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Linear analysis of axis-symmetric plates and shells by the generalized
Finite Element Method

Oscar Alfredo Garcia and Sergio Persival Baroncini Proença∗

Structural Engineering Department, School of Engineering at São Carlos
University of São Paulo, SP – Brazil

Abstract

This paper is aimed at proving the ability of generalized finite element approximation
spaces in dealing with axis-symmetric plate and shells problems. The GFEM is implemented
using a degenerated shell element mesh [1] specialized for the axisymmetric case. The first
order kinematic model of Reissner-Mindlin is adopted. Both h and hp-adaptivity are explored
in the examples. The locking issue is analyzed through circular plate and revolution shell
bending problems. The ability to approximate strong gradients in boundary layers is also
shown by cylindrical revolution shell example. The enrichment over a cubic partition of unity
is finally explored in order to reproduce smooth distributions of internal moments and shear
forces.
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1 Introduction

The search for alternative approaches that provide a solution to problems of mechanics with re-
duced computational work has motivated an increasing interest for the so-called non-conventional
numerical methods. In particular, much effort has been directed to the development of methods
which ease the construction of more flexible approximation spaces involving a relatively small
number of degrees of freedom and capable of addressing situations comprising highly localized
gradients for unknown functions.

Spaces with the characteristics described above can be obtained by numerical techniques
that dispend meshing (‘meshless’) such as: ‘Multiquadric’ ( [7]); ‘Reproducing Kernel Particle
Method’ (RKPM) [11]; ‘Element Free Galerkin’ (EFG) [3]; ‘hp-Clouds’ [5]; ‘The Partition of
Unity Finite Element Method’ (PUFEM) [12], among others.

The Generalized Finite Element Method, GFEM, had its origin, simultaneously, from the
hp-Clouds and the (PUFEM), by combining the ease of imposing essentials boundary conditions
characteristic of FEM with the advantages offered by meshless methods. One such outstanding
advantage is the possibility of defining the enrichment functions in the real domain of the problem
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thus avoiding the inconveniences caused by mesh distortion. The approach resulting from this
combination can be defined as a generalization of the h, p and hp versions of conventional FEM.

The GFEM was first presented with this denomination and its mathematical formulation
formally accessed in the work of (Duarte, Babuska and Oden, [4]). Despite its surprising per-
formance in solving a wide range of problems of computational mechanics, the use of GFEM to
the analysis of shell structures faces limitations. This is due mainly to limitations of its struc-
ture originating from the inexistence of an adequate systematic approach in the construction
of approximation spaces when considering curved domains and a loss of competitiveness with
respect to the p version of FEM for reasons that it demands high processing time.

On the other hand, the structural analysis of shell structures using the GFEM should main-
tain similarities to approaches employing methods without mesh. Because of this and also given
the reduced number of research works on the application of GFEM to shell structures, a brief
bibliographical revision covering shell analysis by meshless methods is here presented.

The first prominent contribution is given by (Krysl and Belytschko, [9]), in which thin shell
structures are modeled using the moving least squares method (MLSM) to approximate the
geometry and (EFG) to construct the approximation space. Another proposal is presented
in the work of (Li et alli, [10]) which uses a meshless method (3D-RKPM) in modeling large
deformations in thin shells. (Liew, Ng, Zhao and Reddy, [14]) and (Zhao, Ng and Liew, [17])
use a mixed method to process dynamic analyses of cylindrical shell. In their procedure, they
combine a known solution in the direction tangent to the parallel and RKPM in the meridian
direction.

The present work addresses the application of the GFEM in the analysis of plates and
shells. The treatment presented is however, limited to the case of axis-symmetric configurations
in structural geometry and loading. When focusing on low cost computational analysis, this
modeling approach furnishes an easy means of evaluating the advantages offered by the GFEM.
In this way, a versatile systematic is particularly adopted in constructing the enrichment of the
approximation space in axis-symmetric curved domains. Essentially, the enrichment is carried
out directly on the arch which defines the geometry of the solid represented in a parameterized
domain.

In spite of the simplification derived from axis-symmetry, the approach tries to include shear
deformation by using the first order Reissner-Mindlin kinematic model. The shell geometry is
described by clouds defined from a mesh of axis-symmetric elements. These elements are derived
from degenerated solid element concept proposed by Ahmad et al., [1]. The selected numerical
examples underline the capacity of the GFEM both in overcoming the locking phenomena and
in efficiently solving problems whose solutions present strongly localized gradients.

The content of the present text addresses the following topics: a brief description of the
basic mathematical aspects of constructing approximation spaces on a parametric domain using
the GFEM; the axis-symmetric solid element used to define clouds and the partition of unity;
numerical examples and conclusions.
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2 The aproximation space according to the GFEM

The generalized finite element method is based on methodologies in which the approximation
space is constructed by enrichment of the partition of unity, that is, by its product with functions
of a local approximation space.

The partition of unity is composed of functions ϕα defined on local supports or clouds ωα,
as illustrated in figure 1 for the one-dimensional case. On the other hand, functions within the
local approximation space can be combinations of bases polynomials or space functions having
characteristics of the solution itself when known.
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 Figure 1: Partition of unity {φα (x)}N
α=1 on an open covering {ωα}N

α=1.

Let, then {ωα}N
α=1 be an open covering of the domain Ω, N being the number of clouds

which comprises it and Ω̄ ⊂ {ωα}N
α=1 the closure of Ω. Still, let {φα}N

α=1 be a Lipschitz (Melenk
and Babuska [12]) type partition of the unity subordinate to the covering (Figure 1). With the
support defined in each sub-domain ωα, the space Qα assembles functions with good charac-
teristics of local approximation and can be used to enrich the partition of unity. The set that
assembles the local enriched approximations is then given by:

F p
N = {{φαQα} : 1 ≤ α ≤ N} ; (1)

The local spaces Qα are in general constructed using base polynomials due mainly to their
good efficiency in approximation and the ease of application to a wide variety of boundary value
problems. To better characterize the use of polynomial bases in the local approximation space,
hence to distinguish it from other possible polynomial bases, it become necessary to use the
representation Qp

α, where p denotes the maximum degree of the polynomial bases used in the
approximation. Formally such a space can be indicated in the form:

Qp
α = {Liα (x̄) : 0 ≤ i ≤ p} . (2)

In (2), Liα(.) is a set of polynomial bases which includes unity (Loα(x̄) = 1) and x̄ is a defined
coordinate on the local support. More specifically, the abscissa x̄ is referenced to the base node
or local origin of the cloud ωα, as indicated in Fig. 2. Such an abscissa can be obtained by a

Latin American Journal of Solids and Structures 4 (2007)



124 Oscar Alfredo Garcia and Sergio Persival Baroncini Proença

simple coordinate translation process given by:

x̄ = x− xα (3)

where x is the position of the point on the cloud ωα and xα the corresponding position of the
base node, both measured in global coordinates.

The set F p
N which assembles all enrichments linked to each cloud, on the other hand, becomes:

F p
N = {{φαQp

α} : 1 ≤ α ≤ N} , (4)

Considering that the most simple partition of unity is composed of functions linear by parts,
the dimension of the enriched local space generated by Qp

α is given by dim(span {Qp
α}) = p + 1.

Those spaces obtained in this way always contain complete polynomials, that is, they show the
property: P ⊂ F p, where P is the set of complete polynomials of degree g ≤ p+1 (Theorem 3.4 )
(Duarte and Oden, [5]). The global approximation constructed using the partition of unity to
paste together the local approximations inherits the properties of these approximations inside
each cloud but with continuity given by the partition of unity (Theorem 3.2 ) (Melenk and
Babuska, [12]).

The convergence of the numerical to the exact solution can be attained by refinement h,
p and hp. Besides, whenever convenient, it is possible to explore the construction of optimum
local spaces obtained by including special functions in Qα.

On the other hand, it may be convenient to work with enrichment functions in (ω̂α) clouds
defined on normalized domains as:

ω̂α = {ξ ∈ R : |ξ|R ≤ 1} ; (5)

The domain ω̂α is obtained by normalizing the abscissa x̄ in relationship to a characteristic
dimension, hα as illustrated by Fig. 2. Such normalization is obtained formally from mapping
C−1

α : x̄ → ξ such that:

ξ =
x̄

hα
. (6)

From where it is deduced that: x̄ = hαξ.
In that way, the set of functions Liα (x̄) and its gradient ∇x̄Liα (x̄) in the normalized domain

are now defined by the expressions:

Liα (x̄) = L̂i (ξ) ◦ C−1
α (x̄); (7)

∇x̄Liα (x̄) =
1
hα
∇ξL̂i (ξ) . (8)
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Figure 2: Local coordinate x̄ from a x relative to a cloud α.

3 The local approximation space in the parameterized curved domain

The methodology adopted here permits the construction of approximations on curved physical
domains described in an exact parametric manner when the equation of the curve is known
or in an approximate form when the description is obtained by numerical techniques such as
interpolation, minima least squares, etc.

Since the solids to be described are axis-symmetric, for convenience a system of cylindrical
coordinates is adopted to represent a curve in the physical domain. Thus, the representation of
the geometry will be made using curves contained in the (r-z) plane associated to the cylindrical
coordinates system and positioned at an arbitrary angle θ relative to the axis X of the global
reference in R3, (as shown by Fig. 3).

What follow is a detail of the proposed methodology and a description of guidelines for
the construction of enriched approximate functions. The basic idea of this procedure consists
therefore, in constructing local approximations enriched directly on the parameterized physical
domain. Concisely, a mapping composition that relates the natural domain (Ωe) where the
partition of unity is defined to a parameterized one-dimensional domain (Σ) and from this onto
the physical domain of the problem is used.

The first mapping establishes then a relationship between points of a standard domain Ωe

(lineal, quadratic, cubic, etc.) on which natural coordinates are defined and points of a sub-
domain in Σ (v.Fig. 3(b)). Formally we write:

C1 (η) : Ωe → x ∈ {x ∈ R/xi−1 ≤ x ≤ xi+1} (9)

with Ωe = {η ∈ R/− 1 ≤ η ≤ 1}.
By definition, the function that accomplishes such a mapping constitutes, still, an iso-

morphism in Ωe → {x ∈ R/xi−1 ≤ x ≤ xi+1} since for each η ∈ Ωethere is only one x ∈
{x ∈ R/xi−1 ≤ x ≤ xi+1}. Besides, given ηi 6= ηi+1 ⇒ C1 (ηi) 6= C1 (ηi+1). Later this prop-
erty is also assumed to the second mapping, implying that the curves of the physical domain
must be capable of being developed.
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The mapping function C1 (η) : Ωe → {x ∈ R/xi−1 ≤ xi ≤ xi+1} can be composed of la-
grangian polynomial functions defined in Ωe. For the case of the mapping of quadratic functions
for instance, a curve in Σ is constructed by interpolation of nodal values so that any position in
that domain is determined by:

x =
3∑

i=1

Ni (η)xi, i=1,...,3. (10)

In (10), Ni (η) are the classic quadratic functions of approximation associated to the natural
domain:

N1 (η) = −1
2
η(1− η)

N2 (η) = 1− η2 (11)

N3 (η) =
1
2
η (1 + η)

Let C (x) : Σ → R3, with Σ = {x ∈ R/xo ≤ x ≤ xf} then be a mapping that defines a
curve in R3 from a one-dimensional parametric domain which may be linear, quadratic, cubic,
etc. Such a mapping therefore, relates each coordinate x ∈ Σ to points on a plane curve whose
cylindrical coordinates constitute components of the position vector X (r, z, θ) ∈ R3, (v. Fig.
3b). It is admitted that the mapping is sufficiently regular in such a way that it generates a
smooth curve.

For the specific case of a circumference arch, x ∈ Σ =
{
x ∈ R/0 ≤ x ≤ π

2

}
can be defined

and C (x) characterized parametrically by the following description of the vector components in
cylindrical coordinates (for a fixed value of θ):

r (x) = R cos(x); (12)

z (x) = R sin(x). (13)

An interpretation of these relationships is shown in figure 3(a).
In particular certain points can be identified on the physical domain in correspondence to

positions xi ∈ Σ, such that:
ri = R cos(xi) (14)

zi = R sin(xi) (15)

More still, considering the case of the circumference arch as example and employing the
mapping composition, the vector, X (r, z, θ) ∈ R3 can be made to correspond directly to a
certain position η ∈ Ωe as shown below.

Initially, consider the vector X (r, z, θ) written as a linear combination of the unit vector
ir(θ) and k constituting the base of a cylindrical system (v.Fig. 3):

X (r, z, θ) = r (x) ir (θ) + z (x) k; (16)
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Figure 3: (a) Circumference curve in polar coordinates; (b) mapping of functions C1(η) : Σe → x

and C(x) : Σ → R3.

The components r (x) and z (x) given in (12) and (13) can be expressed as a mapping function
of the standard three-node domain Ωe for instance. In that case, with the aid of the (10) we
have:

r (x) =
3∑

i=1

Ni (η) ri; (17)

z (x) =
3∑

i=1

Ni (η) zi; (18)

In that way, (16) can be translated in terms of the functions Ni (η) (for a fixed value of θ)
as:

X (η, θ) =

[
3∑

i=1

Ni (η) ri

]
ir (θ) +

[
3∑

i=1

Ni (η) zi

]
k (19)

Once the geometry is defined, the enriched local approximation space can then be indepen-
dently constructed on the one-dimensional parametric domain, Σ and later mapped onto the
physical domain. This construction can be carried out over clouds defined by nodes occupying
global positions x on the parametric domain Σ.

In order to take advantage of the benefits offered by non-dimensional coordinates a trans-
formation of the parametric coordinates, x is initially carried out on each cloud. As presented
in the previous section, such a transformation consists of translation relative to a local origin
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defined in the base node of the cloud followed by normalization relative to the characteristic
dimension, hα as given by relationships (3) and (6).

 

Figure 4: Approximation functions corresponding to cloud α.

In summary, the construction of the enriched local approximation space associated to the
cloud α shown in Fig. 4 obeys the following sequence of operations:

a) The normalization of the x ∈ Σ coordinate relative to the cloud local system characterized
by: x ∈ {x ∈ R/xα−1 ≤ x ≤ xα+1}. The normalized coordinate ξ then results from:

ξ =
x− xα

hα
; (20)

In expression (20), hα is the larger of the distances obtained from |xα−1 − xα| and|xα+1 − xα|.
b) The construction of the base for local enrichment and its derivative corresponding to the

cloud α. For example:
{L2 (ξ)}α =

{
1, ξ, ξ2

}
; (21)

{
dL2 (ξ)

dξ

}

α

= {0, 1, 2ξ} ; (22)
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c) The construction of the local approximation space F p
α enriched by product of partition of

unity by the local space of enrichment, as indicated in the (4). Taking advantage of the example
of the quadratic base, we obtain:

F 2
α = {ψ2 (η)}α =

{
φα (η) , φα (η) ξ, φα (η) ξ2

}
; (23)

The partition of unity φα(η) with continuity C0 is formed by linear lagrangian functions
(v.Fig. 4a) with the following definition:

φα(η)
−1≤η≤1

=
{

N1(η) = 1
2(1 + η) for xα−1 ≤ x ≤ xα

N2(η) = 1
2(1− η) for xα ≤ x ≤ xα+1

(24)

Considering the correspondence between the x and η coordinates, a relationship similar to (10)
is applied:

x =
{

N1(η)xα−1 + N2(η)xα for xα−1 ≤ x ≤ xα

N1(η)xα + N2(η)xα+1 for xα ≤ x ≤ xα+1
(25)

The partition of unity and the set of functions defined in (23) for the example in question
are represented in the parametric domain in Fig.4, (a), (b) and (c).

In some operations with the enriched functions, it may be necessary to multiply the gradient
of the enrichment functions by that of the partition of unity. Since the partition is expressed
in terms of natural coordinates, it is therefore more convenient to express the derivatives of the
enrichment functions also in terms of the same coordinates. Hence:

dL̂i

dη
=

dL̂i

dξ

dξ

dx

dx

dη
; (26)

Since in (20) we conclude that dξ
dx = 1

hα
, (26) may be redefined as:

dL̂i

dη
=

dL̂i

dξ

1
hα

dx

dη
; (27)

Once the exact or approximate description of the curved physical domain is obtained, and
hence, the mapping C (x) is known, the above-described enrichment procedure, when extended
to each cloud, permits the generation of the set of enriched approximations given in (4), but
this time, on the domain in question. Figures 4 (d) and (e) show representations of the mapped
enriched functions for a physical domain.

4 Axis-symmetric solid element

The approach presented in this section has the primary objective of developing sufficiently
general tool to be applied to linear analysis of plates and shells showing axial symmetry in
geometry and loading or prescribed deformation. Naturally, in order to apply GFEM, the
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problem in question must be formulated in the weak form such that it satisfies equilibrium,
compatibility and constitutive conditions of linear elasticity, all of which are specific for the
axis-symmetric case (Timoshenko [16]). However, the variational formulation of boundary value
problems is not the subject of the present work.

One characteristic of the GFEM is that a conventional finite element mesh can be employed
in defining clouds that are linked to nodes. For the analysis of plates and shells developed
in the present text, we will adopt clouds formed by degenerated solid-type elements proposed
in (Ahmad et al., [1]), with its geometric description restricted to axis-symmetric problems
according to Batoz and Dhat, [2]. Due to this restriction, on adopting a fixed value of θ = θ̄, the
element in the plane (r-Z) is fully described with the aid of the ir(θ) and k unit vectors basis
in the cylindrical coordinate system. In this plane, the projection (trace) of the mean surface
is defined for a curved segment on which three element nodes are located (see Fig. 5). The
position vector given by (16) turns out to correspond to points of that segment and with each
node specifically.

In order to study the mapping from the master element, a local base with vectors [v2k : v3k : iθ]
is defined on node k (see Fig. 5).

Considering that the thickness of the solid, plate or shell is variable within the limits of
the element, a certain variation of thickness can be represented by interpolating discrete values
associated to each node. Based on this, a vector V3k is defined for each node k whose absolute
value corresponds to the local value of the thickness, tk. With the aid of the illustration in Fig.
5, the following relationships are therefore valid:

V3k = Xs
k −Xi

k (28)

v3k =
V3k

|V3k| (29)

with |V3k| = tk, Xi
k

(
θ̄
)

= ri
kir

(
θ̄
)

+ zi
kk and Xs

k

(
θ̄
)

= rs
kir

(
θ̄
)

+ zs
kk.

The unit vector is obtained v2k from the vector product of v3k and iθ (this being ’a priori’
perpendicular to the (r-z) plane).

Once the local base is defined, it hence proceeds (according to Fig. 6) that a point, X̂ in the
direction v3k with ordinate ζ in the element natural domain is obtained by linear interpolation
of points Xs

k and Xi
k:

X̂k

(
ζ, θ̄

)
= Xs

kNs (ζ) + Xi
kNi (ζ) (30)

where,

Ns (ζ) =
1
2

(1− ζ)

Ni (ζ) =
1
2

(1 + ζ) (31)
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Figure 5: Geometry of the axis-symmetric solid element.

are linear functions of lagrangian interpolation. Considering the aforestated relationships, (30)
can be expressed in still another form as:

X̂k

(
ζ, θ̄

)
= Xk

(
θ̄
)

+ v3k

(
θ̄
) tk

2
ζ (32)

with Xk

(
ζ, θ̄

)
=

Xs
k(θ̄)+Xi

k(θ̄)
2 .

Finally, a generic point, X
(
η, ζ, θ̄

)
, inside the element (see Fig. 6) is obtained by a second

interpolation, but now, of values of X̂k

(
ζ, θ̄

)
determined for each node by applying (32). In this

manner we have:

X
(
η, ζ, θ̄

)
=

3∑

k=1

Nk (η) X̂k

(
ζ, θ̄

)
(33)

In expression (33), Nk (η) are quadratic functions of lagrangian interpolation associated to
each one of the three nodes.

Hence, the mapping of a point in the natural domain, Ωe, onto its position vector in the (r-z)
plane of the domain of the solid according to Fig. 6 is described by the expression:

X
(
η, ζ, θ̄

)
=

[
3∑

i=1

Ni (η) ri +
3∑

i=1

Ni (η)
ti
2

ζvr
3i

]
ir

(
θ̄
)

+

[
3∑

i=1

Ni (η) zi +
3∑

i=1

Ni (η)
ti
2

ζvz
3i

]
k. (34)
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Figure 6: Mapping of the natural domain onto an axis-symmetric solid element.

It is easy to note that the relationship (19) can be thought of as a particularization of
relationship (34) for a certain value of θ and natural coordinate ζ = 0.

Another characteristic of GFEM is that the approximation spaces of the geometry and
displacement fields are independent. In particular, in the present work, enrichments of the
displacement fields are accomplished on axis-symmetric solid elements clouds whose base nodes
are disposed on reference mid surface.

The kinematic model adopted to describe the deformation of the solid is the first order
kinematic model of Reissner-Mindlin. This implies that the normal to the mid-surface is always
straight during the deformation process and that the model takes into account a portion of
the rotation corresponding to shear strain. A particularization of this kinematic model for the
axis-symmetric solid element requires that three parameters or degrees of freedom be defined for
each node k: displacement in the radial direction r; displacement, wok in the global direction z;
and the rotation, ϕk about iθ̄.

On the other hand, the definition of the displacement vector of a generic point is based on
a similar procedure to that used in describing the geometry, that is: the interpolation of nodal
displacements.

Firstly, the displacement vector of a point along the thickness on node k is determined by
linear interpolation of discreet values on the extremities of the thickness. Such a vector, written
in the (r-z) plane as a linear combination of the unit base vector of the cylindrical coordinates
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system results in:

ûk

(
ζ, θ̄

)
=

(
vok +

tk
2

ζϕkv
r
2k

)
ir

(
θ̄
)

+
(

wk +
tk
2

ζϕkv
z
2k

)
k (35)

It is worth noting that the coefficients of the linear combination result from the coherence
with the kinematic model, vr

2k and vz
2k being the components of the unit vector v2k according to

the base (ir(θ)−k). The displacement of a point in the element is then obtained by interpolation
of ûk (ζ, θ) obtained from (35) for each node of the element:

u
(
η, ζ, θ̄

)
=

3∑

k=1

Nk (η)ûk

(
ζ, θ̄

)
(36)

Finally, once the enriched local approximation space is represented in a similar manner to
that described by (7), and still, considering contributions of all clouds which contain the given
point instead of considering the element, the displacement vector is expressed by the relationship:

u = uh

(
η, ζ, θ̄

)
=




n∑

j=1

(
m∑

k=1

ψj
k (η) vj

ok +
s∑

k=1

ψj
k (η)

tj
2

ζϕj
kv

r
2j

)
 ir

(
θ̄
)

+




n∑

j=1

(
m∑

k=1

ψj
k (η)wj

ok +
s∑

k=1

ψj
k (η)

tj
2

ζϕj
kv

z
2j

)
 k

(37)

In Eq. (37), n and m are respectively the number of active nodes (base nodes of clouds
that contain the given point) and the number of approximation functions used in enriching
each active node. The terms, vj

ok, wj
ok and ϕj

k now become nodal parameters introduced by the
enrichment with a given function k associated to a cloud j. The enriched nodal functions, ψj

k (η)
are obtained as exemplified by Eq. (23).

5 Examples of numeric application

The cases of axis-symmetric plates and shells considered here are aimed at illustrating the
performance of approximation spaces constructed following the GFEM. Particularly, it is sought
to explore advantages such as combining the p and hp strategies in order to overcome the problem
of numeric locking and to adequately represent highly localized gradients of the solution including
the so-called limit layer problems. The examples analyzed here constitute critical cases among
the ’ benchmarks’ proposed in specific literatures.

For a geometric representation of the solids analyzed, use will be made of either quadratic
elements (Q3) or circular arch elements (C3). In the first case, the mean surface is approximate
for quadratic lagrangian functions using the mapping given by (10) and (11), while in the second
case, the mean surface is exactly described.
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5.1 The phenomenon of numeric locking

Approximation spaces usually employed in the Reissner-Mindlin first order kinematic model
are unable to reproduce the nullity of the shear and of membrane strains when a decrease in
thickness is imposed. Under these conditions, there is a resultant increase in bending (flexural)
stiffness of the structure whose solution converges to more conservative values, characterizing
the so-called numeric locking.

In general, it can be affirmed that the locking can get revealed whenever there is deterioration
of the approximation space, be it due to a limitation in the degree of approximation, be it due
to used of distorted meshes. It therefore proceeds that due to its characteristic p enrichment,
the GFEM can make the approximation sufficiently flexible thus constituting a valuable tool for
overcoming problems of numeric locking.

In the present work, locking is addressed through examples of circular plates fixed at its
boundary and subjected to a uniformly distributed load, and a long cylindrical shell under
punction by a traverse load applied in the radial direction. The examples always admit a
homogeneous and isotropic material.

Locking is verified for different thicknesses by observing fields of maximum displacements
normalized relative to analytic solutions (Timoshenko et al., [16]). When employing the GFEM,
the enriched approximation space is constructed by a homogeneous p refinement (at all nodes)
for the two analyzed examples.

Circular fixed plate

The example presented consists of a circular plate fixed along its boundary and subjected to self
weight evenly distributed on its entire superior surface. By exploring axis-symmetry, emphasis
will be given to the analysis of the radius AO (Figs. 7(a) and (b)) discretized using six elements
Q3 shown in figure 7(c). The load q varies in intensity according to the thickness t such that
the same transverse displacement w is obtained for all relationships 2R/t. The geometric and
mechanical properties of the plate are: radius R = 800mm; variable thickness t; modulus of
elasticity E = 2.1× 105MPa; Poisson coefficient ν = 0.3.

The effects of locking are evaluated by comparing the numeric results obtained for the maxi-
mum traverse displacement, w, normalized with relationship to the analytic solution of thin plate
(wa) for different relationships between the radius and semi-thickness (2R/t) (Timoshenko et
al., [16]). Such results are due to the adoption of homogeneous p refinement to construct en-
riched approximation spaces thus generating polynomials orders of p = 2, p = 3 and p = 4. As
it can be perceived, the same problem discretized in the R2 space will usually presents locking
(Garcia [9]).

The results shown in figure 8 indicate that locking occurs only for p = 2 and even so, only
for certain relationships (2R/t). On enriching the approximation, this locking problem seems to
be fully overcome.
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Figure 7: a) Fixed circular plate; b) Boundary conditions considering symmetry; c) Discretization
of the radius OA using 6 Q3 elements.
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Figure 8: Values of transversal displacement w/wa normalized relative to 2R/t.
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Cylindrical tube under punction

A long cylindrical tube supported at its ends by diaphragms which do note restrict longitu-
dinal displacement (see Fig. 9(a)) is subjected to a punction force (P) distributed along the line
representing the mean height. The following geometric and mechanical properties are adopted:
radius of cylinder, R = 300mm; variable thickness t; height, H = 2400mm; Young’s modulus of
elasticity, E = 2.1× 105MPa; Poisson coefficient, ν = 0.3.

Again, due to axis-symmetric properties, only the meridian segment OA is analyzed for the
symmetric boundary conditions indicated in Fig. 9(b).
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Figure 9: a) Fixed cylindrical tube under punction at H/2; b) Boundary conditions with sym-
metry respected; c) Discretization with regular and irregular mesh.

The deformation of the tube is dominated by bending mechanisms thus potentiating the
effects of locking. Similarly to the previous case, locking is evaluated by comparing numeric
results obtained for maximum radial displacement normalized with the analytic solution of a
thin shell considering different radius-thickness, (R/t) relationships, (Timoshenko et al., [16]).
Two solution strategies are adopted to overcome boundary locking:

1. Uniform mesh as shown in figure 9(c) and a homogeneous enrichment which generates
polynomial degrees of p = 2, ..., 4.

2. A mesh whose geometric refinement progresses at a ratio of 2.5 in the direction of the
applied force and homogeneously enriched, thus generating polynomial degrees p = 2, ..., 4
(see Figure 9(c)).
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The results of the first strategy are shown in the figure 10(a) and indicate a fort locking
slightly relieved by the enrichment of the approximation. Such results are expected since, ac-
cording to Szabó and Babuska, [15], homogeneous p strategies associated to a crude mesh are not
appropriate in solving problems whose solutions show strongly localized gradients. The second
strategy, the hp combination, presents a more efficient result as figure 10(b) indicates. Notice
that up to R/t = 105, locking is totally solved when p = 4.
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Figure 10: Radial normalized displacement v/va.

5.2 Other localized gradients and limit layer problems

The present section brings together problems involving localized gradients of solutions obtained
for concentrated forces and problems directly related to the phenomena of limit layer.

Concerning the first type of problems, we show that the adaptive h strategies are really
necessary. The combination of the h and p strategies provided by the GFEM can make the
approach most efficient. Convergence aspects are analyzed by controlling the energy norm of
the relative error in displacements.

On the other hand, with the recent use of non-conventional approximation methods, a notable
improvement in approaching the limit layer type of problems has been seen. For instance,
Garcia, [6], Da Nóbrega and Proença, [13] show that the employment of special functions which
include solution modes may sometimes spare the need of adaptive h refinements in representing
highly localized gradients of the solution. However, in the related examples here adjoined the
alternative to be explored consists on enrichment of partitions of unity presenting continuity of
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higher order. The advantage is to extend the continuity to the approximation of the internal
efforts.

Circular plate with central hole
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Figure 11: Circular plate with a central hole

This example consists of a simply supported circular plate with a central circular hole. A
distributed load of −1.0N/mm is applied perpendicularly to the plane of the plate along the
internal circumference of the plate (see Fig. 11). The geometric and mechanics properties for
this example are: radius of plate, R = 800mm; radius of the hole, b = 0.8mm; plate thickness,
t = 8.0mm; modulus of elasticity, E = 2.1× 105MPa; Poisson coefficient, ν = 0.3.

This problem is one with peculiar regular characteristics. The solution presents a good
regularity in most of the plate, but however, with a highly localized gradient although without
singularity in the proximity of the hole. In this class of problems, the efficiency of polynomial
approximations is quite limited if not complemented with the adaptive h and hp strategies (Szabo
and Babuska, [15]). The main objective of the example is therefore to carry out convergence
analyses with the degree of global approximation being varied both by mesh refinement and
by the enrichment of the partition of unity. In this way, the relative errors in displacements
estimated by the energy norm and expressed below are controlled. Therefore we have:

‖Er‖e =
‖wr − w‖E(Ω)

‖wr‖E(Ω)

; (38)

In (38), wr is a reference solution for traverse displacements and w the approximate solution
corresponding to a specific strategy.

The reference solution wr is obtained from the adaptive hp strategy made up of a mesh of
24 elements along the radius OA and whose length follows a geometric progression with factor
r = 0.5 and decreasing in the direction of the hole. Since it is the intention that this solution
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be better than the solutions obtained from subsequent strategies, polynomial enrichment on a
partition of cubic unity is also carried out. In this manner, obtaining a smooth strain field
is guaranteed. The p refinement for this case consists of the enrichment of the first twelve
clouds that are adjacent to the hole using the following sequence of polynomial orders p =
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. The remaining clouds are enriched using p = 13 attaining a
total of 810 degrees of freedom for the problem.

The analyses accomplished are for four discretization strategies:

1. The first, “Case A”, constitutes nine meshes obtained from a uniform h refinement. Ho-
mogeneous polynomial enrichment with p = 5 is the applied on all the series of meshes
used. The characteristics in terms of the number of elements used in each case and of
the number of degrees of freedom are shown in Table 1. The efficiency of this strategy is
evaluated by the behavior of the relative error ‖Er‖e estimated by Eq.(38), also shown in
Table 1 and illustrated in Fig. 12a.

2. The second strategy, “Case B”, is also made of an adaptive h refinement for each mesh using
the same number of elements in the previous strategy, but however, distributed following
a geometric progression with a fixed factor of r = 0.55 decreasing in the direction of the
hole. The characteristics of this refinement are shown in Table 2. This table shows, in
particular, the ratio of largest to the smallest element generated for each mesh, D/d. The
results are presented in Table 2 in terms of the relative error and illustrated in Fig. 12a.

3. The third strategy, “Case C”, is hp-adaptive obtained by a sequence of nine meshes of
twelve elements Q3 disposed following a geometric progression which decreases in the
direction of the hole and having progressive factors shown in the third column of Table 3.
Associated to the adaptive h refine, a homogeneous p enrichment of increasing order as
shown in Table 3 is successively applied.

4. The last strategy, “Case D”, is also hp-adaptive, composed of a sequence meshes that is
identical to that used in strategy “C”. In this case, the advantage of selective adaptive
p-refinement indicated in Table 4 is explored. The polynomial refinement is such that a
quadratic enrichment is always applied to the first cloud adjacent to the hole (cloud number
12). For the next clouds whose numbering sequence is given in column three of Table 4,
enrichments with linearly increasing orders of polynomial as indicated in column four of
Table 4 are carried out. Finally, for the remaining clouds, polynomial orders indicated in
column five of the same table are homogeneously applied.

The results obtained for the strategies: ”Case C” and ”Case D”, are shown in Fig 12b.
The uniform h−refinement used in the case ”A” (see Fig. 12a) presents a very low and linear

rate of convergence since this strategy is not adequate to solve problems with highly localized
gradients (Szabó and Babuska, [15]).
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Table 1
No Elem.Number NDOF ‖Er‖e

1 6 126 7096.6099
2 8 162 4023.0563
3 10 198 2594.7340
4 12 234 1815.7733
5 14 270 1344.2314
6 16 306 1036.9820
7 18 342 825.5106
8 20 378 673.6587
9 22 414 560.8709

Table 2
No Num.Elements D / d NDOF ‖Er‖e

1 6 19.8694 126 158.63173389
2 8 65.6842 162 18.808441617
3 10 217.1379 198 3.1523393763
4 12 717.8115 234 0.7248441339
5 14 2372.9305 270 0.1983855574
6 16 7844.3986 306 0.0580589824
7 18 25931.8964 342 0.0173400012
8 20 85725.2774 378 0.0051817160
9 22 283389.3471 414 0.0015219565

Table 3
No Pol.Order Geom. factor NDOF ‖Er‖e

1 2 1.0 117 1815.34065
2 3 0.9 156 520.87000
3 4 0.8 195 103.32200
4 5 0.7 234 15.03468
5 6 0.6 273 1.980220
6 7 0.5 312 0.25866
7 8 0.4 351 0.02581
8 9 0.3 390 0.00154
9 10 0.17 429 0.00038805
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Table 4

No NDOF [Ci., , , .Cj ] [Pi, .., Pj ]
Reman.Clouds

Pol.Order
Geom.
factor

‖Er‖e

1 180 12.,,,.10 2,...,4 4 1.0 1815.8167486
2 207 12.,,,.9 2,...,5 5 0.9 520.83196190
3 231 12.,,,.8 2,...,6 6 0.8 103.33057999
4 252 12.,,,.7 2,...,7 7 0.7 15.036046657
5 270 12.,,,.6 2,....,8 8 0.6 1.9804705673
6 285 12.,,,.5 2,...,9 9 0.5 0.2587675843
7 297 12.,,,.4 2,...,10 10 0.4 0.0252579350
8 306 12.,,,3 2,...,11 11 0.3 0.0011901489
9 312 12,...,2 2,...,12 12 0.17 0.0004273960

The h-adaptive strategy, where D/d →∞ when d → 0, employed in case ”B” is shown to be
more robust than the previous case (see Fig. 12b). In fact, as the number of elements increases,
the rate of convergence turns out to be independent of the smoothness of the problem (Szabó
and Babuska, [15]), presenting values higher than those observed in the previous strategy.

Strategies ”C” and ”D” being hp-adaptive, combine positive characteristics of the h and p

strategies thus reducing the errors in regions where the solution shows a low or a high regularity
and provide higher rates of convergence. As a result of this combination, in both cases, the rates
obtained were found to be exponential as it can be verified in Fig. 12b.

The strategy ”C” shows a good performance, however, it can be noted that there is no ulterior
improvement in the convergence rate for geometric factor from D/d > 105 (point 8). This is
due to characteristics of the problem solution: essentially geometric meshes are well behaved
in regions of localized gradients while an increase of the degree of the polynomial solution is
more efficient in areas of smooth solution. From a certain level of geometric refinement, the h-
adaptiveness attains its maximum efficiency, that is, the resulting rates of convergence turn out
to be independent of the smoothness of the solution (Szabó and Babuska, [15]). However, since
the degree of the polynomial adopted such that homogeneous enrichment could be maintained
during all sequences, as soon as the ratio of the largest to smallest element became very high
(elements of the region of the smooth solution were shown to be very high), the fixed order
of the polynomial adopted was observed to be no longer efficient in this area, resulting in the
stabilization or even an increase in the error.

Comparing the response obtained when employing strategy ”C” to case ”D”, it can be
concluded that the selective polynomial enrichment procedure, made possible by the GFEM,
when applied to meshes refined following a geometric progression and from a certain degree
of refinement, can sensibly reduce the error with a lower number of degrees of freedom (this
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Figure 12: a) Case A, homogeneous h-refinement, Case B, adaptive h-refinement, b) Case C and
Case D adaptive hp-refinement.

comparison can also be made by analysis of the tables 3 and 4).

The thin walled cylindrical tube under uniform internal pressure

In this case, we search to evidence the good capacity of representing boundary layer phe-
nomena by approximation spaces constructed following the p-adaptive GFEM procedure.

The characteristics of the example are shown in Fig. 13. The case is that of a cylindrical
tube under an internal pressure of p = 0.6MPa and whose ends are fixed to diaphragms which
allow displacements only in the longitudinal direction as illustrated in Fig. 13a. Besides, the
following geometric and mechanical properties are adopted: length, H = 600mm; radius of
tube, R = 300mm; thickness, t = 3mm; Poisson’s coefficient, ν = 0.3 and Young’s modulus of
elasticity, E = 2.1× 105MPa.

The approximation space is generated from a uniform mesh of 4 Q3 elements and p-adaptive
enrichment. Clouds of base nodes 3, 4 and 5 shown in figure 13(b) are enriched producing p = 6
while the remaining clouds are enriched producing p = 3. The enrichments are accomplished on
linear and cubic partition of unity, Case A and Case B respectively by taking advantage of the
one-dimensional description of the solution.

In order to underline the advantage presented by case B relative to case A, results of the
observed shear stress resultants are shown since such resultants involve third order gradients of
displacement solution. The numeric results are compared to those obtained analytically for thin
shells.
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 Figure 13: Cylindrical tube under uniform internal pressure.

As it can be observed in figure 14, the approximation spaces corresponding to enrichment
of partition of cubic unity (Case B) supply the best results. In fact, such a partition makes it
possible to obtain a highly regular solution due to the order of the solution polynomial (C1 (Ω)-
type space).
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Figure 14: Behavior of shear stress resultant, Qz along a meridian.
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Spherical shell with top opening

Fig. 15 is an illustration of a shell (Grafton, Strome (1963), [8]) subjected to uniformly
distributed unit bending moment (m = 1 in lb/in) applied along its free top boundary.

For this example, the geometric and elastic properties are: mean radius, R = 100 in ;
thickness, t = 1 in; Young’s modulus, E = 107psi; Poisson coefficient, ν = 0.33. The behavior
of the shell is shown to be dominated by localized bending in the vicinity of the top border.
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Figure 15: Hemispherical Shell with open top; a) adaptive mesh with 28 C3 elements; b) adaptive
mesh with 6 C3 elements; c) mesh with 1 C3 element.

Both p and hp-adaptive refinements strategies were considered in the numerical analyses.
The obtained results refer to displacement fields in the radial direction and distribution of the
bending moment along a meridian (see Fig. 16). The elements used in this example, here
designated by letter C3, make use of mappings according to relationships (9), (10) and (11).

Results of the proposed refinement strategies are compared with a reference solution obtained
by adaptive hp-refinement with the following characteristic: a mesh of 28 C3-elements distributed
following a geometric progression of factor 1.2 in the loading direction; clouds corresponding
to nodes {1, 3, 5, 7, 9, 11} enriched thus generating polynomial degrees of {1, 3, 5, 7, 9, 11} and
remaining clouds generating p = 6. In this case, the cubic partition of unity was enriched in
order to guarantee better regularity of the reference solution.

The numerical resolution strategies tested have the following characteristics:

1. Case A: 1 C3-element mesh with enrichment of the cubic partition of unity which generates
approximation polynomials p = {15, 14} linked to the nodes {1, 3}.
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2. Case B: A 6 C3-elements mesh using an hp-adaptive strategy in geometric progression of
factor 1.5 and p−refinement on a linear partition of unity, generating p = {10, 10, 9, 8} de-
grees approximations for clouds associated to nodes {1, 3, 5, 7} and p = 6 for the remaining
clouds.

The results shown in Fig. 16(a) and (b) demonstrate good performance of the proposed
strategies. For the radius-thickness ratio used, the observed disturbances of bending moments
at the borders can be captured without any need of h−refinement of the mesh as in the case
of the strategy A. In this case, a high order adaptive p−refinement (105 degrees of freedom) on
a cubic partition of unity ensures a satisfactory behavior and a continuous distribution of the
bending moment along the meridian. The results obtained for strategy B demand 186 degrees of
freedom. Because a linear partition of unity is used, the bending moment distribution, although
very close of the reference solution, is found not to be continuous along the domain of the
problem.

 

   
 

-20 -15 -10 -5 0 5

x 10
-7

0

10

20

30

40

50

60

70

80

90

v

z

Refer.
Case A
Case B

 
 

 
 

 

(a)

 

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

Mm

z

Refer.
Case A
Case B

 
 (b)

Figure 16: a) Variation of transverse displacement, v along a meridian; b) Variation of the
bending moment, Mm along a meridian.
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6 Conclusions

Besides simplifying discretization, the approach, which considers the axis-symmetric character
of several plate and shell problems, made it possible to explore, with an excellent performance,
the p and hp-adaptive strategies. Such a resource is almost not possible in approximation spaces
constructed in R2 and R3.

In the examples presented, those advantages are pointed out, particularly in the solution of
problems involving numeric locking and strongly localized solutions problems without singular-
ity.

On one hand, although the variational formulation adopted to describe the kinematics of
shells resulting from the Reissner-Mindlin model is not ’a priori’ free from locking, both the
plate example and the example of a cylinder under punction showed that this type of problem
can be satisfactory solved by approximation enrichment.

On the other hand, in localized solution problems, the selective enrichment tool made possi-
ble by the GFEM applied to one-dimensional spaces obviously without mesh distortion explore
advantages such as the use of high order polynomials to enrich the approximations and con-
struct them in real domain of the problem. Besides this, it was possible to construct, at a low
computational cost, enriched solutions on partitions of unity with regularity C1 (Ω). Such an
alternative allowed us obtain a continuous stress resultant distribution in the problem domain,
a numeric problem not very well solved in shells.

In general, the observed performance of the spaces constructed by the GFEM was good for
the problems proposed.
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[15] B. Szabó and I. Babuska. Finite Element Analysis. John Wiley &Sons, New York, 1991.

[16] S. P. Timoshenko and S. Woinowsky-Krieger. Theory of Plate and Shells. McGraw-hill book com-
pany, New York, second editions edition, 1959.

[17] X. Zhao, T. Y. Ng, and K. M. Liew. Free vibration of two-simply-supported laminated cylindrical
panel via mesh-free kp-ritz method. International Journal of Mechanical Sciences, 46:123–142, 2004.

Latin American Journal of Solids and Structures 4 (2007)






