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Abstract 

This work presents a metamodel strategy to approximate the 

buckling load response of laminated composite plates. In order to 

obtain representative data for training the metamodel, some lami-

nates with different stacking sequences are generated using the 

Latin hypercube sampling plan. These stacking sequences are 

converted into lamination parameters so that the number of in-

puts of the metamodel becomes constant.  The buckling load for 

each laminate of the training set are computed using finite ele-

ments. In this way the inputs-outputs metamodel training pairs 

are the lamination parameters and the corresponding bucking 

load. Neural network and support vector regression metamodels 

are employed to approximate the buckling load. The performances 

of the metamodels are compared in a test case and the results are 

shown and discussed. 
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1 INTRODUCTION 

Laminated composite materials are made from layers which usually consist of two distinct phases: 

matrix and fibers. The fibers (e.g. carbon, glass, aramid) are embedded in a polymeric matrix. In a 

single layer (or ply) the fibers are oriented in a certain direction and when many layers are stacked 

together, making a laminate, each one can be tailored with a different orientation with each other. 

Specific properties and mechanical behavior of laminated composites can be found in Jones (1999), 

Staab (1999) or Mendonça (2005). The definition of the best orientation angle for each ply usually 

demands a great amount of computational time for complex structures, even when optimization 

algorithms are used. One option, in order to reduce the computational cost in the optimization pro-

cess, is to use metamodels. A metamodel (also called surrogate model) is a mathematical model 
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trained to represent or simulate a phenomenon. The training process is performed based on input-

desired output training pairs, that is, the metamodel receives inputs and desired outputs and its 

parameters are adjusted in order to reduce the error between the metamodel output and the desired 

output. The selection of the metamodel training inputs can be performed randomly or planned aim-

ing to explore a representative set of values of the design variables. The latter is called designs of 

experiments (DOE).  

This works aims to analyze the laminated composites buckling using lamination parameters, 

neural networks and support vector regression. The knowledge of critical buckling load is important 

in the design of thin structures such as laminated composites. The first step of our approach is to 

apply the Latin hypercube DOE technique (Meyers and Montgomery, 2002) to obtain the stacking 

sequence samples for the training input laminates. The second step is to convert the laminate stack-

ing sequences (i.e., the set of ply angle orientations) into lamination parameters. This is done in 

order to have a constant number of inputs for the metamodel. Then, the buckling load for each 

laminate configuration is computed with the commercial finite element code Abaqus. This is the 

third step and provides the outputs for training the metamodel. Once the training pairs are ob-

tained, the final step is to train the metamodels and evaluate their performances in a test case. 

Hence, the objective of this study is to compare the ability of neural network and support vector 

regression metamodels in estimating  buckling load. The buckling load response computed by finite 

element and its approximation by neural network and by support vector regression are presented in 

order to verify which of these metamodels is the most suitable for the present application. Statisti-

cal analysis using the correlation factor is adopted to compare the performance of the different 

metamodels. 

 
2 BUCKLING  OF LAMINATED COMPOSITES  

As the structures of laminated composites are usually thin and subject to compressive loads, they 

are susceptible to buckling. The analyses of buckling behavior are, in general, conducted to maxim-

ize the buckling load in order to obtain a reliable and lightweight safe structure. General buckling 

theory for laminated composites can be found in Jones (1999). More specifically, Leissa (1983) pre-

sented classical buckling studies with mathematical and physical approaches. The subject is treated 

with classical bifurcation buckling analysis, plate equations and their solutions. Analytical analysis 

and development prediction of buckling and postbuckling is stated by Arnold and Mayers (1984). 

Sundaresan et al. (1996) studied the buckling of thick laminated rectangular plates adopting the 

Mindlin’s first-order shear deformation theory and von Karman’s theory. Critical buckling loads of 

rectangular laminated composite plates were also studied by Shukla et al. (2005), using Chebyshev 

series for spatial discretization, reporting results for different boundary conditions.  Geier et al. 

(2002) presented the influence of the stacking sequence on the buckling. Baba (2007) studied the 

buckling behavior of laminated composite plates focusing on the influence of the boundary condi-

tions and the studies are based on experimental and numerical analyses.  Since finding the best 

stacking sequence is complex because it is a large scale problem and has a high computational cost, 

optimization techniques are usually implemented. For example, Erdal and Sonmez (2005) used the 

simulated annealing algorithm to find the optimum design of composite laminates for maximum 

buckling load. The ant colony algorithm was applied to an optimum buckling design by Wang et al. 
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(2010). Kalnins et al. (2009) used the metamodel approach for optimization of postbuckling re-

sponse. Artificial neural networks have been used by Bezerra et al. (2007) to approximate the shear 

mechanical properties of reinforced composites. Reddy et al. (2011) optimized the stacking sequence 

of laminated composite plates applying neural network. Their work included experimental and finite 

element analysis for minimizing the deflections and stresses. In the step of validation tests, they 

evaluated the quality of the results of the predicted outputs and the experimental measured outputs 

using a regression coefficient.  The high correlation between the predicted values by neural network 

and finite element analysis validated the metamodel. Reddy et al. (2012) studied the D-optimal 

design sampling plan and artificial neural network in the natural frequency prediction of laminated 

composite plates. Todoroki et al. (2011) proposed a Kriging surrogate model in order to predict and 

maximize the fracture load of laminated composites using lamination parameters. Lamination pa-

rameters were also adopted by Liu et al. (2010) in the optimization of blended composite wing pan-

els using smeared stiffness technique and by Herencia et al. (2007) in the optimization of long aniso-

tropic fiber-reinforced laminate composite panels with T-shaped stiffeners.  

This work presents artificial neural network (ANN or simply NN) and support vector machine 

(SVM) metamodels of a laminated composite plate. The metamodels are trained with lamination 

parameters as inputs. The desired outputs are the composite plate buckling loads, which are com-

puted by a finite element model. The goal is to investigate which metamodel performs better in this 

application. The methodology of design of experiments and metamodeling is applied in the numeric 

case to obtain the buckling response and the results are presented and discussed. A summary about 

the learning formulation, lamination parameters and Latin hypercube sampling technique are pre-

sented.  

  
2.1 Lamination parameters 

Lamination parameters are the extension of the invariant concepts for a lamina to a laminate pro-

posed by Tsai and Pagano (1968) and are described here based on Jones (1999) and Foldager et al. 

(1998).  

The transformed stiffnessess of an orthotropic composite ply is written as  
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where 
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Looking at (Eq. (1)), it is difficult to understand what happens to a laminate when it is rotated. 

Motivated by that fact, Tsai and Pagano (1968) recasted the transformed stiffnessess and obtained 

what is called invariants, which are written as  
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The invariants can be used to rewrite the transformed stiffnesses of an orthotropic lamina 
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Looking at Eq. (4), it is possible to note that the transformed stiffnesses’ elements 11Q , 22Q , 12Q  

and 66Q  computed with the invariants have as first terms in their equations the invariants U1, U4 

and U5, which depend only on the material properties. The use of invariants makes easier to under-

stand how the lamina stiffness is composed. For example, 11Q  is determined by U1, plus a second 

term of low-frequency variation with , and another term of higher frequency. Hence, U1 represents 

an effective measure of lamina stiffness because it is not influenced by orientation (Jones, 1999). 

 The  laminate stiffness matrices [A], [B] and [D] in terms of a matrix of invariants [U] and the 

lamination parameters {A,B,D  can be written in a vector form as 
 

              
     

     
    

    
 

               
     

     
    

    
 

    
  

  
         

     
     

    
    

 

(5) 



Rubem M. Koide et al. /  Laminated composites buckling analysis using lamination parameters, neural networks and support vector regression    275 

Latin American Journal of Solids and Structures 12 (2015) 271-294 

 

where t  is the total thickness of the laminate and [U] is the matrix of invariants set and it is given 

by 
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The lamination parameters are written as 
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The matrix [A] and the vector {A} has the following correspondence: 
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and the same is done for matrices [B] and [D]. 

 In the context of metamodels, the main advantage of using lamination parameters is that an 

arbitrary number of layers with different orientations can be converted in just twelve lamination 

parameters. That is, the number of inputs of the metamodel becomes constant and it is not neces-

sary to train a different metamodel when the number of layers is changed. Looking at Eq. (7), it is 

possible to note that the lamination parameters depend on the total thickness of the laminate, 

which means that for metamodels purposes the number of layers can vary, but the total thickness 

must remain constant. 
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3 DESIGN OF EXPERIMENTS AND METAMODELING 

As already mentioned, the technique to plan the number and location of the sampling points in the 

design space is called design of experiments (DOE). A metamodel or surrogate model is generated 

from experimental tests or computer simulations. It uses mathematical functions to approximate 

highly complex objective in the design problems (Liao et al., 2008). Metamodeling approach (some-

times also called response surface methodology) has been used for the development and the im-

provement of designs and processes.  Meyers and Montgomery (2002) defined the response surface 

as a collection of statistical and mathematical techniques for development, improving and optimiz-

ing processes. Simpson et al. (2008) and Wang and Shan (2007) reviewed this subject, focusing on 

sampling, model fitting, model validation, design space exploration and optimization methods. An 

approximate function or response is searched based on sequential exploration of the region of inter-

est. The basic metamodeling technique has the following steps: sample the design space, build a 

metamodel and validate the metamodel (Wang and Shan, 2007). There are many experimental de-

signs plans to sample the space such as central composite, box-behnken, Latin hypercube, Monte 

Carlo (Meyers and Montgomery, 2002). A review study  and comparison of several sampling criteria 

are presented by Janouchova and Kucerova (2013). There are also many metamodels techniques 

such as Kriging, radial basis functions, artificial neural network, decision tree and support vector 

machine (Wang and Shan, 2007 and Vapnik, 2000). Suttorp and Igel (2006) defined support vector 

machine as a learning machine strategy based on a learning algorithm and on a specific kernel that 

computes the inner product of an input set of points in a feature space.  In this work, Latin hyper-

cube design is applied and also two metamodels based on learning machine, neural network and 

support vector regression (SVR), are used. In this case, learning is a problem of function estimation 

based on empirical data as explained Vapnik (2000). Vapnik proposed this approach in the 1970s. 

In the analysis of learning processes, inductive principle is applied with high ability and the ma-

chine learning algorithm is generated by this principle. The learning machine model is usually rep-

resented by three components (Vapnik, 2000). First, a generator of random vector G( ) or the in-

put data; second, a supervisor (S) which returns an output value  ; and third, a learning machine 

(LM) that implements a set of functions that approximates the supervisor’s response   . Figure 1 

shows a schematic representation of a learning model. 

 

 
Figure 1: General learning model  (Vapnik, 2000). 
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3.1 Latin Hypercube Design 

Latin hypercube (LH) design is a DOE strategy to choose the sampling points. Pan et al. (2010) 

stated that LH is one of the “space-filling” methods in which all regions of design space are consid-

ered equal, and the sampled points fill the entire design space uniformly. Forrester et al. (2008) 

explained that LH sampling generates points by stratification of sampling plan on all of its dimen-

sions. Random points are generated by projections onto the variable axes in a uniform distribution. 

A Latin square or square matrix n x n is built filling every column and every line with permutation 

of {1, 2, … , n} as stated by Forrester et al. (2008). Following in this way, every number must be 

selected only once in all axes. A simple example of a Latin hypercube with n = 4 is presented in 

Table 1, where each line represents one sample that constructs the input sampling data with uni-

form distribution. 
 

Latin hypercube 

2 3 1 4 

3 2 4 1 

1 4 3 2 

4 1 2 3 
 

Table 1: Latin square sampling example. 
 

The variables are uniformly distributed in the range [0,1]. The normalization is used for multidi-

mensional hypercube, where the samples of size n  x m  variables are randomly selected considering 

the m permutations of the sequence of integers 1, 2, … ,n and assigning them to each of the m col-

umns of the table (Cheng and Druzdzel, 2000).  In the multidimensional Latin hypercube the design 

space is divided into an equal sized hypercube and a point is placed in each one (Forrester et al., 

2008). As an example, a ten-point Latin hypercube sampling plan for a laminated of two layers is 

shown in Figure 2. The design based on two variables, the lamination angles, ranged from 0  to 90 , 

is selected randomly with the uniform distribution.  If the problem has numerous design variables, 

the computational demand also increases. However, using some DOE technique, for example, Latin 

hypercube, data sampling can be generated, which is able to better represent the design space and, 

as a consequence, more accurate models can be obtained with less points, and subsequently decrease 

the computational time. 
 

 
Figure 2: Laminated angle sampling plan with ten-points. 
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In this work, the ply angle orientations are converted into lamination parameters in order to keep 

the number of inputs constant for the metamodels, independently of the number of layers of the 

laminate.  

Figure 3 shows the design space of a four-layer symmetric laminate, which has only two design var-

iables (1 and 2).  This design space considers the plies angular orientations varying in the range 

[0 90] with increments of one degree (blue points). The red points are the laminates selected by the 

LHS. Figure 4 shows the design space of the same laminate, but considering lamination parameters. 

It means that the lamination parameters are computed for each laminate of Fig. 3 and showed as 

the blue dots in Fig. 4. The laminates selected by the LHS are also highlighted in lamination pa-

rameters design space as the red dots. It is possible to see that they are uniformly distributed in 

both design space. 

These figures also show that the angular orientation design space is completely filled and each 

laminate has corresponding lamination parameter. On the other hand, the lamination parameters 

design space ranges from -1 to 1, but there is some empty regions in the space. It means that some 

lamination parameters do not have a correspondent laminate. In this way, it can be concluded that 

for optimization purposes it is not possible to considers only the lamination parameters design space 

because the result can be  a non existent laminate. Foldager et al. (1998) presented an approach to 

deal with this fact. 
 

 
 

Figure 3: Design space considering angular orientation. 

 

 
Figure 4: Design space considering lamination parameters   

  and   
 . 

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90






 

 

Design points

LHS points

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1






 

 

Design points

LHS points



Rubem M. Koide et al. /  Laminated composites buckling analysis using lamination parameters, neural networks and support vector regression    279 

Latin American Journal of Solids and Structures 12 (2015) 271-294 

 

3.2 Neural network 

Neural network studies have started by the end of the 19th and the beginning of the 20th century. 

By this time researchers have started to think about general learning theories, vision, conditioning, 

etc. The mathematical model of a neuron was created in the 1940’s and the first application of neu-

ral networks was about ten years later with the perceptron and the ADALINE (ADAptive Linear 

Neuron). The ADALINE and the perceptron are similar neural networks with a single layer.  The 

first one uses the transfer linear function and the second one uses hard limiting function. The per-

ceptron is trained with the perceptron learning rule and the ADALINE with the Least Mean 

Squared (LMS) algorithm. They both have the same limitation that is to only solve linearly separa-

ble problems. This limitation was overcome in the 1980’s with the development of the 

backpropagation algorithm. It is a generalization of the LMS algorithm used to train multilayer 

networks. As the LMS, the backpropagation is an approximate steepest descent algorithm. The 

difference is that in the ADALINE the error is a linear explicit function of the network weights and 

its derivatives with respect to the weights can be easily computed.  The backpropagation, by its 

time, is for multilayer networks with nonlinear transfer functions and the computation of the deriv-

atives with respect the weights require chain rule. This means that the error must be 

backpropagated by the multilayer neural network in the process of updating the weights (Hagan et 

al., 1996). 

Figure 5 shows the model of a neuron used in a multilayer neural network.  

 

 
 

Figure 5: Nonlinear model of a neuron (Haykin, 1999). 

  

It receives some inputs (xi) that are multiplied by synaptic weights (wki). The bias (bk) are weights 

with constant input equal to one. The sum of these weighted inputs (vk) has its amplitude limited 

by the activation function (φ (.)). The neuron output (yk) is given by  
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One multilayer network is represented in Figure 6. It has one input layer, one layer of hidden neu-

rons and one layer of output neurons. By adding one or more hidden layers, the network is able to 

extract higher-order statistics, which is important when the size of the input layer is large (Haykin, 

1999). 

 
Figure 6: Multilayer neural network. 

 

The neural network can be trained by supervised or unsupervised learning. The unsupervised learn-

ing uses competitive learning rule and it is not the subject of this work. Supervised learning needs a 

desired output to be compared with the neural network output and return an error. The learning 

process is based on error correction. Error measurement is a nonlinear function of the network pa-

rameters (weights and bias) and numerical analysis methods for the minimization of functions may 

be applied. The error minimization process is performed with the weights and bias adjustment using 

the backpropagation algorithm or one of its variations. It is described here based on Haykin (1999). 

 The function to minimize is the mean squared error, which is written as 
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where {  } is a vector with the weights and bias of the neural network neuron k and {ek} is the 

error vector at the n-th iteration.  

 The weights and bias are updated according to the following rules  
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where [W] is a matrix with the weights of the m-th  neural network layer , is the rate of learning 

and   
m

S  is the vector of the  sensitivities of layer m which is given by 
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Rm is the number of neurons at layer m.  The sensitivity of layer m is computed by the sensitivity 

of layer m+1. This defines the recurrence relationship where the neurons in hidden layers are 

charged by the neural network error. 

 In order to explain the recurrence relationship, consider the following Jacobian matrix, 
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 Considering, for example, the element ij of this Jacobian matrix, 
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In matrix form: 
 

 

 
    

1

1

m
m

m m

m

v
W v

v




  
 

 (15) 

where, 
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 The recurrence relationship is written as  
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in which is possible to see that the sensitivity at layer m is computed using the sensitivity at layer 

m+1.  
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This work uses one of the variations of the backpropagation algorithm known as the Levenberg-

Marquardt method, which was proposed by Levenberg (1944) and it is a variation of Newton’s 

method that does not require the calculation of second derivatives and, in general, provides a good 

rate of convergence and a low computational effort. 

 
3.2 Support Vector Regression 

The support vector machine theory is described in Vapnik (2000). An overview of statistical learn-

ing theory, including function estimation model, problems of risk minimization, the learning prob-

lem, an empirical risk principle that inspired the support vector machine are reported in Vapnik 

(1999) and the learning machine capacities was stated by Vapnik (1993). A background about the 

SVM or SVR can be found in Vapnik and Vashist (2009) and a tutorial in Smola and Schölkopf 

(2004), additional explanation in Sánchez A. (2003), Pan et al. (2010), Üstün et al. (2007), Suttorp 

and Igel (2006), Che (2013), Basak et al. (2007), Ben-Hur et al. (2001).  

Support vector machine is based on learning method using training procedures (Sánchez A., 

2003). The learning machine is employed for solving classification or regression problems since it 

can model nonlinear data in high dimensional feature space applying kernel functions, as stated by 

Üstün et al. (2007). Kernel methods have the capacity to transform the original input space into a 

high dimensional feature space. The decision function of support vector classification or support 

vector regression is determined by support vector as reported by Guo and Zhang (2007) and Boser 

et al. (1992). The difference between classification and regression is that support vectors generate 

the hyperplane in classification, i.e., a function that classifies some set of samples, for example pat-

tern recognition. In the regression case, the support vector determines the approximation function. 

A short review of SVR, which is a variation of SVM, is described below. The SVR technique search 

the multivariate regression function f(x) based on the input data set, i.e., the training set X  to 

predict the output data (Vapnik, 1993, Vapnik, 1999, Vapnik, 2000, Smola and Schölkopf, 2004, 

Üstün et al., 2007, Guo and Zhang, 2007). The equation of the regression function is given by 
 

            
  

 

   

          (18) 

 

where         is a kernel, n is the number of training data, b is an offset parameter of the model 

and       
  are Lagrange multipliers of the primal-dual formulation of the problem (Smola and 

Schölkopf, 2004). The vector of the training data set is written as 
 

                    (19) 
 

where    is the  -th input vector for  -th training sample and    is the target value or output vector 

for  -th training sample. The fitness function or the approximation model is considered good if the 

output of SVR regression      is quite similar to the required output vector   . The kernel K  repre-

sents an inner product of the kernel function  . Polynomials, splines, radial basis are examples of 

kernel functions. The kernel is, in general, a nonlinear mapping from an input space onto a charac-

teristic space formulated as 
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                       (20) 
 

Kernel transformation works with non-linear relationships in the data in an easier way (Üstün et 

al., 2007). As described by Che (2013), for nonlinear regression problems, the kernel function repre-

sents the extension of a linear regression of support machine or the linear regression on the higher 

dimensional space. The SVR for nonlinear functions is based on the dual formulation utilizing La-

grange multipliers. The parameter   can be obtained through the so called Karush-Kuhn-Tucker 

conditions (Smola and Schölkopf, 2004, Vapnik, 2000), from the theory of constrained optimization 

and which must be satisfied at the optimal point considering the constraint        and    
     In 

order to find a model or, in other words, an approximated function, the objective function to be 

minimized is 
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subject to 
 

       
    

 

   

           
            (22) 

 

 

where       
  are the weights that are found minimizing the function and   and   are the optimiza-

tion function parameters. The constants   and   determine the accuracy of the SVR models. The 

best combination of these parameters means that the surrogate model achieved a good fitness ad-

justment. Smola and Schölkopf (2004) explained that the regularization constant   determines the 

trade-off between the training error and model approximation. The parameter   is associated to the 

precision in a feasible convex optimization problem, i.e., in some cases the “softmargin” is accepted 

as loss function or the amount of deviations tolerated.  

 The transformed regression function of SVR, based on support vector, can be reformulated as 

(Guo and Zhang, 2007) 
 

            
           

     

 (23) 

 

where SV  is the support vector set. The transformed regression problem may be solved, for exam-

ple, by quadratic programming and only the input data corresponding to the non-zeros    and 

  
  contribute to the final regression model (Vapnik, 2000, Üstün et al., 2007, Smola and Schölkopf, 

2004).  The corresponding inputs are called support vectors. 

 The architecture of a regression machine is depicted graphically in Figure 7, with the different 

steps for support vector algorithm. The input of the support vector for training processes is mapped 

into a feature space by a map  . Evaluation of kernel step is processed with a dot product of the 

training data under the map    (Smola and Schölkopf, 2004). The feature space for nonlinear trans-

formation based on support vector is achieved with the appropriated kernel function. Kernel func-
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tions are based on the variance-covariance, a polynomial, radial basis function (RBF), polynomial of 

degree  , Gaussian RBF network, splines (Sánchez A., 2003). The output prediction in the feature 

space is obtained with the weights       
   and the term b as in Eq. (22). This support vector 

machine constructs the decision function in learning machine process. After the training steps are 

concluded, a test vector is applied in order to verify the results and validate the metamodel. In 

order to check the results, the correlation factor R2 is computed (Meyers and Montgomery, 2002, 

Reddy et al., 2011) as 
 

      
        

 
 

     
 

 

  (24) 

 

where    are the targets or experimental values and    are the outputs or predicted values from 

SVR. This regression coefficient estimates the correlation between SVR predicted values and tar-

get values. 

 
 
 

 
 

 

 

Figure 7: Graphical representation of regression machine metamodel. 

 
 

 

 

 



Rubem M. Koide et al. /  Laminated composites buckling analysis using lamination parameters, neural networks and support vector regression    285 

Latin American Journal of Solids and Structures 12 (2015) 271-294 

 

4 NUMERICAL RESULTS 

The laminated structure analyzed here is taken from the work of Varelis and Saravanos (2004). 

Figure 8 shows its geometry and engineering properties. 

 

 

Figure 8: Geometry and properties of the laminated composite plate. 

 

As already mentioned, the Latin hypercube scheme is used to define the samples. Data samples are 

different stacking sequence laminates for which the buckling load is computed in order to provide 

the input-output training pairs for the metamodels. The buckling load is obtained using the com-

mercial finite element package Abaqus. A neural network metamodel and a support vector machine 

metamodel are trained, and their performances are compared. 

 
4.1 Latin hypercube sampling data  

LH plan is applied to select representative stacking sequences of symmetrical laminates with 24 

layers and discrete angles              . The following stacking sequence is assumed 

                            ,.  As we can observe, the laminate is not balanced and we have 7 

variables.  120 laminates are generated by LHS,  and their buckling loads are computed by a nu-

merical model built in the finite element package Abaqus. Then, as a first attempt, 35 sampling 

points (laminates) were selected for the training step for both metamodels.  These quantities are 

based on the studies of Pan et al. (2010) and Yang and Gu (2004). They used 5   , where     is 

the total number of design variables. Table 2 presents the 35 samplings of laminates selected, con-

sidering      , to train the metamodel and the corresponding buckling loads obtained via finite 

element simulation (Abaqus).  
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Latin hypercube training samples and the corresponding responses  

Laminate Stacking sequence 
Buckling load (Abaqus mod-

el) 

1               52413.17 

2                          46059.99 

3                          38352.41 

4                      32987.67 

5                         36067.43 

6                       35698.26 

7                   51492.20 

8                     33306.83 

9                44831.61 

10                  34240.61 

11                       44256.14 

12                          44033.28 

13                           44033.28 

14                            47174.09 

15                    41610.35 

16                     38821.80 

17                     50675.00 

18                 51962.65 

19                       39785.67 

20                   31729.92 

21                       39494.64 

22                    41260.40 

23                    43927.37 

24                     50418.32 

25                      51798.71 

26                     43572.26 

27                          42277.67 

28                         33522.56 

29                    39165.87 

30                       35190.60 

31                      40925.76 

32                     50589.38 

33                          40169.62 

34                        45359.92 

35                    42074.75 

 

Table 2: Latin hypercube training samples for a 24-layer laminate and the corresponding buckling loads. 
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The pairs of laminate angular orientation and corresponding buckling loads may be converted in 

pairs of lamination parameters and corresponding buckling loads, as exposed in section 2.1. The 

advantage of doing this is that the number of lamination parameters is constant. This means that, 

for metamodels training purposes, the number of inputs became constant. The lamination parame-

ters are computed with Eq. (7) and the results are shown in Table 3.  
 

Lamination parameters for the training samples 

Laminate   
    

    
    

    
    

    
    

  

1 0.1667 0.3333 -0.3333 0.0000 0.0289 0.4329 -0.9259 0.0000 

2 0.2500 0.0833 -0.1667 0.0000 0.3698 0.0770 -0.2581 0.0000 

3 0.0000 0.1667 0.3333 0.0000 0.3056 0.0984 0.7593 0.0000 

4 -0.3333 0.1667 0.3333 0.0000 -0.6759 0.2928 0.3704 0.0000 

5 0.4167 0.2500 0.5000 0.0000 0.3466 0.0885 0.8229 0.0000 

6 -0.2500 0.2500 0.1667 0.0000 -0.3142 0.0990 0.7581 0.0000 

7 0.0833 0.2500 -0.1667 0.0000 0.0561 0.3490 -0.7581 0.0000 

8 -0.1667 0.0000 0.6667 0.0000 -0.3935 0.0104 0.9352 0.0000 

9 0.1667 0.3333 -0.3333 0.0000 0.4248 0.4051 -0.1481 0.0000 

10 0.5000 0.1667 0.6667 0.0000 0.6528 0.0046 0.9907 0.0000 

11 0.2500 0.0833 0.1667 0.0000 -0.0226 0.0527 0.0845 0.0000 

12 -0.0833 0.2500 0.1667 0.0000 -0.1395 0.1267 -0.0197 0.0000 

13 -0.0833 0.2500 0.1667 0.0000 -0.1395 0.1267 -0.0197 0.0000 

14 0.0000 0.0000 0.0000 0.0000 0.1979 0.0729 -0.2500 0.0000 

15 -0.1667 0.3333 0.0000 0.0000 -0.3935 0.3947 -0.0833 0.0000 

16 0.5833 0.2500 0.1667 0.0000 0.6846 0.2934 0.3692 0.0000 

17 -0.1667 0.1667 -0.3333 0.0000 -0.0914 0.3553 -0.8148 0.0000 

18 0.1667 0.5000 -0.6667 0.0000 0.0324 0.4375 -0.9352 0.0000 

19 -0.2500 0.0833 0.5000 0.0000 -0.3976 0.0422 0.1493 0.0000 

20 -0.1667 0.1667 0.3333 0.0000 0.5289 0.0984 0.7593 0.0000 

21 0.2500 0.0833 0.5000 0.0000 0.2587 0.0284 0.6493 0.0000 

22 0.1667 0.3333 0.0000 0.0000 -0.3009 0.3113 0.0833 0.0000 

23 0.4167 0.2500 -0.1667 0.0000 0.4543 0.1406 -0.0914 0.0000 

24 0.0833 0.4167 -0.5000 0.0000 0.1672 0.4196 -0.6493 0.0000 

25 0.0833 0.2500 -0.5000 0.0000 0.0839 0.3559 -0.8160 0.0000 

26 0.1667 0.0000 0.6667 0.0000 -0.0509 0.0382 0.1574 0.0000 

27 0.0833 0.4167 0.1667 0.0000 0.2818 0.3744 0.2512 0.0000 

28 -0.5000 0.3333 0.0000 0.0000 -0.6806 0.2975 0.3611 0.0000 

29 0.1667 0.3333 0.0000 0.0000 0.0324 0.1030 0.7500 0.0000 

30 -0.0833 0.0833 0.8333 0.0000 -0.2506 0.0006 0.9988 0.0000 

31 -0.4167 0.2500 -0.1667 0.0000 -0.4578 0.1372 -0.0845 0.0000 

32 -0.0833 0.2500 -0.5000 0.0000 -0.0839 0.3559 -0.8160 0.0000 

33 0.5833 0.4167 0.1667 0.0000 0.6256 0.3744 0.2512 0.0000 

34 0.4167 0.0833 0.1667 0.0000 0.4022 0.0666 -0.1933 0.0000 

35 -0.1667 0.1667 0.0000 0.0000 0.1343 0.1227 0.4167 0.0000 
 

Table 3: Lamination parameters values for the training samples. 



288      Rubem M. Koide et al. /  Laminated composites buckling analysis using lamination parameters, neural networks and support vector regression 

Latin American Journal of Solids and Structures 12 (2015) 271-294 

 

4.2 Support Vector Regression Metamodel 

A support vector regression script was developed in Python language. The input data generated 

from Latin hypercube is the computational experiments matrix with 35 stacking sequences, convert-

ed to lamination parameters, as shown in Table 3. Gaussian RBF function was adopted as the ker-

nel function. The simulation of training data sampling with Latin hypercube sampling and buckling 

load is presented in Figure 9.  

 

Figure 9: Results from SVR metamodel. 
 

The statistical learning methods, as seen in section 3.2, for metamodel approximation with C = 

1e10 and e = 0.155 resulted in the best fitting regression with vectors machine. To estimate the 

quality of regression the correlation factor was computed as in Eq. 24. The graphics with this corre-

lation was also plotted. The correlation factor calculated for the sampling set was R2 = 0.999994. 

This value means that the SVR applied in this case presented a good approximated response.  

In order to validate the model, 15 news samples were used to test the metamodel. Table 4 presents 

these validate sampling for laminated composites. The parameters C = 1e10 and e = 0.155, ob-

tained from the training process were considered in this step. Figure 10 shows the validation results 

for the buckling load. The output vectors were also quite close with the correlation factor R2 = 

0.99999870. Based on these results it is possible to conclude that the support vector regression is a 

good supervising learning method for modeling the critical buckling load of laminated composite 

plates.   
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Latin hypercube training samples and the corresponding responses 

Laminate Stacking sequence Buckling load 

1                     45545.04 

2                       32924.13 

3                     37879.82 

4                     53369.56 

5                   43153.43 

6                    44933.25 

7                      44237.63 

8                      44237.63 

9                       48430.77 

10                     30251.10 

11                       45477.40 

12                            45850.84 

13                 38248.11 

14                        32989.45 

15               52232.50 

 

Table 4:  Validated sampling by LH for laminated composites. 

 

 
 

Figure 10: Validation results for the SVR metamodel. 
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4.3 Neural Network Metamodel 

In this work, the neural network is trained using the Matlab Neural Network Toolbox (MATLAB, 

2010). In order to compare neural network and SVR results, the training data are the same for both 

metamodels. NN uses a network with one hidden layer with 10 neurons. The neural network train-

ing results are presented in Figure 11. This figure shows a comparison between neural network out-

puts and target outputs. It is possible to see that the neural network is well trained, which is con-

firmed by the linear regression with a correlation factor equal to 1. 
 

 

Figure 11: Results from NN metamodel. 
 

As was done for the SVR, 15 news  samples are presented to the neural network in order to validate 

the model. The neural network and finite element outputs are presented in Figure 12. It is possible 

to see that the neural network is not capable of predicting all outputs correctly. This is confirmed 

by the linear regression with a correlation factor equals to 0.800753 in the validating process. This 

result can be caused by an overfitted neural network, which means that the neural network just 

memorized the samples but did not learn the system behavior.  The training correlation factor equal 

to 1 corroborates that hypothesis. Another possibility is that the numbers of samples used in the 

neural network are not enough for it to learn the model system behavior. In order to verify this 

possibility, more samples are provided to the neural network training. Results for NN training with 

80 samples and NN validation with 15 samples are shown in Figure 13. Neural network improved 

with more samples. In this case the correlation factor was R2 = 0.951890. Indeed, for the same con-

ditions, SVR had a better performance in representing the approximation of the system in question. 
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Figure 12: Validated results from NN metamodel. 

 

 

Figure 13: New validated results from NN metamodel. 
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The results showed that the neural network needs more training pairs to learn the behavior of the 

system. The reasons why the SVR had a better performance than NN can be in the radial basis 

function used by SVR as kernel functions. This function returned a better nonlinear regression than 

a neural network approximation.  Neural network is based on the Empirical Risk Minimization 

Inductive Principle. This principle approximates responses for large samples. On the other hand, 

SVR applies the Structural Risk Minimization Inductive Principle that is based on subset of sam-

ples. Vapnik (2000) presented this approach and applied the statistic learning theory. Furthermore, 

the fact that SVR optimality is rooted in convex optimization and neural network in minimizing 

the errors by the backpropagation algorithm can also explain the results.  

Besides the application of SVR and NN metamodels, another  contribution  of  this work  was 

the use of lamination parameters as inputs for the metamodels instead of angular ply orientations 

for a composite structure analysis. This makes possible to use the same metamodel for representing 

a laminate with a different number of layers. This means that the metamodels trained with input-

output pairs representing a 24-layer laminate can be used for laminates with different number of 

layers, once the total thickness remains the same.  

 
5 CONCLUSIONS 

The computational time can be burdensome in the optimization process of laminated composite 

designs. Concerned with this fact, this paper investigated the performance of two metamodels em-

ployed to analyze the buckling load computation of composite plates. The best metamodel is going 

to be used in future studies of buckling load optimization in order to speed up the optimization 

process. The neu-ral network and support vector regression metamodels are obtained by supervised 

learning. Their learning process is based on input-desired outputs training pairs. In order to select 

representative samples to construct the metamodels, the Latin hypercube design is used. In order to 

get a constant number of inputs, the ply orientations are converted into lamination parameters. 

This step makes pos-sible a metamodel trained with a given number of layers to be able to repre-

sent a laminate with a different number of layers since the total thickness of the laminate remains 

constant. The desired outputs are the laminates buckling loads computed by a finite element model. 

The neural networks and support vector regression were trained and tested with the same input-

desired output pairs. The SVR presented better results in comparison to the neural network. Radial 

basis function machines applied in SVR, as kernel function, constructed better nonlinear regression 

than a neural network approximation for the training data. Kernel function overcame the hidden 

layers for nonlinear response in this study. The fact that SVR optimality is rooted in convex opti-

mization, and neural network in minimizing the errors by the backpropagation algorithm, also ex-

plains the results. The metamodels, NN and SVR, have different error minimization techniques, and 

SVR is the best one for the test cases presented here. 
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