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Abstract 

In this work, new equations for first-order shear deformation 

plates are deduced taking into account the kinematic assumptions 

of the Bolle–Reissner theory but considering the equilibrium 

equations in the deformed configuration for the plate. The system 

of differential equations deduced is applicable to the calculation of 

the stresses in isotropic plates and is valid for thin and moderately 

thick plates. Analytical solutions are also presented in this work 

which are compared, when possible, with the ones obtained with 

other refined shear deformation plate theories.   

 

Keywords 

Moderately thick plates, analytical solutions, shear deformation. 

 
 

Modified Bolle – Reissner Theory of Plates 

Including Transverse Shear Deformations 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

1 INTRODUCTION 

The current trend in the study of plates can be deduced from the themes of the articles collected by 

Voyiadjis and Karamanlidis (1990) and Kienzler, Altenbach and Ott (2004). In the first publication 

it can be seen that out of the seven papers included on theoretical aspects of the analysis, four make 

a direct reference to moderately thick plates. The second one discusses common roots of different 

new plate and shell theories and reviews current state-of-the-art developments: higher-order shear 

deformation theories, zigzag theories, the global–local higher-order deformation theories and the 

layer-wise laminated plate theories are reviewed in this publication.  
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A survey of various shear deformation theories on plates can be found in the works of Reddy and 

Liu (1985), Touratier (1991), Soldatos (1992), Idibi, Karama and Touratier (1997), Karama, Afaq 

and Mistou (2003), Demasi (2004), Chaudhuri (2005, 2008), Aydogdu (2009), Brischetto, Carrera 

and Demasi (2009), Mantari, Oktem and Soares (2011) and Meiche et al. (2011). All of these 

theories are addressed in the context of higher-order shear deformation theories and usually with 

application to composite structures. In the same way, with respect to its wide dissemination, 

Zienkiewicz and Taylor's (2000a, 2000b) report can be taken as an example. It can be observed 

how, from the third edition (Zienkiewicz 1980) to the fifth (Zienkiewicz and Taylor 2000a, 2000b), 

the treatment of the calculation of plates has changed considerably, both with regard to the 

methodology and didactics of the flexure of thin plates and in the connection between thin and 

moderately thick formulations. 

All this suggests interest in the subject and the need for synthesis in order to obtain theories 

which are plausible, are easily comprehensible and which do not involve an excessive degree of 

complexity to arrive at their solution. 

If we focus on classical first-order shear deformation theories, up until now, it is evident that a 

different methodology was followed to tackle plate problems according to whether thin or 

moderately thick plates were being studied. 

Since Kirchhoff (1850) presented his theory on thin plates summarized in the biharmonic 

equation, refined plate theories, including shear deformation, have been deduced.  

Reissner (1945) introduced the shear deformation effect, proposing a correction of the 

biharmonic expression, obtaining a new equation valid for moderately thick plates, 
 

22

10 (1 )
D w p h p      (1) 

 

where w is the deflection, h  is the thickness of the plate, D is the flexural rigidity of the plate and 

μ is a correction factor.  

 Simultaneously, Bolle (1947) and Mindlin (1951) presented similar equations for moderately 

thick plates under different assumptions. Whilst Bolle adopts a parabolic distribution of the 

transversal stresses through to the thickness, Mindlin assumes it to be constant.  

In the first case (Bolle–Reissner theory), a contradiction is assumed to exist between the 

straightness of the normal element and the distribution presumed for tangential stresses through the 

thickness.  

In 1957, Vlasov exposed the first consistent higher-order plate theory. He established a third-

order displacement field that satisfies the stress-free boundary conditions on the top and bottom 

planes of a plate (Reddy 1990). He also proposed a greater correction, in which it is also assumed 

that the normal element of the plate bends in such a way that the shear in the plate thickness 

varies in accordance with parabolic law, obtaining expressions for the displacement iu such as: 
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where o
iz is the transversal stress in the middle surface and the nomenclature is that followed in the 
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following sections. G is the shear modulus and i are the rotations of the normal to the midplane 

about the x and y axes, y and x , respectively. 

Donnell (1976) extends to plates the methodology previously used for beams and approaches the 

study of moderately thick plates using a series solution for the loading function.  

These theories which can be denominated "first-order shear deformation theories", provide 

accurate solutions for plated structures with applications to problems in different fields of 

architecture and civil engineering. For really thick plates, higher-order shear terms should be taken 

into account.  

Analytical solutions for Reissner and Mindlin plate equations have been studied in several works. 

A comparison of these solutions with the higher-order plate theory of Reddy was established in a 

book by Wang, Reddy and Lee (2000).  

The equations proposed in this paper are corrections of the ones proposed by Reissner for the 

analysis of plates and provide accurate solutions for moderately thick plates and thin plates. Also, 

duly corrected with the inclusion of nonlinear terms, they permit the study of plates with large 

deflections (nonlinear calculations).  

We also present these new equations disconnected in terms of displacements and moment sum 

(Marcus moment sum) which permit us to obtain analytical solutions for simply supported plates in 

static and dynamic analysis. These equations have the same structure formally as the ones proposed 

by Reismann (1980). Numerical treatment of these equations with the finite difference method is 

easy and straightforward and avoids complex techniques involving finite elements such as the ones 

proposed by Batoz and Lardeur (1989), Miehe (1998) or Parisch (1995) which correctly solve this 

problem.  

 
2 INITIAL ASSUMPTIONS OF THE THEORY INCLUDING SHEAR DEFORMATION, STRAIN 

DISPLACEMENT EQUATIONS AND CONSTITUTIVE EQUATIONS 
 

Firstly, we propose the hypothesis of the work as follows: 
 

1) The loads, which are distributed, act on the mid-surface of the plate and will be perpendicular to 

the middle surface. The displacements of the points located in the middle surface are also sensibly 

perpendicular to the mentioned mid-surface (the middle surface being practically inelastic), 

although initially we suppose that ( , )x you and ( , )x yov , the displacements according to the x and y 

axes of the points located in the middle surface, are not zero (in order to obtain general equations, 

even for nonlinear calculations; see Figure 1). 

 Therefore, the displacements from one point of the plate are given by: 
 

( , )
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x yo y

x yo x

o

u u z

v v z

w w x y
     (3) 
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Figure 1: Sign convention. Rotations and displacements. 

  

2) For the tangential stresses, a parabolic distribution throughout the thickness is assumed,  
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where 
5

4
 . 

 

3) The rotation xy of a differential element around the z axis is null for all points of the plate. 
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This important condition is introduced in this section and will be demonstrated in the next one.  

Based on these initial hypotheses we can deduce the expressions of the strains, rotations and 

stresses which are necessary for future developments.   

The normal strains z , x , y and shear strains xy , yz , xz  can be deduced from the 

displacements taking into account Eq. (3), 
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xo, yo, xyo are strains corresponding to points on the middle plane of the plate.  

 Similarly, rotations around the axis are, 
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Supposing elastic behaviour of the material, the stresses are given, according to Hooke's law, by 
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(10) 

 

where E is Young's modulus. 

After integrating through the plate thickness, we obtain the axial and bending stresses, 
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Analogously, shear stresses are, 

   

5· · 5· ·
· , ·

12· 1 12· 1
xz y yz x

E h w E h w
Q Q

x y      
        (13) 

  

Finally, in the classical theory of plates, it is usual to define equivalent transverse shear forces 

,x yV V  given by, 

 

   
,xy xy

x x y y
M M

V Q V Q
y x      

        (14) 

 

which are useful in defining the boundary conditions of the problem and the effective shear forces 

acting on the elastic plate.   

 Up until now, only the definition of the strains and stresses has been taken into account for a 

first-order shear deformation plate theory (FSDT) without using the third assumption of the work.  

Establishing the classical equilibrium equations in the undeformed configuration of the plate, we 

would obtain the classical equations of a FSDT. Notwithstanding this, incorporating this new 

assumption (hypothesis 3), important conclusions will be derived and new consistent plate equations 

will be obtained.  
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3 MODIFIED BOLLE–REISSNER EQUATIONS: EQUILIBRIUM EQUATIONS 

OF THE PLATE ELEMENT  
 

It is well known that the equations of equilibrium for a plate element can be obtained, in 

accordance with the theory of elasticity, by simply integrating, throughout the thickness of the 

plate, the internal equilibrium equations of elasticity (Reissman 1980). In this manner an identical 

system is derived to that obtained by directly establishing the equilibrium of the plate element in 

the non-deformed geometry of the latter.  

We can recall these equations,  
 

0xyx
xz

MM
Q

x y
;    0xy y

yz

M M
Q

x y   

 (15) 

0yzxz
QQ
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x y      

 (16) 

 

and the mechanical boundary conditions,  
 

   
; ; ;

ss
x y zx y z

M M
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        (17) 

 

with  
 

   

2 2
;2

;
Zx xy y x y

x x xy y xy y

s x y

M M l M l m M m V Q l Q m

M M l M m M M l M m

M M m M l      
        (18) 

 

where the symbol ( ) indicates the prescribed stresses along the boundary. sM and sM are the 

twisting moments, M and M are the bending moments and zV is the shearing force acting in the 

direction of the z axis. ( , )l m are the direction cosines of the normal drawn outwardly on the 

boundary; cos( , )l x  and cos( , )m y . The coordinate s  is taken along the boundary C, such 

that , s and z  form a right-handed system.  

In order to obtain the relationship which permits us to simplify and generalize the Bolle–

Reissner equations, we need to establish the equilibrium equations for a deformed geometry (bent 

plate). 

This methodology is used by Rekach (1978) and has been proposed by Bazant (2003) in several 

works, in order to obtain accurate solutions to structural problems. This procedure is emphasized in 

the study of plates and shells.  
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Figure 2: Equilibrium of a plate element in a deformed configuration: bending moments and shear forces. 

 

The Frenet formulae permit to us to write (Nayak 2012) 
 

x yt
k

x x
;

x xt
k

x x
;

x yt
k

y y
;

y xt
k

y y
 (19) 

 

 

Figure 3: Equilibrium of a plate element in a deformed configuration: membrane forces. 

 

Let Figures 2 and 3 represent a plate element subjected to stresses in which we have omitted the 

operators on the unseen sides for greater clarity of the figure, and on the other side the real 

geometric configuration which is produced by the equilibrium that the element adopts once the 

plate is bent.  
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To obtain the necessary equations it is only necessary to consider the equations of static 

equilibrium in the element 

0 QM MN PN PQF F F F F Fext        
(20) 

( )QM x yx xy xz
F N t N t Q k         (21) 

( )MN y xy xy yz
F N t N t Q k

   
 (22) 

1( ) ( ) ( )PM x x y yx x xy xy xz xz
F N t d N t N t d N t Q k d Q k ds  (23) 

  (24) 

 

bearing in mind that we proceed from the QM edge to the PN edge, varying according to the x axis 

(with y = constant) so that, for example 
 

( )
xx

x xx x

N t
d N t dx t dx N

x x
 (25) 

 

and from the MN edge to the QP with x constant , we obtain, 

( )
xxy

x xxy xy

N t
d N t dy t N dy

y y
   (26) 

where ds dx1  , ds dy2  , and for the values of those derived from unit vectors xt  and yt  we find 

that the vector equation yields 
 

0xyx
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;    0xy yN N
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The mechanical boundary conditions associated with these equilibrium equations are, 
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;

,

x yx y
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which are different from Eqs. (17) and (18) due to the in-plane stress resultants , ,x y xyN N N which 

have contributions to the equation of equilibrium in the direction of the z axis due to the inclination 

of the middle surface.  

Proceeding in the same manner, the vector equation of moment equilibrium is,  
 

0

PN PQ y xQM MN xz yz xy

xy

M M M M M Q dx dy t Q dx dy t N dx dy k

N dx dy k

 

(30) 

and after substitution 
 

0xyx
xz
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Q

x y
;        0xy y

yz

M M
Q

x y                
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( ) 0y yx x
x y xyM M M

x y x y      
 (32) 

 

However, if in the sixth equation we substitute xM , yM  and xyM  for their values as shown in the 

previous section, it is transformed into 
 

(1 )
( ) ( ) 0

2
y yx xD

y x x y
 (33) 

 

but if we note that 
 

1
( )

(1 )
y x

x yM M
x y D

 (34) 

 

cannot be zero for any point on the plate, we conclude that 
 

     
y x

y x
                   (35) 

 

which implies that the rotation xy  of a differential element around the z axis is null for all points 

of the plate, 
 

     
1
· · 0,

2
y x

xy z
y x

                   (36) 

 

and demonstrates the inapplicability of the second Bolle equation. 

It must be emphasized that this important condition is verified identically for thin plates. If we 

recall the expressions of the rotations around the axes for Kirchhoff  plate theory,  
 

     ,x y
w w

y x
                   (37) 
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and since, 
 

     ,
2

yx w
 =  

x x y x
                   (38) 

 

the magnitude 
1
x yM M

 in Eq. (34) , is called the moment sum or Marcus moment. 

After substituting the values of shear stresses and Eq. (36) into the equilibrium equations, and 

omitting the subscript indicative of the displacements corresponding to points on the middle 

surface, we find the following system of differential equations, 
 

'' '' '' ' '' ' '' ' '' ' ''
2 2 2 2

1 1 1
( ) ( )

2 2 2xy x y xy y xy xx y x y
u v u w w w w w w w w
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'' '' '' ' '' ' '' ' '' ' ''
2 2 2 2

1 1 1
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2 2 2xy y x xy y x xyx y y x
v u v w w w w w w w w

,   
 (40) 
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5
y y yx x x

x y xyw q N N N
y x E h x y x y ,       

 (41) 

2

5 (1 )
( )y y

w

xh   ;  
2

5 (1 )
( )x x

w

yh          .
 (42) 

 

These equations are quite different from the ones deduced considering the equilibrium in the non-

deformed configuration and without considering Eq. (36). 

 For a given function ( , )w x y , Eqs. (39) and (40) are linear with respect to the unknown functions 

( , )u x y and ( , )v x y and can be solved exactly or approximately while taking into account the 

boundary conditions.  

For linear plates, these expressions are,  
 

6
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5
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2
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2
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( ) ( )

2
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x x
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x y x yh
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which are the modified Bolle–Reissner equations.   
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4 MODIFIED BOLLE–REISSNER EQUATIONS: DECOUPLED 

SYSTEM DISPLACEMENTS ROTATIONS  
 

For linear analysis, Eqs. (39) and (40) are automatically satisfied with u v  0 and the other 

three leave us with: 
 

hE

p

xy
w

yx
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)1(12 









,
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w
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In order to obtain a consistent system of differential equations for plate analysis, we derive the first 

equation from Eqs. (43)–(45) and bearing in mind Eq. (36), we obtain 
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12

5y
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w
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12
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p
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which after addition results in 
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12

5y xw p
x y E h
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Whilst from Eqs. (43) and (44) we find 
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5
y x

y x
w w

p
x y x y E hh x y h

   (52) 

 

and substituting into the previous equation 
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p
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so that the equation system for the linear case turns out to be 
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for the case of geometrical non-linearity (large displacements) we obtain 
 

'' '' '' ' '' ' '' ' '' ' ''
2 2 2 2

1 1 1
( ) ( )

2 2 2xy x y xy y xy xx y x y
u v u w w w w w w w w    (57) 
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) 
 

In order to obtain the governing equations disconnected in displacements and moment sum and 

taking into account Eq. (36), we can write Eqs. (59)– (61) as  
 

12· 1
·

5· ·

y x M
w w P

x y D E h      
 (62) 

y x
y x

M P

x y x y D D      
 (63) 

 

and it yields, 

 

6
·

5· ·

M P

M
w P

D G h      
 (64) 

 

These equations have the same structure as the ones proposed by Reissman (1980) and offer a wide 

range of possibilities of obtaining analytical solutions for simply supported plates as will be seen in 

the following examples.  

 Otherwise, a Fourier series solution is always possible, taking into account the appropriate 

boundary conditions. 

 
5 ANALYTICAL ELASTIC SOLUTIONS BASED ON FOURIER SERIES  

In order to obtain analytical solutions to the system of differential equations (49)–(51), Fourier 

series solutions are proposed. In order to compare the solutions obtained with other methods and 

theories, we have chosen simply supported plates and completely clamped plates subjected to 

different loads.   
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Example 1: a simply supported isotropic rectangular plate of dimensions a by b subjected to the 

transverse load ,p p x y  on surface z = −h/2 acting in the upward z direction as given below  
 

sen seno
x y

p p
a b      

 (65) 

 

 

Figure 4: Coordinate system. Plate dimensions. 

 
The boundary conditions are satisfied if the displacements, w , are expressed by 
 

sen sen
x y

w c
a b

   (66) 

 

where a and b are defined according to Figure 4. After derivation and substitution in Eq. (49), we 

find 

2 2

4
2 2

2 2

1

1 1 1 1 5 (1 )( )( )

op h
c

D a ba b

   (67) 

 

where the second summation is of little relative importance compared to the first when we deal with 

a thin plate. Hence, it constitutes a correction to the solution obtained for this type of plate and it 

is clear that it acquires some relevance as thickness h increases.  

 Substituting this coefficient in the displacement field of Eq. (53), we obtain, 
  

2 2

2 2
4 2 2

2 2

4

1 1
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1 1
( )

o
h

p x ya bw
a ba

D

a
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(68) 

 

In the same way, if seeking to satisfy for 
 

00
( ) ( ) 0y y x y x y bx x a

M M M M  (69) 
 

for x  and y we adopt 

 

1 sen cosx
x y

c
a b    ,   

2 cos seny
x y

c
a b

 (70) 
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and substituting in Eqs. (50) and (51) we determine c1 and c2 and thus, after substitution in the 

general expressions, we obtain: 
 

2
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2
2
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2

2
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(71

) 

 

Shear stresses are obtained in a similar way,  
  

2

2
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a
Q
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2

2
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(72) 

 

which coincides exactly with Reissner equations.  

Notwithstanding this, if we analyze maximum horizontal bending stress, for 3a b h and 

0, 3 ,  
2

hz , 

 

, , 1, 99
2x o

x yhx y p sen sen
a b

;     
    

 (73) 

 

which improves the result obtained with the Reissner equations and reduces the error with respect 

to the solution with the theory of elasticity, 
  

, , 2,12
2x o

x yhx y p sen sen
a b

.    
    

 (74) 

 

To conclude this example, identical results are obtained considering the general solutions of the 

system of differential equations expressing Fourier series for the deflections and the rotations.  

If we consider that the rotations and deflections can be expressed in the form,  
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then we can express the system in Eqs. (54)–(56) as, 
  

2 6
( ) ( ) ´ ( ) ( ) ( ) ´´ ( ) ( )

5x y n n n
m m

T y T y w y w y q y
a a G h

 (76)    

2
2 2

5 (1 ) 5 (1 )1
( ) ( ) ´´ ( ) ( ) ( ) 0

2x x n
m m

T y T y w y
a ah h

 (77) 

2
2 2

5 (1 )1 10
( ) ( ) ´´ ( ) ´ ( ) 0

2 y x n
m

T y T y w y
a h h           

 (78) 

 

whose complicated analytical solution imposing the appropriate boundary conditions for simply 

supported plates and considering 0( , )q x y q  is, 
 

  

4
4 3 3

1,3,5..
2 2

2

2
24

12 1
2

5 2

m y m y m y m x
m a a a a

m

m y m x
m a a

P Pa
w x ax a x A ch sh sen

D D

Pa x ax
B m ch sen

Et

          
 (79) 

 

with  
 

5 5 5 5

2 2 2
, ,

2
m m

m m m
m m

th m b
A B

am ch m ch      
 (80) 

 

which can be reduced to Eq. (68) rearranging the terms of these last equations.  

Following the methodology known for thin plates, the solution to the case of a rectangular plate 

with clamped edges is obtained by superimposing the previous problem, of the supported plate, to 

the cases of supported plates only subjected to bending moments at the edges and taking into 

account that the rotations on the edges of the clamped plate are zero. 

Example 2: free vibration of a simple supported isotropic rectangular plate. Applying the 

principle of d'Alembert to establish dynamic equilibrium equations for the study of transverse 

oscillations of plates, we need only consider in the equilibrium equation (49) the inertia forces rather 

than static loads P. 

The problem to solve is, 
 

· ·
· 12 (1 )

5
w w w

h

D E h
;     

    
 (81) 

 

expressing the deflection as, 
 

1 2·cos · ·s · · ( , )w C f C en f U x y ;     
    

 (82) 
 

where f is the frequency. 

Substituting,   
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2 2· 12 (1 )
· · · ·

5

t
U f U f U

D E h
;     

    
 (83) 

 

boundary conditions are satisfied if we take the solution in the form, 
 

·mn
m x n y

 U = sen sen
a b

;     
    

 (84) 
 

substituting again, 
 

24 4 2 22
2 212 (1 )

5

· · ·
2· · · · 0

· mn mn
E h

m m n n t m n
f f

a a b b D a b
;     

    
 (85) 

 

and solving, 
 

22 2
2

2 22 2
2

2

· 1
· · · ·

1 · ·
24· 1 1.2· ·

mn
b E t

f n m
ab t b

m n
ab

.     
    

 
(86) 

The term 
22

2
2
· ·

b
n m

ab
is well known and corresponds to the one obtained in the work of Leissa 

(1973). 

In order to compare the results for a square plate (Mindlin 1951), these results refer to the non-

dimensional frequency parameter λ given by, 
 

2 h
fa

D
.     

    
 (87) 

 

Results are shown for different ratios thickness/length (0.01, 0.1 and 0.2) in Table 1 for the first 

and fourth modes of vibration. 

 

Mode h/a = 0.01 h/a = 0.1 h/a = 0.2 

1 19.734 19.067 17.450 

4 78.848 69.794 55.158 

Sol.1 (Mindlin) 19.734 19.067 17.450 

Sol.4 (Mindlin) 78.849 69.794 55.159 
 

Table 1: Parameter λ of a simply supported square plate. 

 

Excellent agreement with the theory, for simply supported plates, has been found. 

 Example 3: a simply-supported rectangular plate with bending moments at the edges (Figure 5). 

In order to solve the problem we take 
 

( ) senn
m x

w w y
a

;  ( ) cosy y
m x

T y
a

;  ( ) senx x
m x

T y
a           

 (88) 
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with which 0w  and 0xM  are satisfied, for 0x  and x a . 

 

 

Figure 5: Bending of a rectangular plate by moments distributed along the pairs of opposite edges (
2

by ). 

 

Substituting in Eqs. (46)–(48), and taking into account that 0w  for 
2

by  and that w  should 

be symmetrical in y for all of x, we obtain: 
 

3 sen
2m

m y b m b m y m x
w C y sh th ch

a a a a
       (89) 

 

To find y  and x  , we substitute in (51)and take into account (36) . The solution must also satisfy 

the conditions 0y  for 
2

ax ; 0x  for 0y , thus obtaining: 

 

4 3

2

2 ( )
2 2

2 cos
5 (1 )

y m m
m b m b m y m y

c ch y c th ch y sh
a a a a

m h m y m x
ch

a a a

 (90) 

4 3

2 2 2

2

2 ( )
2 2

2 sen
5 (1 )

x m m
m b m b m y m m y

c sh y c th sh sh
a a a a a

m y m m h m y a m x
y ch sh

a a a m aa

 (91

) 

 

with  
 

2 2

2 2

5 (1 )m

a h
 (92) 

 

Now it can be verified that the pending differential equation (50) is satisfied identically. Constants 

3mc  and 4mc  are obtained by considering the equilibrium of the plate under pure bending, so that 

0xyN  , for
2

by  and that the moment yM  for 
2

by  should coincide with the value of 

the external bending moment applied, which in turn is expressed by: 
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2

4 1
seno

y by

M m x
M

m a
 (93) 

 

In this way, we obtain: 
 

3 2 2

2 o
m

M a
c

D m
,       4 3m m

m
c c

a
                                      (94) 

 

being: 
 

2 2 2

2
2

5 (1 )

2

m b
sh

m h a
ba sh

 

 

(95) 

 

2

5
(1 ) ( )

m a

a h m  

2 2 2
2 2

2
2

2

2 2 (1 )
2

5 (1 )
2

b m b
ch m h sh

m b ma ch h
b a ash a

 
(96) 

 

These expressions are formally analogous to the ones obtained in the work of Panc (1975). 

As a check, it can be seen that for a thin plate (h << a, b) in which one of its dimensions is 

much less than the other (b << a, b), so that  
 

2 2

m b m b
th

a a
, 1

2

m b
ch

a
 y 1    y  , (97) 

 

the vertical displacement in the centre in which y = 0 gives the solution is 
 

2 2

1,3,...

1 1
sen

2 8
o oM b M bm x

w
D m a D

      (98) 

 

i.e. an equation that coincides with the exact solution (Timoshenko 1959). 
 

Figure 6: Bending of a rectangular plate by moments distributed along the edges (
2

ax ). 
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If the bending moments are applied at the other two edges (Figure 6), we shall adopt 
 

4 1
seno

x

M m y
M

m b             
senI I

m
m y

w w
b

 (99) 

( ) senI
y y

m y
T x

b
;                      ( ) cosI

x x
m y

T x
b                   

 
(100

) 
 

arriving at another solution with similar characteristics to the previous one.  

 Example 4: in this example the case of a uniformly loaded clamped plate is studied (Figure 7).  

Using some results from the previous example, we are now in a position to tackle the solution of a 

uniformly loaded clamped plate, simply by making  
 

2
x by

2

0y ax
 .    (101

) 
 

 

Figure 7: Pure bending of a rectangular plate by moments that are uniformly distributed along the edges. 

 

The rotation in a simply supported plate under a uniformly distributed load is: 
 

2 1

2

2 1,3,5,... 1,3,5,..

( 1) cos
m n

SP o
x mby

m x
C

a
 (102) 

 

where o
mC  is known and is obtained from the expressions deduced in the fourth example studied. 

Substituting x  and y for   
 

2

a
x , 

2

b
y  (103) 

gives 
 

 (104) 

The rotation due to the moment yM  is derived from Eq. (90), by substituting x  for
2

a
x , so that 
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1 2
( )

2sen ( 1) cos
m

a
m x

m x

a a ,
       

(105

) 

and thus 
 

32
1,3,5,...

2 2 2 1
2

2

2
2 2 2 2 2

2
( 1) cos

2 2 5 (1 ) 2

My
x my b

m

b b m b m b m m b
c sh th sh sh

a a a a

b m b m m h m b m x
ch sh

a a a aa

 (106

) 

 

Finally, rotation, due to the bending moments xM  which were previously omitted so as not to 

obscure the expression with more formulae, yields (after substituting y by 
2

by  ) 

 

32
1,3,5,...

2

2 ( )
2 2

2
5 (1 )

Mx I I I
x my b

m a m a m x
c ch x th ch

b b b

m x m h m x
x sh ch

b b b

 (107

) 

 

However, the expression in square brackets is even in x  and can therefore be expanded by 
 

1,3,5

cosi
i x

A
a

 (108

) 
 

which would leave us with 
 

32
1,3,5 1,3,5

cosMx I
x m iy b

m i x
c A

b a
 (109

) 

being 
 

2 2

2

2
( 2 ( ) 2 ) cos

2 2 5(1 )

a

I I
i

a

a m a m x m x m h m x i x
A ch x th ch x sh ch dx

a b b b b b a

 

(110) 

After placing  
 

2 2 2

0SP My Mx
x x xb b by y y ,

 (111

) 
 

taking into account that the equation is valid for any value of x, we obtain an infinite system of 

linear equations to determine the unknown coefficients  and 3
I
mc  . The condition of zero rotation 

on the other two edges 
2

y ax
 leads us to a similar system with the same unknown quantities, 

which are determined in each specific case by these two systems using the successive approximation 

method.  
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6 CONCLUSIONS 

The most important conclusions to have been reported in this paper are: 
 

1) We have derived a refined system of differential equations valid for the study of plates including 

first-order shear deformation effects, proposing the equilibrium of the plate element in its deformed 

geometry and taking into account the kinematic assumptions and constitutive equations of the 

Bolle–Reissner plate theory.  
 

2) This constitutes a more refined generalization than the one presented by Reissner (1945) for 

moderately thick plates and the other presented by Timoshenko (1959). If it is expressed in terms of 

the Marcus moment (moment sum) and displacements, it is formally analogous to the equations 

proposed by Reismann (1980).   
 

3) Analytical solutions for this system of differential equations were obtained for simply supported 

plates in static and dynamic analysis with excellent results without using any stress function. 

Analytical solutions for clamped plates were also deduced. Equations presented here are valid for 

moderately thick and thin plates and, in some cases, coincide exactly with Reissner's theory and 

other shear deformation plate theories. 
 

4) The structure of the system of differential equations obtained permits one to solve them easily by 

numerical methods, like the finite difference method, in case of complex boundary conditions and 

where analytical solutions are difficult to obtain. Results will be presented in future work.  
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