Figure 9: Circular slab: a) geometry and b) reinforcement. 

 

As the previous example, the two axes or symmetry were considered, so only a quarter of the slab 
was modelled with hexahedral elements, as shown in Figure 10a, to reduce the time consuming of 
the computational calculation. The undeformed meshes are shown in Figure 10b and c, for the sim-
ple supported and fixed at the border of the slab, respectively. 
 The load vs. displacements curves are shown in Figure 11a and b for simple supported and fixed 
conditions, respectively. These curves are compared with those reported by Caballero (2012), com-
puted by a smear crack model in the Software ANSYS. As can be seen, both computed curves are 
coherent with those simulated with a smear crack model. 
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(b) 

 
(c) 

Figure 10: Mesh: a) circular slab, b) simple supported and c) fixed. 
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Figure 11: Load vs. displacement curves at the circular slab: a) simple supported and b) fixed. 
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3.3 Reinforced concrete deep beam 

In this example, a reinforced concreted deep beam (l/h=1) is analysed, where a distributed uniformed load, with 
magnitude q=0.0078125P, is gradually applied downwards on the top of the beam shown in Figure 12a. The me-
chanical properties of the concrete are: Young's modulus Ec=31400 MPa, Poisson ratio ν=0.2, ultimate tensile 
strength σtu=2.5 MPa, ultimate compressive strength σtu=29.63 MPa and fracture energy density Gf=0.098 N/mm. 
The mechanical properties of the steel reinforcement are: Young's modulus Es=206 GPa, yield stress σy=536.6 MPa, 
Poisson ratio ν=0.3, area of the principal reinforcement bars A1=0.503 cm2 and the secondary reinforcement bars 
A2=0.178 cm2 and hardening modulus H=2.871 GPa. The distribution of the reinforcement is shown in Figure 12b. 
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Figure 12: Deep beam: a) geometry and b) reinforcement. 

 

In this example, an elastoplastic constitutive model was assigned to the steel as Leonhardt and 
Walther (1966) did. Taking advantage of the symmetry, only a quarter of the beam was modelled 
to reduce the time consuming computational cost. Figure 13 shows the 3D mesh, discretized with 
hexahedral elements. 
 

 
 

(a) 

 
 

(b) 

Figure 13: Mesh: a) undeformed and b) deformed. 

 

Figure 14 shows a comparative between the computed load-displacement curve and the experi-
mental curve reported by Leonhardt and Walther (1966). It is observed that the numerical results 
are congruent whit the experimental results. 
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Figure 14: Load vs. displacement curves. 

 

4  CONCLUSIONS 

A damage model to simulate concrete elements to collapse was developed, implemented and vali-
dated, based on the damage mechanics continuous theory. The damage model considers a constitu-
tive behaviour equipped with softening for the concrete elements limited for a damage surface, 
whereas for the reinforced concreted elements, a plasticity model was assigned to the reinforcement, 
which take into account the hardening of the steel with a Von Mises surface. 
 A DTC damage surface for concrete is obtained by scaling down the norm and the tangent 
modulus with the parameter χ, but it is equivalent by scaling up the threshold value of ro. In both 
cases, the integration algorithm of the ETC damage model needs two and one modification, respec-
tively, to have a surface with different threshold values in tension and compression. 
 The global behaviour of reinforced concrete elements is controlled by the hardening of the rein-
forcement steel. Their simulation with damage models for concrete and plasticity model for the steel 
provides the cracking zones, the crack paths and the ultimate load of the specimen. 
 The numerical results computed with the DTC damage model are coherent with the experi-
mental and numerical results reported in the scientific literature, since it properly simulates the 
strain softening of the concrete and localizes the degradation zones. 
 To consider perfect bond between steel reinforcement and concrete does not show evident effects 
in the presented numerical examples. 
 It is useful over some commercial software that it is possible to assign the fracture energy densi-
ty value in the implemented damage model, because the numerical results are dependent on this 
value. 
 The implemented damage model did not show the stress locking problem, a fact that guaranties 
a suitable simulation of the plain and reinforced concrete elements in their evolution to collapse. 
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