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Abstract

A hybrid analytical-numerical procedure has been presented in this paper for the service
load analysis of continuous composite bridges. The procedure accounts for the effects of con-
crete cracking, creep and shrinkage in the concrete portion and thermal gradient across the
cross-section. The procedure is analytical at the elemental level and numerical at the struc-
tural level. A cracked span length beam element consisting of an uncracked zone in middle
and cracked zones near the ends has been proposed to drastically reduce the computational
effort. The progressive nature of cracking of concrete has been taken into account by division
of the time into a number of time intervals. Closed form expressions for the stiffness matrix,
end displacements, crack lengths, interpolation coefficients, and the mid-span deflection of
the beam element have been presented in order to reduce the computational effort and the
book-keeping. The procedure has been validated by comparison with the experimental and
analytical results reported elsewhere and with FEM. The procedure can be readily extended
for the analysis of integral composite bridges and three dimensional framed buildings.

1 Introduction

The composite beam is one of the economical forms of bridge construction. In continuous
composite bridges, the time-dependent effects of creep and shrinkage in concrete can lead to the
progressive cracking of concrete slab near interior supports and result in considerable moment
redistribution along with increase in deflections. Bridges are directly exposed to sunlight and
therefore a thermal gradient arises across the cross-section. In composite bridges, this can
increase the tensile stresses [28] and thereby increase the cracking and mid-span deflections.

Extensive literature is available on time-dependent analysis of continuous composite beams
up to ultimate load stage. Such procedures have been presented by Sakr and Lapos [27], Kwak
and Seo [21], Kwak et al. [22, 23], Mari et al. [25] and Fragiacomo et al. [15]. The procedures
take into account the progressive cracking. In these procedures, the division of the beam along
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Notation

A,B, I area, first moment of area and second moment of area respectively
E,L modulus of elasticity and span length respectively
M bending moment
{P} , {p} force vector of composite beam and beam element respectively
dm, {d} mid-span deflection and displacement vector of beam element respectively
ft tensile strength of concrete
fij , kij , [k] flexibility coefficients, stiffness coefficients and stiffness matrix of a beam element

respectively
n modular ratio
w uniformly distributed load
x, y crack length or distance from end A and L − x respectively
β, λ creep factor for curvature and strain respectively
ε, ρ, σ top fiber strain, curvature and top fiber stress respectively
φ, χ, εsh creep coefficient, aging coefficient and shrinkage strain respectively
α coefficient of thermal expansion
θ rotation
ξ, η interpolation coefficient and 1- ξ respectively

Subscript

A,B ends A and B respectively
c, s concrete/concrete slab and steel respectively
cr, ts, un cracked state/cracked section, tension stiffening and uncracked state/ uncracked

transformed section respectively
e age-adjusted
rs, ss reinforcement and steel section respectively

Superscript

c, s, tm creep, shrinkage and temperature respectively
cs creep and shrinkage both
er error or residual
id, it, t indeterminate, instantaneous and total respectively

the length and across the section is required to take into account the non-linear behaviour under
ultimate load but this division leads to considerable increase in the computational effort.

Some numerical procedures have been proposed for the time-dependent analysis of continuous
composite beams under service load. A coupled system of equations has been proposed by Dezi
and Tarantino [11] for inelastic analysis of continuous composite beams by discretising the time
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into a number of time intervals. The beam has been considered to be uncracked and is discretised
along its axis. Subsequently, the time-dependent analysis of prestressed continuous composite
beams has also been proposed using the coupled system of equations [9]. Cracking is neglected in
this method as it is assumed that prestressing is sufficient to prevent cracking. A simplification
in the method has been proposed later on to carry out the analysis in a single time step [10].

A simplified analytical model using the closed form expressions has been presented to eval-
uate the creep and shrinkage effects in simply supported composite beams [2] neglecting the
cracking. Another simple analytical procedure for the time-dependent analysis of two equal
span continuous composite beams under service load, taking into account cracking, has been
proposed by Gilbert and Bradford [18]. The transformed section approach has been used and
the beam is taken as one element without subdivision along the length and across the cross-
section. The analysis is carried out in single time step and the same crack lengths are assumed
for the entire time interval beginning from the time of application of the load. The progressive
nature of cracking i.e. continuous change in crack length of the beam with time is therefore not
taken into account in this approach. Tension stiffening has also been neglected in the procedure.
This analytical procedure has been further extended by Bradford et al. [7] making it applicable
for two unequal span continuous composite beams. The effect of thermal gradient has not been
considered in these procedures.

The above procedure [18] has been extended by Arockiasamy and Sivakumar [3], for the
analysis of two span continuous composite integral bridges taking into account the thermal
gradient. The above approach though convenient for two-span bridges, would tend to become
tedious if extended to bridge having more than two spans. Simple close form expressions [19]
for composite bridges with limited number of spans are available to ascertain if shrinkage and
thermal gradient would result in subsequent cracking of initially uncracked beams.

On the other hand, elaborate approaches [15, 21–23, 25, 27] are though more general and
accurate but their application for the analysis at service load [25] requires subdivision of the
beams along the length and across the cross-section.

Therefore for application to continuous composite bridges, development of a procedure that
requires a minimal computational effort and is yet accurate is desirable. Herein, for service load,
a hybrid analytical-numerical procedure has been presented to take into account the effects of
concrete cracking, creep, shrinkage and thermal gradient in continuous composite bridges. The
procedure is analytical at the elemental level and numerical at the structural level. The cracked
span length beam element consisting of an uncracked zone in the middle and cracked zones near
the ends has been proposed. Closed form expressions for the stiffness matrix, end displacements,
crack lengths, interpolation coefficients and mid-span deflection of the beam element have been
presented. This approach drastically reduces the computational effort. The proposed procedure
takes into account the progressive nature of cracking of concrete by division of the time into
a number of time intervals. The tension stiffening effect has also been incorporated in the
proposed procedure. The procedure has been validated by comparison with the experimental and
analytical results [18] and with finite element method. The procedure can be readily extended
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for analysis of integral composite bridges and three dimensional framed buildings.

2 Cross-section analysis

A typical composite cross-section along with the strain distribution is shown in Fig. 1. It is
assumed that a plane cross-section remains plane. Slip between the slab and the steel section
has been neglected since the earlier experiments and studies [5,6] have shown that the slip under
sustained service load can be neglected provided the shear connectors are at a sufficient close
spacing. The closer spacing is desirable from design considerations also, since this reduces the
deflections. Under service load, the stress-strain relationship of concrete, prior to cracking, is
assumed to be linearly elastic in both compression and tension. The concrete portion across
the cross-section is assumed to be completely cracked, when the top fiber stress of the concrete
slab exceeds the tensile strength of concrete, ft, since the moment required for cracking the
slab fully is only slightly larger than the moment required for cracking the top fiber only [7].
It is further assumed that in the region of sagging moment, the effect of cracking if it occurs
is negligible [7, 26].The stress-strain relationship for steel in both tension and compression is
also assumed to be linear and stresses in steel section are assumed to be below the yield stress,
this would generally be the case when high strength steel sections are used. Since the neutral
axis varies with time and is also different for the cracked and the uncracked cross-sections, the
top fiber of the composite cross-section has been selected as the reference axis. Age-adjusted
effective modulus method [4] is used for predicting creep and shrinkage effects.
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 Figure 1: Composite cross-section and strain distribution.

The curvature, ρit, the instantaneous top fiber strain, εit and the instantaneous top fiber
stress, σit due to applied moment M it and axial force N it (the superscript, it here and subse-
quently in other quantities indicates the instantaneous value of the quantity), at a cross-section
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(Fig. 1) are given as [17]

ρit = SxM it + SxyN it (1)

εit = SxyM it + SyN it (2)

σit = Ecε
it (3)

where, the quantities Sx, Sy and Sxy are given as

Sx =
A

Ec (AI − B2)
(4)

Sy =
I

Ec (AI − B2)
(5)

Sxy =
B

Ec (AI − B2)
(6)

where Ec = modulus of elasticity of concrete; A = area of the transformed cross-section and B,
I = first and second moment of area of the transformed cross-section about the reference axis.
It may be noted that when the concrete portion across the cross-section is completely cracked,
the properties of the cross-section are those of the transformed steel section and reinforcement
in the slab only.

There is no axial force in continuous composite beams; therefore ρit and εit are given as

ρit = SxM it (7)

εit = SxyM it (8)

In an intermediate span of a continuous composite beam, there may be two cracked zones near
the ends and an uncracked zone in the middle.

First consider a cross-section in the uncracked zone. Let the instantaneous curvature, the
instantaneous top fiber strain, and the instantaneous top fiber stress be designated as ρit

un, εit
un

and σit
un respectively (the subscript, un here and subsequently in other quantities indicates that

the quantities are evaluated using transformed uncracked cross-sectional properties).
Consider now, the effect of creep in the cross-section. Assuming the concrete to be completely

unrestrained, in a time interval beginning from the time of application of load, the change in
curvature and the top fiber strain due to creep would be φρit

un and φεit
un respectively where φ=

creep coefficient at the end of the time interval. To restrain these changes, gradually applied
bending moment −ΔM c

un and axial force −ΔN c
un (the superscript, c here and subsequently in

other quantities indicates that these quantities arise from creep) are required. The quantities
ΔM c

unand ΔN c
un are given as [17]

ΔM c
un = Eeφ

(−Bcε
it
un + Icρ

it
un

)
(9)

ΔN c
un = Eeφ

(
Acε

it
un − Bcρ

it
un

)
(10)
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where Ac = area of concrete; Bc and Ic = first moment of area and second moment of area
of concrete about the top fiber and Ee= age-adjusted effective modulus of concrete given as
Ec/(1 + χφ) in which χ = aging coefficient and may be assumed as 0.8 [7, 8, 18].

Equilibrium is restored by applying ΔM c
un and ΔN c

un on the cross-section. The changes,
Δρc

un in the curvature, and Δεc
un in the top fiber strain, due to ΔM c

un and ΔN c
un are obtained

from Eqs. (1) and (2) respectively, on replacing M
it

and N it by ΔM c
un and ΔN c

un respectively
and Sx, Sy and Sxy by Sx

e,un, Sy
e,un and Sxy

e,un (since ΔM c
un, ΔN c

un are developed gradually)
respectively, and can be expressed in following form:

Δρc
un = βc

unρit
un (11)

Δεc
un = λc

unεit
un (12)

βc
un = (φEe/Aun)

(
AcBunSxy

e,un − BcAunSxy
e,un − BcBunSx

e,un + IcAunSx
e,un

)
(13)

λc
un = (φEe/Bun)

(
AcBunSy

e,un − BcAunSy
e,un − BcBunSxy

e,un + IcAunSxy
e,un

)
(14)

where Sx
e,un, Sy

e,un and Sxy
e,un are evaluated from Eqs. (4)-(6) on replacing A,B and I by the age-

adjusted properties Ae, Be and Ie respectively that in turn are evaluated using the age-adjusted
modular ratio ne = Es/Ee (Es = modulus of elasticity of steel). It may be noted that βc

un is
the creep factor for the curvature by which the instantaneous curvature of an uncracked cross-
section is to be multiplied to yield the change in curvature resulting from the creep. Similarly,
λc

un is the creep factor for the strain.
Consider now, the effect of shrinkage in this cross-section. The changes, Δρs

un in the curva-
ture and Δεs

un in the top fiber strain (the superscript, s here and subsequently in other quantities
indicates that the quantity arises from shrinkage), owing to shrinkage, are given as [17]

Δρs
un = εshEe

(
Sxy

e,unAc − Sx
e,unBc

)
(15)

Δεs
un = εshEe

(
Sy

e,unAc − Sxy
e,unBc

)
(16)

where εsh= shrinkage strain at the end of the time interval.
Next, consider the thermal gradient. It varies continuously with time. A rigorous analysis

would be computationally too expensive since short term variations of equivalent steady state
temperature over a few days or few weeks need to be considered over a long period (�30 years
typically). Further, this data is generally not available. Therefore, it is a common practice to
superimpose the thermal effects resulting from thermal gradients (positive or negative) at an
instant of time on the time varying effects resulting from creep and shrinkage. In a manner
described above for creep and shrinkage, first, the restraining forces ΔM tm

un and ΔN tm
un (the

superscript, tm here and subsequently in other quantities indicates that the quantities arise from
thermal gradient) are obtained by restraining the changes in curvature and strain of unrestrained
concrete and steel. The curvature, Δρtm

un and strain, Δεtm
un are then given by Eqs. (1) and (2)
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respectively, on replacing M it and N it by ΔM tm
un and ΔN tm

un respectively. For a typical tri linear
temperature profile {as adopted by AASHTO [1]} shown in Fig. 2 (a, b), the quantities ΔM tm

un

and ΔN tm
un may be expressed as

ΔM tm
un =Ec

{
αc

[
Bc (T1 − 2g1Dc/3) + Δg (bc/6) (Dc − D!)2(2Dc + D!)

]
+

αs [Asr (n − αc/αs)TsrDsr + AssnT3Dss]}
(17)

ΔN tm
un = Ec

{
αc

[
Ac (T1 − g1Dc/2) + (bc/2)Δg(Dc − D!)2

]
+ αs [Asr (n − αc/αs) Tsr + AssnT3]

}
(18)

where αc, αs=coefficient of thermal expansion of concrete and steel respectively; Asr, Ass=area
of steel reinforcement and steel section respectively; Tsr=temperature at the level of steel rein-
forcement and Δg = g1 − g2.
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Figure 2: Typical thermal gradients for composite bridge cross-section: (a) cross-section; (b)
trilinear gradient (AASHTO 1998); and (c) bilinear gradient.

For a bilinear profile [Fig. 2(a, c)] (as is the case for slabs upto 100 mm thick) and the same
coefficient of thermal expansion, α for steel and concrete, the quantities Δρtm

un and Δεtm
un may

be explicitly expressed as

Δρtm
un = α {−g + gEs [Sx

unIss − Sxy
unBss + Dc (Sxy

unAss − Sx
unBss)] } (19)

Δεtm
un = α {−T1 + gEs [Sxy

unIss − Sy
unBss + Dc (Sy

unAss − Sxy
unBss)] } (20)

where Bss and Iss = first moment of area and second moment of area of steel section about the
top fiber respectively.

In indeterminate structures, an additional moment ΔM id,cs (the superscript, id, cs here and
subsequently in other quantities indicates that the quantities arise in indeterminate structures
gradually due to creep and shrinkage) is generated. The additional curvature, Δρid,cs

un , the
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additional top fiber strain, Δεid,cs
un and the additional top fiber stress, Δσid,cs

un due to ΔM id,cs

are given by Eqs. (7), (8) and (3) respectively on replacement of M it by ΔM id and Ec, Sx,
Sy, Sxy by Ee, Sx

e,un, Sy
e,un, Sxy

e,un respectively. Similarly, an additional moment ΔM id,tm (the
superscript, id, tm here and subsequently in other quantities indicates that the quantities arise
in indeterminate structures at an instant of time due to thermal gradient) is also generated.
The additional curvature, Δρid,tm

un , the additional top fiber strain, Δεid,tm
un and the additional

top fiber stress, Δσid,tm
un due to ΔM id,tm are given by Eqs. (7), (8) and (3) respectively on

replacement of M it by ΔM id,tm.
The total curvature, ρt

un, the total top fiber strain, εt
un and the total top fiber stress, σt

un

(the superscript, t in the quantities here and subsequently in other quantities, indicates the total
value of quantity at the end of a time interval) of an uncracked cross-section at the end of the
time interval are obtained by adding the changes in the quantities in the time interval to their
instantaneous values respectively, as

ρt
un = ρit

un + Δρc
un + Δρs

un + Δρtm
un + Δρid,cs

un + Δρid,tm
un (21)

εt
un = εit

un + Δεc
un + Δεs

un + Δεtm
un + Δεid,cs

un + Δεid,tm
un (22)

σt
un = σit

un + Ee(Δεc
un + Δεs

un − φεit
un − εsh) + Ec(Δεtm

un − αT1) + Δσid,cs
un + Δσid,tm

un (23)

Next consider a cross-section in the cracked zone. The tension stiffening effect is taken into
account by considering the cross-section in two states, uncracked and cracked. The cracked cross-
section in the uncracked state has the same properties as that of the uncracked cross-section.
In the cracked state, as stated earlier, the properties of the cross-section are those evaluated
considering the steel section and reinforcement in the concrete slab only. The contribution
of cracked state in the cross-section is represented by interpolation coefficient, ξ whereas the
contribution of uncracked state is represented by η (= 1 − ξ).

The interpolation coefficient is evaluated by the following expression, based on Eurocode-
2 [14]

ξ = 1 − κ (ft/σun)2 (24)

where κ= 1.0 for initial loading and 0.5 for long term loads; σun= the tensile stress in the
reference axis to be evaluated from Eq. (3) assuming the cross-section to be in the uncracked
state

The instantaneous curvature, ρit
ts and the instantaneous top fiber strain, εit

ts (the subscript,
ts here and subsequently in other quantities indicates that the tension stiffening effect has been
taken into account) of the cross-section are equal to ηρit

un + ξρit
cr and ηεit

un + ξεit
cr respectively

(the subscript, cr here and subsequently in other quantities, indicates the cracked state of the
cross-section). ρit

cr and εit
cr are evaluated from Eqs. (7) and (8) respectively, on using the cracked

state properties.
Consider now, the effect of creep, shrinkage and thermal gradient in a cross-section in the

cracked zone. In the uncracked state, the change in curvature and strain is evaluated in the same
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manner as explained earlier for the uncracked zone [Eqs. (11)-(20)]. In the cracked state, no
change in curvature and strain takes place owing to creep and shrinkage. However, the changes
occur in the cracked state owing to thermal gradient and the indeterminate moments, ΔM id,cs

and ΔM id,tm. The changes, Δρtm
cr in curvature and Δεtm

cr in the strain, owing to thermal gradient
are given by Eqs. (19) and (20) respectively, on replacement of uncracked state properties by the
cracked state properties. The additional curvature, Δρid,cs

cr and the additional top fiber strain,
Δεid,cs

cr due to ΔM id,cs are given by Eqs. (1) and (2) respectively on replacement of M it by
ΔM id,cs and using cracked state properties. Similarly, the additional curvature, Δρid,tm

cr and the
additional top fiber strain, Δεid,tm

cr due to ΔM id,tm are given by Eqs. (1) and (2 respectively on
replacement of M it by ΔM id,tm and using cracked state properties. The total curvature, ρt

ts and
the total top fiber strain, εt

ts of a cross-section in the cracked zone, at the end of the time interval
are obtained by adding the changes in the uncracked and the cracked state of cross-section to
the instantaneous values and are given as

ρt
ts = η

(
ρit

un + Δρc
un + Δρs

un + Δρtm
un + Δρid,cs

un + Δρid,tm
un

)
+ ξ(ρit

cr + Δρtm
cr + Δρid,cs

cr + Δρid,tm
cr )

(25)

εt
ts = η

(
εit
un + Δεc

un + Δεs
un + Δεtm

un + Δεid,cs
un + Δεid,tm

un

)
+ ξ

(
εit
cr + Δεtm

cr + Δεid,cs
cr + Δεid,tm

cr

)
(26)

The total moment, M t at the end of a time interval, at a cross-section, in both the uncracked
and cracked zones is expressed as, M t = M it + ΔM id,cs + ΔM id,tm.

3 Cracked span length beam element

In a typical continuous beam of a composite bridge, cracks would occur near interior supports
if the tensile stress in the top fiber of a cross-section exceeds the tensile strength of concrete. A
typical cracked span length beam element therefore consists of three zones, two cracked zones
of length xA, xB, near ends A and B respectively, and an uncracked zone in the middle [Fig.
3(a)]. For a completely cracked beam element, xA and xB would be equal to L/2.

The stiffness matrix and the load vector of a cracked span length beam element are of
interest. In order to evaluate these, releases 1 and 2 are introduced at the ends [Fig. 3(b)]. For
the evaluation of stiffness matrix, the flexibility coefficients f11,f12, f21,f22 that are required can
be found by the principle of virtual work using mA and mB diagrams (Fig. 4), as
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f11 =
∫ L

0
Sxm2

Adx (27)

f12 = f21 =
∫ L

0
SxmAmBdx (28)

f22 =
∫ L

0
Sxm2

Adx (29)

Eqs. (27)-(29) are to be integrated for the uncracked zone and the two cracked zones. For
a cross-section in the uncracked zone, Sx is replaced by Sx

un whereas for a cross-section in a
cracked zone, considering the tension stiffening effect, Sx is to be replaced by ξSx

cr + ηSx
un.
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Figure 3: Cracked span length beam element: (a) zones; (b) degrees of freedom and releases; and
(c) loading and end forces.

A single interpolation coefficient has been assumed for each cracked zone. The interpolation
coefficient for cracked zones near ends A and B are termed as ξA and ξB respectively and are
evaluated from Eq. (13) in which σun is replaced by the representative stresses, σun,A and σun,B

respectively that are obtained by dividing the area of stress diagrams σun over crack lengths
xA and xB respectively by respective crack lengths xA and xB. The closed form expressions for
f11, f12, f21 and f22 obtained from Eqs. (27)-(29), incorporating the tension stiffening effect,
are given as

f11 =
(
1
/
3L2

) [
Sx

un

(
ηAL3 − ξBx3

B + ξAy3
A

)
+ Sx

cr

(
ξAL3 + ξBx3

B − ξAy3
A

)]
(30)

f12 = f21 =
(
1
/
6L2

) [
ξAx2

A (2xA − 3L) + ξBx2
B (2xB − 3L)

]
(Sx

cr − Sx
un) − (Sx

unL/6) (31)
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Figure 4: (a) mA diagram; and (b) mB diagram.

f22 =
(
1
/
3L2

) [
Sx

un

(
ηBL3 − ξAx3

A + ξBy3
B

)
+ Sx

cr

(
ξBL3 + ξAx3

A − ξBy3
B

)]
(32)

Stiffness matrix, [k] is the inverse of flexibility matrix and the stiffness matrix coefficients,
k11, k12, k21 and k22 may be expressed in the closed form as

k11 = f22/(f11f22 − f21f12) (33)

k12 = k21 = −f12/(f11f22 − f21f12) (34)

k22 = f11/(f11f22 − f21f12) (35)

For evaluation of the fixed end moments, additionally the rotations at the ends are required.
The end rotations of the released beam element due to applied vertical load, and creep and
shrinkage are found by integrating mA and mB diagrams (Fig. 4) respectively with the corre-
sponding curvature diagram.

For a beam element, subjected to uniformly distributed span load, w and also additionally
the instantaneous moments M it

A and M it
B at the ends A and B respectively [Fig. 3(c)], the

instantaneous rotations θit
A and θit

B may be expressed in the closed form, on integrating mA and
mB diagrams (Fig. 4) respectively with ρit (x), which is obtained from Eq. (7) on substitution
of M it by Rit

Bx + M it
B − wx2/2 and Rit

Ax − M it
A − wx2/2 respectively where Rit

A and Rit
B = the

instantaneous reactions at the ends A and B respectively and x = distance of cross-section from
end B for θit

A and from end A for θit
B. The expressions for θit

A and θit
B are obtained as

θit
A = (1/24L)

{
Sx

un

[−8Rit
B

(
ηAL3 + ξAy3

A − ξBx3
B

)
+ 3w

(
ηAL4 + ξAy4

A − ξBx4
B

)
−12M it

B

(
ηAL2 + ξAy2

A − ξBx2
B

)]
+ Sx

cr

[−8Rit
B

(
ξAL3 − ξAy3

A + ξBx3
B

)
+ 3w

(
ξAL4 − ξAy4

A + ξBx4
B

)− 12M it
B

(
ξAL2 − ξAy2

A + ξBx2
B

)]}
(36)
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θit
B = (1/24L)

{
Sx

un

[
8Rit

A

(
ηBL3 + ξBy3

B − ξAx3
A

)− 3w
(
ηBL4 + ξBy4

B − ξAx4
A

)
−12M it

A

(
ηBL2 + ξBy2

B − ξAx2
A

)]
+ Sx

cr

[
8Rit

A

(
ξBL3 − ξBy3

B + ξAx3
A

)
−3w

(
ξBL4 − ξBy4

B + ξAx4
A

)− 12M it
A

(
ξBL2 − ξBy2

B + ξAx2
A

)]}
(37)

The first terms in Eqs. (36) and (37) are the contributions of the uncracked zone and the
uncracked state of the cracked zone whereas the second terms are the contributions of the cracked
state of the cracked zone.

The mid-span deflection, dm of a beam element is also of interest and may be expressed
as [13]:

dm = (1/2)
∫ L/2

0
ρ(x)xdx + (L/2)

∫ L

L/2
ρ(x) (1 − x/L) dx (38)

For the beam element shown in Fig. 3(c), instantaneous mid-span deflection dit
m may be

expressed in the closed form, on replacing ρ(x) by ρit(x), as

dit
m =(1/384)

{
8 (Sx

cr − Sx
un)

[
ξA

(
8Rit

Ax3
A − 12M it

Ax2
A − 3wx4

A

)
+ ξB

(
8Rit

Bx3
B + 12M it

Bx2
B − 3wx4

B

)]
+ Sx

unL2
[
24(M it

B − M it
A ) + 5wL2

] }
(39)

Creep in the concrete increases the curvature of the uncracked zone and the uncracked state
of the cracked zone by a factor βc

un [Eq. (5)] which leads to the changes, Δθc
A and Δθc

B in the
end rotations if the ends are not restrained against the rotation. Since the creep does not take
place in the cracked state, the rotations Δθc

A and Δθc
B can be expressed from Eqs. (36) and

(37) respectively on dropping the second terms involving the cracked state and multiplying the
remaining terms by βc

un, as

Δθc
A = (βc

unSx
un/24L)

[−8Rit
B

(
ηAL3 + ξAy3

A − ξBx3
B

)
+ 3w

(
ηAL4 + ξAy4

A − ξBx4
B

)
−12M it

B

(
ηAL2 + ξAy2

A − ξBx2
B

)]
(40)

Δθc
B = (βc

unSx
un/24L)

[
8Rit

A

(
ηBL3 + ξBy3

B − ξAx3
A

)− 3w
(
ηBL4 + ξBy4

B − ξAx4
A

)
−12M it

A

(
ηBL2 + ξBy2

B − ξAx2
A

)]
(41)

The change in mid-span deflection, Δdc
m owing to creep can also be expressed similarly from

Eq. (38), as

Δdc
m = (βc,m

un Sx
un/384)

{
8
[−ξA

(
8Rit

Ax3
A − 12M it

Ax2
A − 3wx4

A

)− ξB

(
8Rit

Bx3
B + 12M it

Bx2
B − 3wx4

B

)]
+L2

[
24(M it

B − M it
A ) + 5wL2

]}
(42)

The changes, Δθs
A and Δθs

B in the end rotations of the released beam element, owing to
shrinkage, may be expressed in the closed from, on integrating mA diagram and mB diagram
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with the curvature diagram due to shrinkage {Δρs
un [Eq. (15)] for the uncracked zone and ηΔρs

un

for the cracked zone} respectively, as

Δθs
A = (Δρs

un/2L)
(
ξBx2

B − ξAy2
A − ηAL2

)
(43)

Δθs
B = (Δρs

un/2L)
(
ηBL2 − ξAx2

A + ξBy2
B

)
(44)

Similarly, the change in mid-span deflection due to shrinkage, Δds
m may be expressed in the

closed form from Eq. (38), on replacing ρ(x) by Δρs
un for the uncracked zone and by ηΔρs

un for
the cracked zone, as

Δds
m = (Δρs

un/ 8)
(
L2 − 2ξAx2

A − 2ξBx2
B

)
(45)

The changes, Δθtm
A and Δθtm

B in the end rotations of the released beam element, owing to
thermal gradient, may be expressed in the closed from, on integrating mA diagram and mB

diagram with the curvature diagram due to thermal gradient (Δρtm
un for the uncracked zone and

ηΔρtm
un + ξΔρtm

cr for the cracked zone) respectively, as

Δθtm
A = (1/2L)

[
Δρtm

un

(
ξBx2

B − ξAy2
A − ηAL2

)
+ Δρtm

cr

(
ξAy2

A − ξBx2
B − ξAL2

)]
(46)

Δθtm
B = (1/2L)

[
Δρtm

un

(
ξBy2

B + ηBL2 − ξAx2
A

)
+ Δρtm

cr

(
ξAx2

A + ξBL2 − ξBy2
B

)]
(47)

Similarly, the change in mid-span deflection due to thermal gradient, Δdtm
m may be expressed

in the closed form from Eq. (38), on replacing ρ(x) by Δρtm
un for the uncracked zone and by

ηΔρtm
un + ξΔρtm

cr for the cracked zone, as

Δdtm
m = (1/ 8)

[
2
(
Δρtm

cr − Δρtm
un

) (
ξAx2

A + ξBx2
B

)
+ Δρtm

unL2
]

(48)

The closed form expression for Δdid,cs
m , the additional mid-span deflection due to ΔM id,cs,

may be obtained from Eq. (39), on dropping the terms involving w, on replacing M it
A , M it

B , Rit
A

and Rit
B by ΔM id,cs

A , ΔM id,cs
B , ΔRid,cs

A and ΔRid,cs
B (the changes in end forces resulting from

creep and shrinkage) respectively and Sx
un by Sx

e,un, as

Δdid,cs
m = (1/48)

{(
Sx

cr − Sx
e,un

) [
8
(
ξAΔRid,cs

A x3
A + ξBΔRid,cs

B x3
B

)
+12

(
−ξAΔM id,cs

A x2
A + ξBΔM id,cs

B x2
B

)]
+ 3Sx

e,unL2
(
ΔM id,cs

B − ΔM id,cs
A

)}
(49)

Similarly, the closed form expression for Δdid,tm
m , the additional mid-span deflection due to

ΔM id,tm, may be obtained from Eq. (39) as

Δdid,tm
m = (1/48)

{
(Sx

cr − Sx
un)

[
8
(
ξAΔRid,tm

A x3
A + ξBΔRid,tm

B x3
B

)
+12

(
−ξAΔM id,tm

A x2
A + ξBΔM id,tm

B x2
B

)]
+ 3Sx

unL2
(
ΔM id,tm

B − ΔM id,tm
A

)}
(50)

The total mid-span deflection, dt
m at end of a time interval (beginning from the time of

application of load) consists of dit
m, Δdc

m, Δds
m, Δdid,cs

m and Δdid,tm
m and may be expressed as

dt
m = dit

m + Δdc
m + Δds

m + Δdid,cs
m + Δdid,tm

m (51)
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4 Analysis of a continuous beam of a composite bridge

The analysis of the continuous beam of composite bridge is carried out in two parts. In the
first part, instantaneous analysis is carried out using an iterative method [16] to establish the
instantaneous crack lengths. In the second part, time-dependent analysis is carried out by
dividing the time into a number of time intervals. The cracked span length beam elements along
with the closed form expressions are used in both the parts.

4.1 Instantaneous analysis

An iterative process is required to establish the instantaneous crack lengths, interpolation coef-
ficients and moments at time t1, the time of application of load. For a typical iterative cycle, a
displacement analysis is carried out for the residual force vector, {P er(t1)} (in which, here and
subsequently for other quantities having one term in the parentheses, the term indicates the time
instant at which the quantity is evaluated or assumed to arise) of the composite beam. The re-
vised force vector,

{
pit (t1)

}({
pit (t1)

}T =
{
M it

A (t1) , M it
B (t1)

})
, and the revised displacement

vector of the beam elements [Fig. 3(c)],
{
dit,∗ (t1)

} ({
dit,∗ (t1)

}T =
{
θit,∗
A (t1) , θit,∗

B (t1)
})

are
obtained by adding the force vector and displacement vectors of this analysis to the force vector
and displacement vector at the end of previous cycle.

Based on the revised force vector,
{
pit (t1)

}
, the revised crack lengths of beam elements,

xA (t1), xB (t1) are established by locating the section at which the tensile stress in the top
fiber, σit

un (t1) is equal to the tensile strength of concrete, ft (t1). For the beam element shown
in Fig. 3(c), the stress σit

un (t1) for a cross-section at distance x from end A is obtained from
Eqs. (3) and (8), on substitution of M it (t1) by Rit

A (t1)x − M it
A (t1) − wx2/2, as

σit
un (t1) = a (t1) x2 + b (t1) x + c (t1) (52)

where

a (t1) = −0.5Sxy
un (t1)Ec (t1)w

b (t1) = Sxy
un (t1)Ec(t1)Rit

A(t1)

c (t1) = −Sxy
un (t1)Ec(t1)M it

A (t1)

The crack lengths xA (t1), xB (t1) can now be expressed in the closed form, on equating
σit

un (t1) with ft (t1), as

xA (t1) =
−b (t1) +

√
[b (t1)]

2 − 4a (t1) [c (t1) − ft (t1)]

2a (t1)
(53)

xB (t1) = L +
b (t1) +

√
[b (t1)]

2 − 4a (t1) [c (t1) − ft (t1)]

2a (t1)
(54)
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The interpolation coefficients ξA (t1) and ξB (t1) are obtained in a manner similar to that
stated in section 3 using Eq. (52) as (κ=1.0)

ξA (t1) = 1 − κ

(
6ft (t1)

2a (t1) xA (t1)
2 + 3b (t1)xA (t1) + 6c (t1)

)2

(55)

ξB (t1) = 1 − κ

⎛
⎝ 6xB(t1)ft (t1)

2a (t1)
(
L3 − yB (t1)

3
)

+ 3b (t1)
(
L2 − yB (t1)

2
)

+ 6c (t1)xB(t1)

⎞
⎠

2

(56)

Changes in crack lengths and thereby end displacements of the composite beam element
lead to the difference between the displacement vector,

{
dit,∗ (t1)

}
and the displacement vector

based on integration of curvature and strain.
The error {der(t1)} (or difference) in displacement vector, corresponding to releases 1, 2

is now given as {der(t1)}T =
{
θit
A (t1) − θit,∗

A (t1); θit
B (t1) − θit,∗

B (t1)
}

where the displacements

θit
A (t1) and θit

B (t1) are obtained from Eqs. (36) and (37) respectively. The terms of residual
force vector, {per(t1)}, corresponding to this difference in displacement vector are given as
− [k(t1)] {der(t1)} where the terms of [k(t1)] are obtained from Eqs. (33)-(35).

The residual force vector, {per (t1)} of the beam elements are assembled to form the resid-
ual force vector, {P er(t1)} of the composite beam. {P er(t1)} should be within some per-
missible limit [16] for the iterative process to terminate, typically {P er (t1)}T {P er (t1)} ≤
0.001 {P o (t1)}T {P o (t1)}, where {P o (t1)}= fixed end force vector of the composite beam for

first iteration (uncracked beam elements). Otherwise a new cycle is started.

4.2 Time-dependent analysis

The progressive nature of cracking in a continuous beam of a composite bridge with time is
shown in Fig. 5. This results in change in creep and shrinkage characteristics of the beam with
time. In order to account for these changes with time, the time-dependent analysis is carried
out by dividing the time into a number of time intervals. In a time interval, the crack lengths
are assumed to be constant and equal to that at the beginning of the time interval (Fig. 5). The
moments, ΔM id,cs and the change in instantaneous bending moment, ΔM it (resulting from the
change in crack length) are assumed to arise at the specified instants of time t1, t2,−−−−−−,tj
(Fig. 6) for considering their contributions to creep. In order to have common notation for the
instantaneous analysis and the time-dependent analysis, M it(t1) is redesignated as ΔM it(t1)
and the instantaneous curvature, instantaneous top fiber strain, instantaneous top fiber stress
at time t1 are designated as Δρit(t1),Δεit(t1), Δσit(t1) respectively.

The displacement method has been used for the time-dependent analysis also in which the
fixed end forces owing to creep, shrinkage and thermal gradient and stiffness matrix of a beam
element for a time interval are required.

Consider the first time interval (t1, t2). For the evaluation of the fixed end forces and the
stiffness matrix, the cracked span length released beam element is considered. Owing to the creep
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Figure 6: Time history of generation of moments contributing to creep.

in the cross-section of uncracked zone and uncracked state of the cracked zone, the curvature
Δρit

un(t1) changes by a factor Δβc
un(t2, t1, t1) [see Eq. (11)], leading to the change in curvature

Δρc
un(t2, t1, t1)

[
= Δρit

un(t1)Δβc
un(t2, t1, t1)

]
in which, here and subsequently for other quantities

having three terms in the parentheses, the first and second terms indicate the time of the end
and the beginning of the interval (for which the change in a quantity is evaluated) respectively
and the third term indicates the time of initiation of a cause from which the change arises.
The cause may be either application of a moment or the shrinkage. Presently the quantity is
the curvature and cause is the application of the moment ΔM it(t1). The factor Δβc

un(t2, t1, t1)
is given as βc

un(t2, t1) − βc
un(t1, t1) in which, here and subsequently for other quantities having

two terms in the parentheses, the first term indicates the time instant at which a quantity is
evaluated whereas the second term indicates the time of initiation of the cause owing to which
the quantity arises. The cause may be either application of the moment or shrinkage or gradual
application of unit load (required for evaluation of age-adjusted flexibility matrix and hence
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stiffness matrix) or application of stress (required for evaluating Ee). The factor βc
un(t2, t1) is

evaluated from Eq. (13) in which φ is replaced by φ(t2, t1) and the age-adjusted cross-sectional
properties are evaluated using the modular ratio Es/Ee(t2, t1). In turn, Ee(t2, t1) is evaluated
using φ(t2, t1) and χ(t2, t1). It may be noted that βc

un(t1, t1)=0. As stated earlier, in the cracked
zone there is no change in curvature of the cross- section in the cracked state. The changes in
the rotations of the released beam element at end A, Δθc

A(t2, t1, t1) and at end B, Δθc
B(t2, t1, t1)

resulting from Δρc
un(t2, t1, t1) are evaluated from Eqs. (40) and (41) respectively in which βc

un

is replaced by Δβc
un(t2, t1, t1).

Shrinkage is assumed to start from time t1, the time of application of first load. Owing to
the shrinkage, the change in curvature, Δρs

un(t2, t1, t1) of a cross-section of uncracked zone and
the uncracked state of the cracked zone is given as Δρs

un(t2, t1) − Δρs
un(t1, t1). The quantity

Δρs
un(t2, t1) is evaluated from Eq. (19) on replacing εsh by εsh(t2, t1) and the age-adjusted

properties are used in a manner similar to that described earlier for βc
un(t2, t1). Here again, it

may be noted that Δρs
un(t1, t1) = 0 and also that, in the cracked zone there is no change in

curvature of the cross-section in the cracked state. Changes in the end rotations of the released
beam, Δθs

A(t2, t1, t1), Δθs
B(t2, t1, t1) resulting from Δρs

un(t2, t1, t1) are evaluated from Eqs. (43)
and (44) respectively in which Δρs

un is replaced by Δρs
un(t2, t1, t1).

The end displacements vector, {dcs (t2, t1)} of the released beam element due to creep and
shrinkage in first time interval is now given as

{dcs (t2, t1)}T = {Δθc
A (t2, t1, t1) + Δθs

A (t2, t1, t1) ; Δθc
B (t2, t1, t1) + Δθs

B (t2, t1, t1) } (57)

The vector of fixed end forces required to restrain these changes in end rotations is given
as − [ke (t2, t1)] {dcs (t2, t1)} where [ke (t2, t1)] is age-adjusted stiffness matrix and its terms are
evaluated from Eqs. (33)-(35) using the age-adjusted cross-sectional properties. These vectors of
fixed end forces of beam elements are assembled and a displacement analysis is carried out using
the age-adjusted stiffness matrices. This displacement analysis leads to the moment, ΔM id,cs(t2)
at a section.

Consider now the thermal gradient (positive or negative) acting at the end of the time
interval. The changes Δθtm

A (t2), Δθtm
B (t2) in the end rotations of the released beam element are

evaluated from Eqs. (46) and (47) respectively on replacing Δρtm
un and Δρtm

cr by Δρtm
un(t2) and

Δρtm
cr (t2) respectively which may be obtained as explained in section 2. The vector of fixed end

forces required to restrain these changes in end rotations is given as − [k (t2)]
{
dtm (t2)

}
, where

dtm (t2) is given as {
dtm (t2)

}T =
{
Δθtm

A (t2) ; Δθtm
B (t2)

}
(58)

These vectors of fixed end forces of beam elements are assembled and a displacement analysis
is carried out using the age-adjusted stiffness matrices. This displacement analysis leads to the
moment, ΔM id,tm(t2) at a section.

The total bending moment, M t (t2) at a cross-section of a beam element at the end of first
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time interval is given as

M t (t2) = ΔM it (t1) + ΔM id,cs (t2) + ΔM id,tm (t2) (59)

The deflection at mid-span of a beam element, dt
m (t2) at the end of the first time interval is

obtained from Eq. (27), as

dt
m(t2) = Δdit

m(t1)+Δdc
m(t2, t1, t1)+Δds

m(t2, t1, t1)+Δdtm
m (t2)+Δdid,cs

m (t2)+Δdid,tm
m (t2) (60)

where Δdit
m(t1)(=dit

m), Δdc
m(t2, t1, t1)(=Δdc

m), Δds
m(t2, t1, t1)(=Δds

m) and Δdid,cs
m (t2)(=Δdid

m)
are obtained from Eqs. (39), (42), (45) and (49) respectively on replacing Sx

un, Sx
e,un, xA, xB, ξA,

ξB, M it
A , M it

B , Rit
A, Rit

B , ΔM id,cs
A , ΔM id,cs

B , ΔRid,cs
A and ΔRid,cs

B by Sx
un(t1), Sx

e,un(t2, t1), xA (t1),
xB(t1), ξA (t1), ξB(t1 ), ΔM it

A(t1), ΔM it
B(t1), ΔRit

A(t1), ΔRit
B(t1), ΔM id,cs

A (t2), ΔM id,cs
B (t2),

ΔRid,cs
A (t2) and ΔRid,cs

B (t2) respectively and βc
un and Δρs

un by Δβc
un(t2, t1, t1) and Δρs

un(t2, t1, t1)
respectively. The quantities Δdtm

m (t2)(=Δdtm
m ) and Δdid,tm

m (t2)(=Δdid,tm
m ) are obtained from

Eq (48) and (50) respectively on replacing Sx
un, xA, xB , ξA, ξB , ΔM id,tm

A , ΔM id,tm
B , ΔRid,tm

A ,
ΔRid,tm

B , Δρtm
un and Δρtm

cr by Sx
un(t2), xA (t1), xB(t1), ξA (t1), ξB(t1 ), ΔM id,tm

A (t2), ΔM id,tm
B (t2),

ΔRid,tm
A (t2), ΔRid,tm

B (t2), Δρtm
un(t2) and Δρtm

cr (t2) respectively.
The stress, σt

un (t2) at time t2 may be expressed from Eq. (23) on using Eq. (12) as

σt
un(t2) = Δσit

un(t1) + Ec(t2)
[
Δεtm

un(t2) − αT1

]
+Ee(t2, t1)

{
Δεit

un(t1) [λc
un(t2, t1) − φ(t2, t1)] + Δεs

un(t2, t1) − εsh(t2, t1)
}

−Ee(t1, t1)
{

Δεit
un(t1) [λc

un(t1, t1) − φ(t1, t1)] + Δεs
un(t1, t1) − εsh(t1, t1)

}
+Δσid,cs

un (t2) + Δσid,tm
un (t2) (61)

Further, on using Eq. (8) for evaluation of Δεit
un(t1), noting that λc

un(t1, t1), Δεs
un(t1, t1),

εsh(t1, t1) and φ(t1, t1) are equal to zero and rearranging the terms, Eq. (61) may be expressed in
the same form as Eq. (28), on replacing the terms in parentheses t1 by t2, where the coefficients
a(t2), b(t2) and c(t2) are given as

a(t2) = −0.5 Sxy
un(t1)w [Ec(t1) + Ee(t2, t1)q(t2, t1)] (62)

b(t2) = Sxy
un(t1)ΔRit

A(t1) [Ec(t1) + Ee(t2, t1)q(t2, t1)] + Sxy
e,un(t2, t1)ΔRid,cs

A (t2)Ee(t2, t1)

+Sxy
un(t2)ΔRid,tm

A (t2)Ec(t2) (63)

c(t2) = −Sxy
un(t1)ΔM it

A (t1) [Ec(t1) + Ee(t2, t1)q(t2, t1)] − Sxy
e,un(t2, t1)ΔM id,cs

A (t2)Ee(t2, t1)

−Sxy
un(t2)ΔM id,tm

A (t2)Ec(t2) + Ee(t2, t1)r(t2, t1) + Ec(t2)s (t2) (64)
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where q(t2, t1) = λc
un(t2, t1) − φ(t2, t1); r(t2, t1) = Δεs

un (t2, t1) − εsh (t2, t1); s(t2) = Δεtm
un (t2) − αT1

The crack lengths xA(t2) and xB(t2) and the coefficients ξA (t2) and ξB (t2) at time t2 are
now obtained from Eqs. (53)-(56) respectively on replacing the terms in the parentheses t1 by
t2 and replacing κ by 0.5 in Eqs. (55) and (56).

Now consider the second time interval(t2, t3). In addition to the two forces, ΔM it(t1)
generated at time t1 and ΔM id,cs(t2) generated at time t2, a force ΔM it(t2) that results from
change in crack lengths in the previous time interval(t1, t2) needs to be considered in this time
interval(t2, t3). Thus creep in this interval is caused due to one force

[
ΔM it(t1)

]
generated at

time t1 and two forces
[
ΔM it(t2), ΔM id,cs(t2)

]
generated at time t2 (Fig. 6). It may be noted

that the force ΔM id,tm(t2) is considered not to cause creep subsequently, since as stated earlier
in the section 2, the thermal gradients are superimposed only at an instant of time. The bending
moment, ΔM it(t2) is obtained by carrying out a displacement analysis for which the fixed end
force vector is taken equal to the change in fixed end forces owing to change in the crack lengths.

Further analysis proceeds in the similar manner as explained for the first time interval. In
the ith time interval (ti, ti+1), there are 1+2 (i − 1) number of moments causing creep as shown
in Fig. 6. The creep effect of 1 + 2 (i − 1) number of moments, the shrinkage effect and the
thermal gradient effect can be evaluated in a similar manner as explained for the first time
interval. The total midspan deflections and the stresses can be expressed in a form similar to
Eqs. (60) and (61) respectively.

The number of time intervals is decided on the criteria that the change in the values of mo-
ments, M and mid-span deflections, dm for any span, with increase in number of time intervals,
should not be more than 1%.

5 Validation and numerical study

In order to validate the proposed procedure, first, the results have been compared with the
experimental and analytical results reported by Gilbert and Bradford [18] for two two-span
continuous composite beams B1, B2 with each span 5.8 m long. The beam B1 was subjected
to a superimposed uniformly distributed span load (w) of 4.45 kN/m in addition to the dead
load (1.92 kN/m) whereas beam B2 was subjected to dead load only. The beams were tested
for a period of 340 days (φ = 1.68, εsh = 0.00052 ) and the mid-span deflections of beams were
measured during the test. The cross-section [Fig. 2(a)] of the composite beams consisted of a
steel section (203×133UB 25) and a concrete slab (bc = 1000 mm; Dc = 70 mm; Asr = 113 mm2;
Dsr = 15 mm). The properties of concrete at 28 days were: Ec = 2.20 × 104N/mm2; ft= -3.0
N/mm2 and for steel Es = 2.0× 105N/mm2. The values of φ and εsh are assumed to vary with
time in accordance with the provisions of CEB-FIP MC 90 [12].

The values of total mid-span deflections, dt
m (t)obtained from the proposed procedure are in

reasonable agreement with the reported experimental values of mid-span deflections (Fig. 7).
The values of dt

m (t) obtained from the proposed procedure for both the beams are lower than
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the analytical values reported by Gilbert and Bradford [18]. The higher values of analytical
procedure can be ascribed to: (1) neglect of tension stiffening, (2) neglect of creep effect of
ΔM id,cs and (3) the manner in which the crack length is established i.e. the same crack length is
assumed for the entire time interval which begins from the time of application of load. Therefore
two more sets of results are obtained from the proposed procedure: (1) neglecting tension
stiffening and considering creep effect of ΔM id,cs and (2) neglecting both tension stiffening and
creep effect of ΔM id,cs. These results are also shown in Fig. 7. As expected, the values obtained
from the proposed procedure now are closer to the analytical results.
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Figure 7: Comparison of mid-span deflections of beams B1 and B2.

Next, the results obtained from the proposed procedure have been validated by comparison
with those obtained from a general purpose finite element program, ABAQUS [20], for a three
span continuous beam of a composite bridge designated as beam B3 [Fig. 8(a)]. The cross-
section [Fig. 2(a)] of the beam consists of a concrete slab (bc = 1000 mm; Dc = 200 mm;
Asr = 471 mm2; Dsr = 30 mm) and a 1100 mm deep steel I section having second moment of
area, 1.34 × 1010 mm4 about its centroid and Ass = 65500 mm2. The properties of concrete at
28 days are: Ec = 3.35 × 104N/mm2; ft= -3.4 N/mm2 and for steel Es = 2.0 × 105N/mm2.

Two types of meshes, fine and coarse have been considered. The fine mesh (Fig. 9) for the
entire composite beam consists of 640(160 × 4) shell elements (S4R elements) and 160 beam
elements (B31OS elements) whereas the coarse mesh consists of 160(80 × 2) S4R elements and
80 B31OS elements. The condition of no slip between the slab and the steel section is achieved
by using multipoint constraints (MPC’S), of type BEAM, between corresponding shell and beam
elements. Creep of the concrete is taken into account by modeling concrete as viscoelastic mate-
rial in time domain whereas shrinkage is taken into account by applying equivalent temperature
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loading (temperature and coefficient of thermal expansion are assumed to vary in such a manner
that the thermal strain of concrete at any instant of time is equal to εsh). Considering the fact
that the viscoelastic material model cannot be combined with the cracking [24] in ABAQUS
and also that the thermal gradient is assumed to act at an instant of time, three types of anal-
yses have been considered: (1) instantaneous analysis considering cracking only (2) analysis
considering the thermal gradient only, (2) time-dependent analysis for 10,000 days considering
creep and shrinkage and neglecting cracking and the thermal gradient. For all three analyses,
w=40 kN/m is considered. In analysis 1 and 2, w is assumed to be applied at 3 days whereas in
analysis 3, w is assumed to be applied at 28 days. In analysis 2, a thermal gradient is assumed
to act at 4 days and a trilinear temperature profile corresponding to the negative temperature
gradient suggested by AASHTO [1] for zone 3 [Fig. 2(b)] is considered, where T1 = −9 0C,
g1 = 0.066 0C

/
mm, g2 = 0.0078 0C/mm. The values of coefficients of thermal expansion, αc

and αs in this analysis (analysis 2) are assumed to be as 10 × 10−6 mm/mm/ 0C. For analysis
3, φ and εsh are assumed to be 2.15 and 0.00043 respectively at 10,000 days and the values of
φ and εsh are assumed to vary with time in accordance with the provisions of CEB-FIP MC
90 [12].
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Figure 8: Longitudinal profile of beams: (a) beam B3; and (b) beam B4.
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Figure 9: Finite elements mesh for beam B3: (a) shell elements in slab; and (b) nodes in the
cross section.

Consider analysis 1. The values of bending moment, M it (3) at support B (or C), are
obtained as 988.02 kN-m and 986.40 kN-m using fine and coarse meshes respectively. The
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values of midspan deflection, dit
m (3) of span AB (or CD), which is of design importance, are

obtained as 8.72 mm and 8.78 mm using fine and coarse meshes respectively. The fine mesh is
therefore adequate and is considered for validation.

The results from the proposed procedure and ABAQUS (fine mesh) for all three analyses
are compared in Table 1 and it is observed that for all three analyses, the results obtained from
the proposed procedure are in reasonable agreement with the results obtained from ABAQUS.
Major portions of the differences between the results may be due to the consideration of biaxial
state of stress in ABAQUS and due to introduction of MPC’s (type BEAM) between only one
node each of adjacent shell elements and a beam element (only available nodes for the connection
in the chosen finite element model) across a cross-section. Further, in analysis 3, some difference
would also result from choice of the same value of χ for creep and shrinkage. However, this
difference is likely to be small.

Table 1: Comparison of results of proposed procedure and ABAQUS for beam B3.

Analysis

Moment at support B Midspan deflection of span AB
(kN-m) (mm)

Proposed
Abaqus

% Proposed
Abaqus

%
Procedure difference Procedure difference

1
1002.25 988.02 1.44 8.09 8.72 7.22

M it (3) , dit
m (3)

2
1128.44 1102.25 2.38 7.99 8.65 7.63

M t (4) , dt
m (4)

3
1674.21 1699.04 1.46 11.79 12.55 6.06

M t (10000) , dt
m (10000)

It may be noted that the total number of degrees of freedom for the beam B3 is 5957
for ABAQUS whereas the corresponding number of total degrees of freedom for the proposed
procedure is 12. Therefore, the computational effort required for the proposed procedure is a
very small fraction of that required for the finite element analysis.

Further numerical studies have also been carried out for a four span continuous beam of a
composite bridge designated as beam B4 [Fig. 8(b)]. The cross-section [Fig. 2(a)] and material
properties are same as those of beam B3. The uniformly distributed load, w, on the beams has
been taken as two times, three times and four times the cracking load, wcr(= 14.2 kN/m for
loading at three days), the load at which cracking first takes place at a support (supports B and
D) of the beam. Three analyses have been carried out for each loading: (1) instantaneous analysis
at 3 days neglecting cracking, (2) instantaneous analysis at 3 days considering cracking and (3)
time-dependent analysis for 10,000 days (φ=2.15; εsh=0.00043) considering creep, shrinkage
and thermal gradient. Again AASHTO [1] zone 3 negative thermal gradient is considered. The
negative thermal gradient is chosen since this results in additional cracking. Taking into account
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the symmetry of the beam, moments for supports B and C along with mid-span deflection of
spans AB and BC have been presented in Table 2.

Table 2: Results of numerical studies for beam B4.

w/wcr Analysis

M it(3),M t(10000) dit
m (3) , dt

m (10000)
(kN-m) (mm)
Support Span

B C AB BC

2
1 1217.14 811.43 6.69 1.97
2 1144.29 828.69 7.07 2.23
3 1625.13 1143.35 13.13 3.68

3
1 1825.71 1217.14 10.03 2.95
2 1663.84 1218.41 10.86 3.68
3 2210.49 1614.12 18.00 5.48

4
1 2434.29 1622.86 13.38 3.94
2 2184.47 1601.96 14.63 5.14
3 2795.34 2039.40 22.83 7.16

Consider the effect of cracking (i.e. change from analysis 1 to analysis 2) on instantaneous
moments and midspan deflections. It can be observed from the results that due to cracking,
the instantaneous moment, M it(3) at support B, reduces by up to 10.26% (for w/wcr = 4)
whereas M it(3) at support C increases (for w/wcr = 2, 3) owing to relatively larger cracking at
its adjacent supports (support B and D) in comparison to cracking at support C. The increase
in instantaneous mid-span deflection, dit

m(3) of span BC due to cracking of concrete is up to
30.46% (for w/wcr = 4).

Consider now the effect of creep, shrinkage and thermal gradient ( i.e change from analysis 2
to analysis 3) on bending moments and midspan deflections. The increase in M it(3) at support
B is up to 42.02% (for w/wcr = 2) and the increase in dit

m(3) of span AB due is up to 85.72%
(for w/wcr = 2).

It may be further noted that the number of time intervals required for convergence of total
bending moments and total mid-span deflections, within 1% is less than 20 for all the cases
considered for the validation and the numerical study.

6 Conclusions

A hybrid analytical-numerical procedure has been presented in this paper for continuous com-
posite bridges subjected to service load. The procedure takes into account the effects of concrete
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cracking, creep and shrinkage in the concrete portion and the thermal gradient across the cross
section of the continuous composite bridges. The procedure is analytical at the elemental level
and numerical at the structural level. Closed form expressions for the stiffness matrix, end dis-
placements, crack lengths, interpolation coefficients, and the mid-span deflection of the cracked
span length beam element have been presented. The results obtained from the proposed pro-
cedure are found to be in reasonable agreement with the experimental, analytical and finite
element results. The computational effort required by the proposed procedure is shown to be a
small fraction of that required for finite element analysis. It is observed that the instantaneous
moment at a support may increase due to much larger cracking at adjacent supports. The
proposed procedure can be readily extended for the analysis of composite integral bridges and
three dimensional framed buildings.
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