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Abstract

In this paper, we compare the performances of Transpiration and ALE methods. The
approach ALE (Arbitrary Lagrangian Eulerian) is a powerful tool to treat coupled prob-
lems, more precisely, the approach ALE in finite elements of Donea and Hughes. However,
ALE performance for determining fluid-elastic forces at small vibrations amplitudes is still
ignored. Transpiration method is a simplified approach for calculation of fluid-elastic forces
at relatively small vibrations amplitudes. Based on a first order development of velocity
boundary conditions, this method allows the use of a fluid domain fixed in time during a
dynamic computation, by avoiding hence the problems due to the mesh distortions.

The methods have been validated with help of analytical solution of a vibrating cylinder
immersed in stokes confined fluid medium. We made others analysis of dynamics character-
istics in tube-bundle comparing with literature. This methods are implemented in Cast3M a
numerical platform of French Nuclear Agency - CEA-Saclay -.

Keywords: fluid structure interaction, tube bundle, ALE and Transpiration formulation,
CFD, added mass and damping coefficient

1 Introduction

Many industrial components are made of tube array which vibrate under fluid flow. These
vibrations, if they are sufficiently intense, can generate troublesome phenomena on the level
of the equipment. In a pressurized water nuclear reactor, the tube vibrations phenomena of a
steam generator (GV) is an important problem. Indeed, GV’s lifespan is directly dependent to
these phenomena. Research is still necessary in order to optimize the operation of power plants
and to fulfill the restrictive requirements of safety.
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Tube bundles subjected to flow constitute a fluid-elastic coupling problem which interests
particularly the nuclear area. Since 60’s, several experimental studies were undertaken on re-
duced model [15]. In order to determine the coupling fluid-elastic behavior, there are mainly
two experimental approaches used today:

� direct method - imposed movement of a tube [29], and

� indirect method - tube bundle excited by turbulence [1, 5].

We should be compared the results produced by these two approaches. But we can compare
these results only if the experimental conditions are identical for both, because the fluid-elastic
forces depend on the geometry of tube array (P/D and geometric disposition) and the flow
characteristics (Reynolds Re, Stokes St, and reduced velocity V r) [26]. As Caillaud [5] shows,
the different experimental flow conditions of direct and indirect methods imply that
the results obtained are not easily comparable, Table 1.

Methods V r Re St

direct 2 25 1540 4010 61 2005
indirect 0,5 3,5 8400 53100 16800 15200

Table 1: Experimental ranges of V r, Re and St by direct and indirect methods [5].

The numerical study finds than its place as a comparison tool. The computational fluid
dynamic(CFD) have progressed much these last twenty years, parallel to computers performance.
The vibration analysis of cylindric obstacles traversed by monophasic flow, a typical problem of
fluid-structure interaction (IFS), was already approached numerically by several authors [18,26,
30]. The majority of the treated cases concerns high vibratory movements, for example, those
of a fraction of diameter of tube (≥ 15% D). However our problem concerns small movements
limited to the hundredth of diameter of a tube. The experiment shows that physics problems
are not the same one, and numerical problems either [15].

We compare, in this paper, the performances of ALE and Transpiration methods to resolve
a problem of a cylinder rod vibrating on immobile fluid medium, i.e. a typical problem of fluid-
structure interaction. We validate both methods with help of analytical solution of a vibrating
cylinder immersed in incompressible confined fluid medium. We made others numerical analysis
of the dynamics characteristics of an experimental tube-bundle presented in literature. This
methods are implemented in Cast3M a numerical platform of French Nuclear Agency - CEA
Saclay -.
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2 Physical problem

Many industrial components are composed of tube banks which vibrate under the effect of fluid
flow. These vibrations, if they are sufficiently intense, can generate troublesome phenomena,
fatigue and wear, on the level of support’s devices of tubes. Thus, the vibrations of exchange
tubes in steam generators (GV) must be analyzed carefully.

External fluid forces may generate large vibrations amplitudes at tubular structures causing
possible dramatic damages in terms of nuclear power plant. This vibrations results from four
kinds of fluctuation:

1. random fluctuations generated by turbulence in fluids at large Reynolds num-
bers;

2. fluctuations induced by structure-flow motion coupling due to fluid-elastic ef-
fects;

3. resonance with flow periodicity due to vortex shedding; and

4. possible acoustic excitation.

Fluid-elastics coupling forces, case (ii), can affect the dynamics behavior of GVs, and be
responsible of possible fluid-elastic instabilities. For industrial concerns, it is necessary to be able
to predict these fluid-elastic forces ant heir effects on tube bundle dynamic stability. However,
a stage without flow (fluid-structure coupling) is necessary in order to improve the numerical
modelling control of problem.

2.1 Fluid-structure tube bundle model

Firstly, we are interesting on the study of vibrations of a flexible tube belonging to a square
fixed tube bundle subjected to a fluid coupling without flow. This configuration is defined by
known geometry and hydraulics parameters describing the system [26].

Geometric parameters characterizing a regular square tube bundle are tube diameters D,
tube gap P , and tube length L. From mechanical point of view, the flexible tube motion can be
modelled by: tube mass Ms, tube damping Cs, and tube stiffness Ks. Concerning the structural
movement in the immobile fluid medium, first mode of vibration is affected by added mass Ma

and fluid viscosity damping Ca. The equation of motion becomes:

(Ms + Ma)s̈ + (Cs + Ca)ṡ + Ks s = 0 (1)

where, ω2
fs = Ks/(Ms+Ma) and ξfs = (Cs+Ca)/[2ωfs(Ms+Ma)] are the pulsation and damping

coefficients of the tube in immobile fluid. To determine the frequency ωfs and damping ratio
ξfs of a spring-mass system vibrating in fluid environment with or without flow, we can use the
least-square procedure presented by Gharib et al. [14].

Latin American Journal of Solids and Structures 4 (2007)



182 M.V.G. de Morais, F. Baj, R.-J. Gibert and J.-P. Magnaud

u = 0

P

D

(a) Schematic of AMOVI model

u = 0

p
=

0

p
=

0

D

Ωt

Γs,t

∂Ω

T22 T23 T24

T32 T33 T34

T42 T43 T44

ex

ey

(b) Geometry and boundary conditions

Figure 1: Numerical model 2D of tube bundle AMOVI in a fluid at rest.

2.2 Gharib’s least square technique

The least squares method can be used to find structural parameters of a mass-spring 1 DOF
system subjected to free vibration. Considering a mass-spring system (1) like:

a S̈ + b Ṡ + c S + d I = 0 (2)

where, S represent the temporal signal of s to [0; t]. The equation (2) represents a linear
equations system redundant with many lines (temporal evolutions s(i), i = 0, 1, 2 taken at each
time step) and only four columns. By operating the equation above, we obtain,

[
Ṡ S I

]⎡⎣ (b/a)
(c/a)
(d/a)

⎤
⎦ =

[
−S̈

]
(3)

We multiple equation (3) on each side by
[
Ṡ S I

]T
:

⎡
⎢⎣ Ṡ

T
Ṡ Ṡ

T
S Ṡ

T
I

ST Ṡ ST S ST I
IT Ṡ IT S IT I

⎤
⎥⎦
⎡
⎣ (b/a)

(c/a)
(d/a)

⎤
⎦ = −

⎡
⎢⎣ Ṡ

T
S̈

ST S̈
IT S̈

⎤
⎥⎦ (4)

We can solve this simple system 3 × 3 by Cramer’s rule, for example. The values obtained
corresponds to:

(c/a) =
Ks

(Ms + Ma)
et (b/a) =

(Cs + Ca)
(Ms + Ma)

(5)
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or,

ω2
fs = (c/a) et, 2ωfs ξfs =

(b/a)
(c/a)

(6)

The parameter (d/a), that corresponds to force action of mass-spring system, must be
null in case to free vibration.

2.3 Phase method

Phase method is an other technique to identified de dynamic characteristics of a tube in
immobile fluid. At each time step fluid forces acting on the tube are estimated. According to
Equation (1), these forces are expressed as function of added mass and viscosity coefficient of
damping, Ff (t) = −Ma s̈(t) − Ca ṡ(t). For an harmonic tube motion So sinωt, fluid forces Ff

are also periodic:
Ff (t) = Fo sin(ωt + ϕ) (7)

where,

Fo =
√

(ω2So Ma)2 + (ωSo Ca)2 and tan ϕ =
Ca

ωMa
(8)

The in-phase and opposed phase coefficients are given by the expressions:

∴ Ma

ρD2
=

Fo cos(ϕ)
ω2So

and
Ca

ρν
=

1
ωfs

Ca/2πSt

ρD2
= −Fo sin(ϕ)

ωSo
(9)

where, 2πSt = ωfsD
2/ν is the Stokes number. This procedure (9) is very simple to implement:

it’s necessarily to obtain the values of maximum force Fo and the phase ϕ between displacement
s(t) and force Ff (t). Indeed, the principal disadvantage of this method is that small errors in
phase evaluation cause great variations in the determinations of damping Ca to high Stokes
number St.

3 ALE formulation

First of all a system of rectangular cartesian axes is chosen in which the vectors position
ξ, x and X will be expressed.

Reference domain Ωξ is a R
3 field, Figure 2. An arbitrary movement, described by an

application α, deforms this field independently of material particles mouvement. Supposed that
ατ is an homeomorphic geometrical transformation which at every instant τ a point of domain
Ωτ is associated to a point of reference domain Ωξ.

ατ : Ωξ −→ Ωτ

ξ �−→ x = α(ξ, τ)
(10)
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Figure 2: Representation of Eulerian, Lagrangian and arbitraire reference domaines.

We consider that Ωτ is a R
3 field, Ωξ at the moment t = τ , is used as support of grid. The

borders movement of this domain is known and regular. The geometrical transformation ατ

is constructed such that it is continuously differentiable bijective mapping (C1 diffeomorphism
class).

Now we consider that the ΩXτ domain, at instant t = τ , contains all material points which
were in ΩXξ domain at instant t = 0. We define a diffeomorphism φτ of material domain ΩXτ

on Ωξ domain.
φτ : ΩXτ −→ Ωτ

X �−→ x = φ(X, τ)
(11)

The relations between the different domaines at t = τ are indicated on Figure 2. Let define:

u =
∂φ(X, t)

∂t

∣∣∣∣
X

and w =
∂α(ξ, t)

∂t

∣∣∣∣
ξ

. (12)

where u is the velocity of material points and w is the velocity of reference points. Consequently:

• if the reference volume Vξ is supposed fixed by choosing α = Id, then ∀ τ Ωτ = Ωξ, ξ = x
and w = 0, i.e. eulerian description;

• if the reference volume Vξ follows material volume VXτ in its movement, point by point,
by choosing α = φ, then Ωξ = ΩXτ , ξ = X and w = u, i.e. lagrangian description.
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3.1 Fluid domain

The relations obtained in the preceding section make it possible to write the integral form (on
spatial domain Ωt) of the mass and momentum conservation equations on ALE description [16].
We adopted mixed derivative convention δ

δt of Germain [13].[
δ

δt
+ (u − w) · ∇

]
ρ(x, t) = −ρ(x, t)∇ · u (13)

ρ(x, t)
(

δ

δt
+ (u − w) · ∇

)
u = ρ(x, t)b + ∇· ⇒σ (14)

The considered fluid is an incompressible newtonian fluid with constant physical properties.
Under these conditions, the conservation equations (Navier-Stokes) are written, on a spatial
domain Ωt: ⎧⎪⎨

⎪⎩
∇ · u = 0

δu
δt

+ (u −w) · ∇u = −1
ρ
∇p + b + ν ∇2u

(15)

3.2 Solid domain

With small displacements around the configuration of reference, the structural dynamics equa-
tions become,

Mss̈ + Csṡ + Kss = F f,g (16)

with F f,g =
∫
Γt

⇒
σ ·n ds =

∫
Γt

[−p · I + μ
⇒
τ ] · n ds vector of generalized fluid forces.

3.3 Coupled domain

The coupling between solid and fluid equations is operated by boundary conditions on the
interface Γs,t:

(a) the kinematic continuity velocity,

u = ṡ (fluid viscous); (17)

(b) the kinematic continuity of force,
⇒
σ ·n =

⇒
σ s ·n. (18)
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Using the equations (15) and (16) with the above boundary conditions, the coupled problem
is formulated as follows:

δu
δt

+ (u − w) · ∇u − ν∇2u = −∇p/ρ + b

∇ · u = 0 , in Ωt

u = uΓ , on ∂Ω − Γs,t

u = ṡ , on Γs,t

Ms s̈ + Cs ṡ + Ks s =

=
∫

Γf,t

[
−p n+

⇒
τ ·n

]
· ϕi ds

(u, s, ṡ)| t=0 =
(
u0, s(0), s(1)

)

(19)

4 Transpiration method

We consider a kind of fluid-structure interaction problems characterized by small structural
vibrations around the reference position. The formalism ALE has the disadvantages of appearing
an excessive formulation for solving a problem of small vibration like the fluid-elastic coupling
in tube bundles.

Thus, before even the advent of the ALE formulation, aeronautics engineers developed a
simplified technique, said method of Transpiration [19,26,30]. Based on a first order development
of velocity boundary conditions, this method allows the use of a fluid domain fixed in time, by
avoiding hence the problems due to the mesh distortions and great adaptations of the fluid
solvers. This technique allows simulate vibratory problems of fluid-structure interaction making
use of the well-known, reliable and optimized euleriens methods with transpiration boundary
conditions [26].

real position of moving wall

mesh boundary

xp

xm

up

um

Figure 3: Development of velocity field at structure boundary
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Let us suppose a sensible linear velocity field near moving walls. For notations, the index
m, p, and o will correspond respectively to the fields (speed, pressure...) evaluated in limit of
grid, at moving wall, and stationary position without disturbance of the wall. By definition,

xp = xm + s (20)

The Taylor development of fluid velocity field at interface give,

up = um + s · (∇u)m , in Γs,m (21)

Let us suppose the interface fluid-structure Γs,o be enough regular, the gradient (∇u)m could
be approximate to the gradient (∇u)o of steady velocity field uo in configuration non-deformed.
Thus, the transpiration boundary condition (21) becomes:

um = ṡ − s · (∇u)o , dans Γs,o (22)

where, up = ṡ by adherence conditions.
The forces determination on the structure remains a delicate point. Renou [26] overcome this

difficulty by another first order development of stress constraint fields at moving wall, similar
to expression (22):

⇒
σ (I + δX) =

⇒
σ +s · (∇ ⇒

σ )o, in Γs,o (23)

4.1 Transpiration coupled domain

The solid and fluid coupling is similar to ALE formulation (19):

∂u
∂t

+ u · ∇u − ν∇2u = ∇p/ρf

∇ · u = 0, in Ωo

u = 0, on ∂Ω − Γs,o

u = s −∇ouo δx, on Γs,o

Ms s̈ + Cs ṡ + Ks s =

=
∫
Γs,o

[⇒
σ +s ·

(
∇ ⇒

σ
)

o

]
· no · ϕi dso

(u, s, ṡ)| t=0 =
(
u0, s(0), s(1)

)

(24)

5 Numerical implementation

Now we shut briefly an overview of the numerical implementation of fluid-elastic coupling algo-
rithm. Industrial applications often choose a kind of algorithms known as partitioned which
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integrate step-by-step each fluid and solid domain independently. The present implementation
is strongly inspired by the coupling improved serial staggered procedure (ISS) [9, 24].

An explicit staggered partitioned algorithm treat the coupling’s conditions, Equations (17)
and (18), and geometry Ωn+1, by an explicit approach. Several improvements are made to
standard staggered scheme [9,11,12,21–25], that we will discuss.

GCL’s condition (Geometric Conservation Law), known by Thomas and Lombard works
[11,20], shows that temporal variation of each control volume (of time step tn to tn+1) must be
equal to displacement border of cell during time step Δt = tn+1 − tn. The principal implication
of condition GCL is that the grid velocity is an average of the time tn+1 and tn, i.e., wn+ 1

2 =
(xn+1 − xn)/Δt.

Farhat and Lesoinne [11] explain that an explicit staggered procedure built with a fluid solver
observing GCL condition didn’t respect velocity continuity at interface (17). Consequently, a
new asynchronous staggered procedure (ISS - Figure 4) was proposed a temporal resolution of
solid dynamics by trapezoid rule.

ẋn ≡ xn+ 1
2 − xn− 1

2

Δt
=

sn − sn−1

Δt
+

ṡn − ṡn−1

2
≡ ṡn,

In this way, neither velocity continuity nor GCL condition are violated.
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Figure 4: Scheme of improved serial staggered procedure - ISS

For each time step n + 1, we should solve this coupled system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(vn+ 1
2 , pn+ 1

2 ) = NS
(
vn− 1

2 ,wn− 1
2 ,xn,xn+1

)
(sn+1, ṡn+1) = MR

(
sn, ṡn, s̈n,F n+ 1

2
f ,F n

s

)

xn+ 1
2 = VM

(
sn, ṡn,xn− 1

2

) (25)
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where, NS is the projection algorithm for Navier-Stokes resolution, VM is an algorithm to
determinate mesh velocity w, and MR is Newmark time-integration to solve spring-mass model
(sn+1, ṡn+1). For more details, see Morais [8].

5.1 Dynamic mesh algorithm

The transformation of a grid tn−1 to tn controlled by a geometric transformation (dynamic mesh
problem) [7,17] is a crucial problem. The difficulty of ALE formulation is to choose arbitrarily a
mesh velocity field w or a node displacement field x in order to avoid grid degeneration. There
are many techniques to solve this problem.

Farhat et al. techniques [10] consists to solve the grid displacement like to a fictitious elastic
problem. ⎧⎨

⎩
⇒
M̄ ẍ+

⇒
C̄ ẋ+

⇒
K̄ x = 0, , in Ωt

x(t) = s(t) , on Γs

(26)

where,
⇒
m̄,

⇒
c̄ ,

⇒
k̄ are arbitrary mass, damping and stiffness terms. Others authors adopts the

solution of laplacian equation [4, 16] which can be interpreted as a membrane displacement.

We propose here another dynamic mesh algorithm. Indeed, if we deform a convex border
by a unit amplitude starting from origin, the subtraction between nodes coordinates of unitary
displacement grid x (Ωo) and reference grid x (Ωξ) gives a unitary mesh deformation field, Figure
5,

Xo = x ( Ωo) − x ( Ωξ) .

(a) Reference grid Ωξ

Ωξ Ωo

(b) Deformation vector field x̄

Figure 5: Present dynamic mesh technique.
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The grid position at time n + 1 is thus obtained by the expression,

xn+ 1
2 = xn− 1

2 + Xo

(
sn +

Δt

2
ṡn

)
et wn =

xn+ 1
2 − xn− 1

2

Δt

We obtain the expressions of xn+ 1
2 and wn according to two last equations, which one writes

formally:
xn+ 1

2 = VM
(
sn+ 1

2 ,xn− 1
2

)
= VM

(
sn, ṡn,xn− 1

2

)

6 Numerical results

6.1 Free vibration of a tube in immobile fluid

We consider a tube of diameter D immersed in an infinite incompressible viscous fluid domain.
This tube is excited to an amplitude So and then the excitation is removed. We observed the
tube vibrations decays in time.

Simulations are made for a tube of diameter D = 13.30mm. the amplitude of releasing is
limited to 2So/D = 0.001. The experimental tests give frequency ffs,exp. = 12.866Hz and ratio
damping ξfs,exp. = 1.00%. The monophasic fluid domain - water - have density ρ = 1000kg/m3,
kinematic viscosity ν = 10−6m2/s and Stokes number St � 2274. The coarse mesh (raf = 0) is
composed by two cylinder concentric of diameters D and De = 30D. Total number of elements
is Nr × Nθ = 22 × 48, where Nr and Nθ is the numbers of nodes in radial and orthoradial
directions. Grid refinements (raf = 1 and 2) were made dividing each elements into four,
encase grid, Figure 6.

Frequency and damping ratio identification of the displacement signal is made by the Gharib’s
least-square method. Numerical test carry out four periods of simulation of which the first is
discarded of analysis.

Time convergence of frequency ffs and damping ratio ξfs of each method is presented by
Figure 7. The numerical results converge towards tests experimental. Transpiration method
overestimates the value of added mass. Contrarily, ALE method underestimates it, Figure 7a.
Numerical simulations are very close to the analytical solution [6] and experimental tests. The
numerical error doesn’t exceed � 0.2%.

From the point of view of damping ratio, Figure 7b, the time convergence observes a similar
behavior of frequency. ALE method converge more quickly than Transpiration method. The
better numerical performance of ALE formulation is due to the exact description of moving wall.

Figure 8 presents the evolution of relative error compared to experimental test. We find
a behavior in power law φref = φ6 − C Nαt according to Richardson hypothesis [28]. The
convergence order αt of ALE and Transpiration method are close to unit (αt � 1), in conformity
with the theoretical slope of our coupling algorithm.
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(a) Fluid Mesh

4320 nodes and N2
0 = 1056 elements

(b) Mesh Detail

raf = 0 - N2
0 = 1056 elements.

(c) Mesh Detail

raf = 1 - N2
1 = 4224 elements.

(d) Mesh Detail

raf = 2 - N2
2 = 16896 elements.

Figure 6: Original fluid mesh (a) and zoom details of encase fluid mesh (5 radiis from origins).
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(a)

(b)

Figure 7: ALE and Transpiration time convergence of tubes + fluid system.
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(a) Transpiration

(b) ALE

Figure 8: Relative error of frequency and damping ratio of coupled system.
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According to Richardson extrapolation [28], the converged value φref is obtained by the
expression: φref = φNϕ/2 + [φNϕ/2 − φNϕ ]/[1 − 2αt ], where αt is the time convergence order,
Nϕ and Nϕ/2 are respectively the numerical results with 2π/Nϕ and 4π/Nϕ time steps (ωΔt =
2π/Nϕ). Knowing that the time convergence order of the present coupling algorithm is linear
(αt � 1), the expression of φref become:

φref,t = 2φNϕ/2 + φNϕ (27)

Table 2 synthesizes converged results by Richardson extrapolation comparing with experi-
mental and analytical values.

ALE Transpiration
AMOVI Chen&Yeh

raf = 1 raf = 2 raf = 1 raf = 2

ffs(Hz) 12,878 12,866 12,876 12,866 12,87 12,84
ξfs(%) 0,905 1,002 0,858 1,002 1,00 0,99

Table 2: Summary of numerical, experimental and analytical results.

6.2 Fluid-structure coupling of AMOVI tube array model

Fluid-structure coupling (vibration in fluid domain without flow) of AMOVI tube array model
is modelled in 2D square 9-tube bundle with tube-to-tube spacing P/D = 1, 44 and diameter
D = 12, 15 mm, Figure 1. The flexible tube at central tube array has one vibration mode. All
other tubes are fixe. In order to avoided boundary effects, two lines of half-tubes at ex direction
were added around of 9-tube configuration screw to the metal walls. Consequently, the other
two lines of tubes at upstream and downstream flow direction (ey) were also cut out forming
a symmetrical unit. Numerical tests showed that the no-slip boundary conditions (u = 0) at
walls sides and null pressure (p = 0) at upstream and downstream direction obtain same results
compared to a entire modelling of AMOVI model.

The monophasic fluid - water - have mass density ρ = 1000 kg/m3 and kinematic viscosity
ν = 10−6m2/s. The flexible tube belonging to a fixed tube bundle in 9-tube configuration
have the following vibratory characteristics in vacuum: circular frequency ωs = 2π · 14, 30 =
89, 85rad/s, ratio damping ξs = 0.25% and linear density Ms = 0, 298kg/m. Consequently,
stiffness and structure damping constants are respectively Ks = 2405, 7kg/m/s2 and Cs =
0, 130kg/m/s. According to experimental results with low Reynolds flow in AMOVI model [2],
the vibratory characteristics under water are circular frequency ωfs = 2π · 11, 90 = 74, 76rad/s

and ratio damping ξfs = 1, 17%. Consequently, Stokes number is St = 1757.
The flexible tube shake on ey direction with adimensional amplitude So/D = 0, 001. Nu-

merical tests with imposed and free movement were carried out for each formulation in order to
verify the results convergence.
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6.2.1 Numerical criteria

In order to have the control of numerical modelling, the optimal grid and time-step charac-
teristics for simulations will be treated in this item. First of all, it is necessary to define the
characteristic length δ = δ′/R of boundary layer on the moving walls. For an oscillating cylin-
der problem in laminar fluid, Figure 9a, the characteristic length can be define as δ ≤ 1/

√
πSt/2.

Ωf
Γs

D De

δ′

∂s
∂t

= (jωSo)e[jωt]ey

s = e[jωt]ey

(a) Characteristic length of fluid δ

Ωf Γs

D

De

Δxr

Δxθ

(b) Scheme of space discretization

Figure 9: Vibration of a cylinder rod in incompressible viscous laminar fluid.

Spatial Criteria - The numerical description of the vibratory phenomena in boundary layer
is essential for this kind of problem. To insurer a minimum of C elements in boundary layer,
δD/2 ≥ CΔxr, we develop an elementary spatial criteria. By definition, the finite elements
near fluid-structure walls Γs are square Δxr ≈ Δxθ = πD1/Nδ , being Nδ the number of nodes
around fluid-structure walls Γs. We obtain Nδ ≥ C · π

√
2πSt. Then, an estimation of nodes

around the flexible tube is Nδ ≥ C · 330 orthoradial nodes. We use quadratic element Q2-Q1 .
Others numerical tests show that a grid with an element in boundary layer limite (C = 1) (40840
elements and 126079 nodes) offer a good precision with a lower-cost computational, Figure 10.

Phase Criteria - The numerical time criteria is also necessary for vibratory phenomena.
The numerical analysis of problem [8] shows that the criterion more restrictive is due to signal
identification procedure. The error sensitivity analysis of signal identification procedure (9)
gives the expressions of error propagation δMa and δCa:

δMa

Ma
≥ tan(ϕ)δϕ and

δCa

Ca
≥ 1

tan(ϕ)
δϕ (28)

We can estimate an optimal number of time-step per period Nϕ (Δϕ = ωΔt = 2π/Nϕ) using
the analytical solutions of a cylinder rod vibrating in viscous fluid. But, a more correct estimate
must take to account confinement effects of close tubes. Using an interpolation technique, Rogers
et al. [27] finds a relation between confinement ratio De/D and pitch-to-diameter ratio P/D,
i.e., De/D = [1, 07 + 0, 56 P/D] · P/D. Then, the expressions of added mass Ma and damping
coefficient Ca for a cylinder rod immersed in stokes confined fluid medium are given by [6]:

Ma

ρD2
=

π

4
1 + (D/De)2

1 − (D/De)2
and

1
ω

Ca

ρD2
=

π√
πSt

1 + (D/De)3

[1 − (D/De)2]
2 (29)
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Mail Base

(a) raf. = 0 − Nδ = 168 orthoradial nodes

Mail Base

(b) raf. = 1 − Nδ = 336 orthoradial nodes

Figure 10: Encased fluid grids of AMOVI tube array model.

Applicant the expressions (29) and (8b) in the equation of error propagation (28b), one obtains:

Nϕ

2π
· δCa

Ca
�

√
πSt

4
·
[
1 + (D/De)2

] · [1 − (D/De)2
]

1 + (D/De)3
(30)

For present problem, the AMOVI tube array model (P/D = 1, 44) have confinement ratio
De/D = 2, 702. One defines the number of time-steps per period Nϕ � 2π/δϕ (Δϕ � δϕ). Thus
the optimal number of time-step is Nϕ · (δCa/Ca) ≥ 109. For an relative error δCa/Ca � 1%,
the phase number Nϕ optimal is 10900 time-steps per period .

6.2.2 Numerical results analysis

The comparisons between ALE and of Transpiration methods are carried out under same geo-
metrical and initial conditions. We use Pentium 4 Xeon c© 3GHz computers with 2Go of memory
to carry out ours simulations on forced movement and free vibration with three and four periods
of vibration, respectively. The signal identification procedures are the Phase method for forced
movement and the Gharib’s least-square method for free vibration. Phase method analyses the
last period, while Gharib’s method uses the last three periods to find the frequency and damping
ratio.

The Figure 11 compares the pressure fields at maximum velocity obtained by ALE and
Transpiration. The ALE and Transpiration pressure fields aren’t symmetric with the horizontal
axis due to the confinement effects of close tubes.

Figure 12 present the frequency ffs and damping ratio ξfs evolution on function of phase
number Nϕ ∈ [300 − 4600] for Transpiration and ALE methods. Table 3 summarizes numerical
frequency, damping results, and corresponding added mass Ma and damping coefficient Ca,
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VAL − ISO

>−1.00E−04

< 1.10E−04

−9.85E−05

−8.87E−05

−7.88E−05

−6.89E−05

−5.91E−05

−4.92E−05

−3.93E−05

−2.95E−05

−1.96E−05

−9.76E−06

 1.04E−07

 9.97E−06

 1.98E−05

 2.97E−05

 3.96E−05

 4.94E−05

 5.93E−05

 6.91E−05
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 9.87E−05

 1.09E−04

(a) ALE

VAL − ISO

>−1.01E−04

< 1.05E−04

−9.92E−05

−8.96E−05

−8.00E−05

−7.04E−05

−6.08E−05

−5.10E−05

−4.14E−05

−3.18E−05

−2.22E−05

−1.25E−05

−2.90E−06

 6.74E−06

 1.64E−05

 2.60E−05

 3.56E−05

 4.52E−05

 5.50E−05

 6.46E−05

 7.42E−05

 8.38E−05

 9.34E−05

 1.03E−04

(b) Transpiration

Figure 11: Comparison of pressure fields at maximum velocity.
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identified by free vibration and forced movement procedures. This results are compared with
Roger’s semi-analytical solution, low-Reynods experimental test of AMOVI model, and other
numerical results - CREATIVE EdF-CEA co-operative work group [3]-.

(a) Frequency ffs(Hz)

(b) Damping ratio ξfs(%)

Figure 12: ALE and Transpiration time convergence of tube+fluide system. OBS: Each vertical
scale subdivisions correspond to a relative error δε � 0.4% in frequency and δε � 9% in damping.

Table 3 synthesizes converged results by Richardson extrapolation comparing with exper-
imental and analytical values. Time convergence of coupling algorithms have a monotonous
asymptotic behavior even with small Nϕ.

The ALE and Transpiration differences are only shown for damping ratio evolution that
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Figure 13: Richardson extrapolation (27) per report time convergence of damping ratio ξfs(%)
of tube+fluide system.

does not exceeding 2.5% for Transpiration method. The frequency results are similar for both
methods. A spatial discretization Nδ = 21 nodes offer alike results then to Nδ = 42 nodes.

Transpiration ALE AMOVI
Low Re

Rogers
Creatif

EdFraf = 0 raf = 1 raf = 0 raf = 1

Free Vibration

ffs(Hz) 11,634 11,634 11,626 11,628 11,78 11,55 11,887
ξfs(%) 1,254 1,210 1,245 1,233 1,17 1,16 1,165

Forced Movement

Ma 1,0886 1,0359 1,0886 1,0359 0,9561 1,0769 0,9028
Ca 0,06807 0,06404 0,06807 0,06404 0,05736 0,05964 0,05586

ffs(Hz) 11,526 11,625 11,526 11,625 11,78 11,55 11,887
ξfs(%) 1,321 1,265 1,321 1,265 1,17 1,16 1,165

Table 3: Summary of numerical, experimental and semi-analytical results.

7 Conclusions

In this present work, we carry out a numerical analysis of dynamical characteristics of AMOVI
square tube-bundle experimental model. We analyse the numerical performances of ALE and
Transpiration methods. We present two examples: (a) free vibration of a tube in viscous laminar
fluid, and (b) free vibration and imposed movement of a tube into a rigid 9x9 tube-array.

ALE and Transpiration results of first case have been validated with help of analytical
solution and experimental data. We develop numerical criteria to control the results quality.
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Finally, to last one, we carry out a numerical dynamical analysis of the experimental mock-up
AMOVI composed of a mobile cylinder into a rigid 9x9 tube-array with fluid. We compare the
numerical results to experimental data, other numerical results and the semi-analytical solution
of Roger et al. [27].

ALE and Transpiration implementation show similar converged results. The hypothesis of
small vibrations, made by Transpiration method, is valable to fluid-structure problems (without
fluid flow). Transpiration method converge a little slower than ALE.

Further developments will be carried out in order to improve the coupling process with flow
dynamics and mobile boundaries.
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