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Abstract 

This paper presents a finite element formulation for the analysis of 

two dimensional reinforced elastic solids developing both small 

and large deformations without increasing the number of degrees 

of freedom. Fibers are spread inside the domain without the neces-

sity of node coincidence. Contact stress analysis is carried out for 

both straight and curved elements via two different strategies. The 

first employs consistent differential relations and the second 

adopts a simple average calculation. The development of all equa-

tions is described along the paper. Numerical examples are em-

ployed to demonstrate the behavior of the proposed methodology 

and to compare the contact stress results for both calculations. 
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1 INTRODUCTION 

Composites are made of more than one material in order to take advantage of complementary char-

acteristics. Three widely used composite materials that falls in the fiber reinforced category are the 

reinforced concrete, the reinforced rubber and the fiber-carbon-epoxy. The reinforced concrete com-

bines the low cost of concrete and its strength to compression with the ductility and strength to 

traction of the steel. The reinforced rubber combines the large deformability of rubber for dynamic 

energy absorbing with the steel strength and stiffness. The fiber-carbon composite uses the matrix 

as a bounding among the carbon fibers. Mechanical analysis of fiber-reinforced composites falls in 

three main levels: the macro-level, the meso-level and the nano-level. The first is interested in the 

overall behavior of structural components. The meso-level deals with the interdependent behavior of 

fiber and matrix, i.e. interfacial stress and slip. Finally the nano-level is interested in the nano-scale 

constitution of fibers and matrix by themselves and in its influence at meso and macro-levels. 

 In this paper we intend to collaborate in meso and macro-levels of fiber reinforced modeling via 

Finite Elements. We propose a way to represent short or long fibers immersed in elastic continuum 
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domains by means of fiber finite elements without increasing the number of degrees of freedom and 

a way to calculate, with good precision, the contact stresses (shear and normal) between fiber and 

matrix without using auxiliary bounding layer strategies.  

 In FEM literature different ways are developed to incorporate fibers inside matrix domain. The 

reader is invited to consult the works (Radtke et al., 2011, 2010a, 2010b; Hettich et al., 2008; 

Chudoba et al., 2009; Oliver et al., 2008) where field enrichments are imposed inside the 2D domain 

in order to model the fiber-matrix coupling. These enrichments are based on general known behav-

ior of fiber-matrix connections. They are mostly based on the so called Partition of Unity FEM 

(Melenk and Babuska, 2006; Duarte and Oden, 1996a, 1996b; Oden et al., 1998; Duarte et al., 2000; 

Babuska and Melenk, 1997). These works are very elegant and well posed; however the pre-known 

enrichment field is of difficult achievement when, for example, curved fibers are present. Readers 

are invited to consult the works Schlangen et al. (1992); Bolander and Saito (1997); Liz et al., 

(2006) in which authors employ lattice strategy to model composites from micro-structures. Moreo-

ver, other approaches that adopt slip degrees of freedom to represent the fiber reinforced body can 

be found in Balakrishnan and Murray (1986); Désir et al. (1999). Works that employ the Boundary 

Element Method should also be mentioned (Coda, 2001; Leite et al., 2003). 

 This study presents an alternative geometrically nonlinear formulation to analyze 2D solids rein-

forced by fibers. The 2D solid finite element applied here to discretize the continuum is 

isoparametric of any order (Coda, 2009; Coda and Paccola, 2008; Pascon and Coda, 2013). Curved 

high order fiber elements are developed to be embedded in the continuum. To calculated contact 

stresses without using slip degrees of freedom two approaches are developed and compared, an av-

erage stress calculated from the transfer fiber force resultants and a differential relation among 

normal fiber internal stress and contact forces. The adopted nodal parameters are positions, not 

displacements, which is adequate to model curved elements and large deformations due to the natu-

ral presence of a numerical chain rule. The formulation is classified as total Lagrangian and the 

Saint-Venant-Kirchhoff constitutive law is chosen to model the material behavior (Ciarlet, 1993; 

Ogden, 1984). Therefore, the Green strain and the Second Piola-Kirchhoff stress are adopted.  

 Fiber elements are introduced in matrix by means of nodal kinematic relations. This strategy 

directly ensures the adhesion of fibers nodes to the matrix without increasing the number of degrees 

of freedom and without the need of nodal matching (Sampaio et al., 2013; Vanalli et al., 2008). 

To solve the resulting geometrical nonlinear problem we adopt the Principle of Stationary Total 

Potential Energy (Tauchert, 1974). From this principle we find the nonlinear equilibrium equations 

and the Newton-Raphson iterative procedure (Luenberger, 1989) is used to solve the nonlinear sys-

tem. External loads are considered conservative and incrementally applied. 

 The paper is organized as follows. Section 2 describes the general nonlinear solution process, 

indicating the important variables that will be developed in subsequent sections. Section 3 describes 

the procedure used to model the two-dimensional continuum. Section 4 presents the developed any 

order fiber finite element and describes the chain rule applied to generalize the inclusion of fibers 

into high order 2D solid finite elements without increasing the number of degrees of freedom. Sec-

tion 5 presents the proposed fiber-matrix contact stresses calculations. Section 6 presents the nu-

merical examples comparing and analyzing the behavior of the proposed formulations. Finally, con-

clusions are presented in section 7. 
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2 THE NONLINEAR SOLUTION 

In this section, the strategy adopted to solve the reinforced 2D solid geometrically nonlinear equilib-

rium is described. It is important to clarify that next sections explain how the fiber degrees of free-

dom are related to the main unknown of the process, i.e., the 2D solid nodal positions without in-

creasing the number of degrees of freedom.  

 The nonlinear analysis starts writing the total potential energy (Π) as follows: 
 

 ( ) ( ) ( )Y U Y YΠ = + Ω   (1) 

 

where U  is the strain energy including matrix and fiber contributions written regarding solid nodal 

positions and Ω is the potential energy of external conservative applied forces given by: 
 

 j jFYΩ = −   (2) 

 

where jF  is the vector of external forces and jY  is the current position vector. 

 The Principle of Stationary Total Potential Energy (Tauchert, 1974) is applied writing the equi-

librium equations as the derivative of total energy regarding nodal positions (2D solid for instance), 

as: 
 

 int 0j j j j

j j

U
g F F F

Y Y

∂Π ∂
= = − = − =
∂ ∂

  (3) 

 

where int
jF  is the internal force vector or the strain energy gradient vector calculated regarding 

solid nodal positions. The nodal current positions are the unknowns of the problem, so, when adopt-

ing a trial position in Eq. (3) jg  is not null and becomes the unbalanced force vector of the New-

ton-Raphson (Luenberger, 1989) procedure. Expanding the unbalanced force vector around a trial 

solution 0Y , one has: 

 

 
0

2

( )

( ) ( ) 0
j

j j k j

k

g
g g Y O

Y

∂
= + ∆ + =

∂
0

Y

Y Y   (4) 

 

which can be rewritten, neglecting higher order terms as: 
 

 ( ) ( )
0 0

1 1
2

10 0 0( ) ( )
j

k j j kj j

k k j

g U
Y g g H g

Y Y Y

− −

−
     ∂ ∂    ∆ = − = − = −    ∂ ∂ ∂      Y Y

Y Y Y   (5) 

 

where kY∆  is the correction of position and ( ) ( ) 0

2
kj k jH U Y Y= ∂ ∂ ∂

Y
 is the Hessian matrix or 

tangent stiffness matrix. 

 The trial solution is improved by: 

 

 0
k k kY Y Y= + ∆   (6) 
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until kY∆  or jg  become sufficiently small 

applied if one wants to describe the equilibrium path of the analyzed structure.

 

3 ISOPARAMETRIC 2D SOLID FINITE ELEMENT 

As we are interested in composite analysis the procedure described in

continuum part of the composite, i.e., the matrix. After achieving the strain energy of the matrix 

the next section is concerned with the introduction of the fiber strain energy into the mechanical 

system. 

 

3.1 Kinematical approximation and positional mapping 

By means of the illustration of a quadratic finite element, Figure 1 shows the 2D solid (matrix) 

mapping from the initial configuration (not deformed) 

al., 2000). This mapping is done using a dimensionless auxiliary configuration 

 

Figure 1: Initial and current configuration mappings.

 

 The initial configuration 0B  whose points have coordinates 

space 1B  with coordinates iξ  using shape functions of any order, 

of the nodes l  in the initial configuration, 

 

 i i l ix f X

 

 Similarly, the current configuration B

pression: 

 

 i i l iy f Y
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become sufficiently small (Luenberger, 1989). The load level can be incrementally 

applied if one wants to describe the equilibrium path of the analyzed structure. 

ISOPARAMETRIC 2D SOLID FINITE ELEMENT – ISOTROPIC CONTINUUM 

As we are interested in composite analysis the procedure described in this section is applied to the 

continuum part of the composite, i.e., the matrix. After achieving the strain energy of the matrix 

the next section is concerned with the introduction of the fiber strain energy into the mechanical 

pproximation and positional mapping  

By means of the illustration of a quadratic finite element, Figure 1 shows the 2D solid (matrix) 

mapping from the initial configuration (not deformed) 0B  to its current configuration B  (Bonet et 

. This mapping is done using a dimensionless auxiliary configuration 1B . 

 

Initial and current configuration mappings. 

whose points have coordinates ix  is mapped from the dimensionless 

using shape functions of any order, ( )1 2,lφ ξ ξ , and by the coordinates 

in the initial configuration, l
iX , such as: 

( )0
1 2,

l
i i l ix f Xφ ξ ξ= =   

B  is mapped from the dimensionless space 1B  by the e

( )1
1 2,

l
i i l iy f Yφ ξ ξ= =   

. The load level can be incrementally 

this section is applied to the 

continuum part of the composite, i.e., the matrix. After achieving the strain energy of the matrix 

the next section is concerned with the introduction of the fiber strain energy into the mechanical 

By means of the illustration of a quadratic finite element, Figure 1 shows the 2D solid (matrix) 

Bonet et 

is mapped from the dimensionless 

, and by the coordinates 

(7) 

by the ex-

(8) 
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where iy  are coordinates of points in the current configuration, l
iY  are the current node positions, 

1,...,l N=  are nodes and 1,2i =  correspond to coordinate directions. 

 The deformation function f  that maps the initial configuration 0B  to the current configuration 

B  can be written as a composition of mappings 0f  and 1f  as: 

 

 ( ) 11 0
−

= �f f f   (9) 

 

 The deformation gradient A  can be derived directly from 0A  and 1A  as (Bonet et al., 2000; 

Coda and Paccola, 2007): 

 

  1 0 1( )−= ⋅A A A  , with 
0

0 i
ij

j

f
A

ξ

∂
=
∂

, 
1

1 i
ij

j

f
A

ξ

∂
=
∂

 (10) 

 

 Equation (10) can be understood as a numerical chain rule because the initial mapping gradient 
0A  is a known numerical quantity. The solid element has any order of approximation and N  is the 

number of nodes given as a function of the approximation order GP  as: 
 

 
( 1)( 2)

2

GP GP
N

+ +
=   (11) 

 

3.2 Continuum strain energy 

Without loss of generality, to simulate the continuum portion of the composite (matrix) we adopted 

the Saint-Venant-Kirchhoff specific strain energy function (Ciarlet, 1993; Ogden, 1984), as: 

 

 
1

2mat ij ijkl klu E E= C   (12) 

 

where ijklC  is the elastic fourth-order tensor and E  is the Green-Lagrange second-order strain ex-

pressed respectively by: 

 

 ( )2

1 2ijkl ij kl ik jl il jk

G
G

ν
δ δ δ δ δ δ
ν

= + +
−

C   (13) 

 ( ) ( )1 1

2 2ij ij ij ki kj ijE C A Aδ δ= − = −   (14) 

 

 The variables ⋅tC = A A  and δδδδ  are the right Cauchy-Green stretch tensor and the Kroenecker 

delta, respectively. In Eq. (13), G  is the shear modulus and ν  is the Poisson's ratio. 

 The strain energy accumulated in the continuum part of the composite (matrix) is calculated by 

integrating the specific strain energy over the initial volume, i.e., 

 

 
0

0mat mat
V

U u dV= ∫   (15) 
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 Considering solids with unitary thickness and writing Eq. (15) as a function of dimensionless 

coordinates ( 1ξ  and 2ξ ) results: 

 

 
21 1

1 2 0 1 2 1 20 0
( , ) ( , )mat matU u J d d

ξ
ξ ξ ξ ξ ξ ξ

−
= ∫ ∫   (16) 

 

where 0J  is the Jacobian of the initial mapping, i.e., 

 

 0
0 1 2( , ) det( )J ξ ξ = A   (17) 

 

with 0A  given by Eq. (10). 

 The matrix strain energy can be derived directly regarding the solid finite element positions find-

ing the conjugate internal force vector, as: 

 

 
1

0

11
int

0 0 1 2 2 1

0 0

( , )mat mat mat

v

U u u
F dV J d d

Y Y Y

ξ
β

α β β β
α α α

ξ ξ ξ ξ

−
∂ ∂ ∂

= = =
∂ ∂ ∂∫ ∫ ∫   (18) 

 

in which α  is the direction and β  is the node. The derivative inside the integral term of Eq. (18) 

can be developed as: 
 

 
1

: : :
2

mat matu u

Y Y Yβ β β
α α α

∂ ∂ ∂ ∂ ∂
= =
∂ ∂∂ ∂ ∂

E C C
S

E C
  (19) 

 

where matu∂ ∂S = E  is the second Piola-Kirchhoff stress tensor. From the definition of the right 

Cauchy stretch and Eq. (10) one writes:  

 

 
1 1

0 1 0 1 0 1 0 1( )
( ) ( ) ( ) ( ) ( )

T
T T T

Y Y Yβ β β
α α α

− − − −∂∂ ∂
= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

∂ ∂ ∂

AC A
A A A A A A   (20) 

 

 From Eq. (8) results 
 

 
1

, 1 2 , 1 2 , 1 2( , ) ( , ) ( , )
l

ij i
l j l j l i j i

A Y

Y Y
β α β αβ β

α α

φ ξ ξ φ ξ ξ δ δ φ ξ ξ δ
∂ ∂

= = =
∂ ∂

  (21) 

 

 To complete the necessary variables of the solution process (section 2) it is necessary to calculate 

the second derivative of strain energy regarding nodal positions, resulting into the Hessian matrix 

as: 
 

 

0

2 2

0
mat mat mat

V

U u
H dV

Y Y Y Y
αβγξ β ξ β ξ

α γ α γ

∂ ∂
= =
∂ ∂ ∂ ∂∫   (22) 

 

in which 
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2 2 21 1

: : :
4 2

mat mat matu u u

Y Y Y Y Y Yβ ξ ξ β ξ β
α γ γ α γ α

∂ ∂ ∂∂ ∂ ∂
= +

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

C C C

E E E
  (23.a) 

or  

 
2 21 1

: : :
4 2

matu

Y Y Y Y Y Yβ ξ ξ β ξ β
α γ γ α γ α

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂ ∂

C C C
SC   (23.b) 

and 

 

2 1 12 1
0 1 0 1 0 0 1

1 1 2 1
0 0 1 0 1 0 1

( ) ( )
( ) ( ) ( ) ( )

( )
                ( ) ( ) ( ) ( ) ( )

T T
T T

T
T T T

Y Y Y Y Y Y

Y Y Y Y

β ξ β ξ β ξ
α γ α γ α γ

ξ β β ξ
γ α α γ

− − − −

− − − −

∂ ∂∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+

∂ ∂ ∂ ∂

. . . . .

. . . . . .

A AC A
A .A A A A

A A A
A A A A A

  (24) 

 

 It should be noted that, for solid elements, the second derivative of 1A  regarding nodal parame-

ters is null, simplifying expression (24) to: 

 

 
1 12 1 1

0 0 1 0 0 1( ) ( )
( ) ( ) ( ) ( )

T T
T T

Y Y Y Y Y Yβ ξ β ξ ξ β
α γ α γ γ α

− − − −∂ ∂∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂ ∂
. . . . . .

A AC A A
A A A A   (25) 

 

 Next section presents the necessary expressions to introduce fibers into the composite formula-

tion.  

 

4 ELASTIC FIBER REINFORCEMENT – KINEMATICS AND ENERGY CONSIDERATIONS 

This section is divided into two subsections. The first describes the strain energy of general curved 

fibers and the second describes the strategy used to introduce fiber energy in the composite solution 

without increasing the number of degrees of freedom. 

 

4.1 Any order curved fiber element 

To guaranty total adherent fiber-matrix coupling when using high order solid elements it is also 

necessary to adopt high order fiber elements (Sampaio et al., 2013). Figure 2 shows the non-

deformed initial configuration 0B , the current configuration B  and a non-dimensional auxiliary 

configuration 1B  for the curved fiber finite element of any order. 

 The initial configuration 0B  whose points have coordinates ix  is mapped from the dimensionless 

space 1B  with coordinates ξ  using shape functions of any order, ( )Pφ ξ , and by the coordinates of 

nodes P , P
iX , at the initial configuration, such as: 

 

 ( )0 P
i i P ix f Xφ ξ= =   (26) 
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 The current configuration B  is mapped from the dimensionless space 

 

Figure 2: Mapping of the fiber fin

 

 i i P iy f Y

 

where iy  are the coordinates of points in the current configuration 

ordinates of fiber nodes. In Eqs. (26) and (27) index 

ly, the fiber finite element nodes and coordinate directions.

 The tangent vector of the fiber and its modulus are calculated at the initial configuration as
 

 0
( )B P P

i i

d
T X

d

φ ξ

ξ
=    and   

 

 It is important to mention that 0BT
�

 

ration one finds:  

 
( )B P P

i i

d
T Y

d

φ ξ

ξ
=    and   

 

 Using Eqs. (28) and (29) one write the one
 

 E =

or in its expanded form, 
 

 

2 2 2 2

1 2 1 2

( ) ( ) ( ) ( )

1

2

P P P Pl l l ld d d d
Y Y X X

d d d d
E

d d

φ ξ φ ξ φ ξ φ ξ

ξ ξ ξ ξ

                      + − +                            
   =
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is mapped from the dimensionless space 1B  by: 

 
Mapping of the fiber finite element - initial and current configurations. 

( )1 P
i i P iy f Yφ ξ= =   

are the coordinates of points in the current configuration B  and P
iY  are the current c

ordinates of fiber nodes. In Eqs. (26) and (27) index 1,...,P N=  and 1,2i =  represent, respectiv

ly, the fiber finite element nodes and coordinate directions. 

The tangent vector of the fiber and its modulus are calculated at the initial configuration as 

and   0

2 2
2

1 2

( ) ( )B P P P Pd d
T X X

d d

φ ξ φ ξ

ξ ξ

      = +        

�
 

 is the differential Jacobian of 0
if . For the current config

and   

2 2
2

1 2

( ) ( )B l P l Pd d
T Y Y

d d

φ ξ φ ξ

ξ ξ

      = +        

�
 

(28) and (29) one write the one-dimensional Green strain as 

0

0

22

2

1

2

BB

B

T T

T

  −   =      

� �

�
  

2 2 2 2

1 2 1 2

2 2

1 2

( ) ( ) ( ) ( )

( ) ( )

P P P Pl l l l

P Pl l

d d d d
Y Y X X

d d d d

d d
X X

d d

φ ξ φ ξ φ ξ φ ξ

ξ ξ ξ ξ

φ ξ φ ξ

ξ ξ

                      + − +                            
   

      +        

  

(27) 

are the current co-

t, respective-

 

(28) 

. For the current configu-

(29) 

(30) 

(31) 
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 Using the Saint-Venant-Kirchhoff constitutive law one writes the specific strain energy at a 

point of the fiber as: 

 

 
21

( ) ( )
2fu Eξ ξ = ⋅  E   (32) 

 

where E  is the elastic modulus and ( )E ξ  is the Green strain measure defined by Eq. (30) or (31). 

 The strain energy of a curved fiber is given by integrating equation (32) over its initial volume 

0V  as: 

 

 
0

0f f
V

U u dV= ∫   (33) 

 

 In order to proceed with the equilibrium analysis it is necessary to know the first derivative of 

strain energy regarding positions. Based on the energy conjugate concept the natural internal fiber 

force vector related to node j  and direction k  (
intj f

kF ) is calculated regarding fiber parameters as: 

 

 
0

int

0

j f f f

k j jV
k k

U u
F dV

Y Y

∂ ∂
= =
∂ ∂

∫   (34) 

 

 From Eqs. (31) and (32) follows 

 

 
0 0

int

0 02
0

( )( ) jll
k

j f f

k j V V
k

dd
Y

U d d
F E dV E S dV

Y T

φ ξφ ξ

ξ ξ

    ∂  
= = ⋅ = ⋅
∂

∫ ∫E   (35) 

 

in which S  is the one-dimensional Second Piola-Kirchhoff stress. Considering S  constant over the 

cross section area A  of the fiber one transforms 0
fdV  into a simple expression, resulting: 

 

 
0 1int

0 02 20 10 0

( ) ( )( ) ( )

( )

j jl ll l
k k

Lj f

k

d dd d
Y Y

d d d d
F E Ads E J Ad

T T

φ ξ φ ξφ ξ φ ξ

ξ ξ ξ ξ
ξ ξ

−

              
= ⋅ = ⋅ ⋅∫ ∫E E   (36) 

 

 Where, as mentioned before, 

 

 
2 2

0 1 2
0( )

dx dx
J T

d d
ξ

ξ ξ

      = = +        

�
  (37) 

 

 The Hessian matrix components for the fiber element are obtained by the second derivative of 

the strain energy, i.e.: 
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0 0

2 2

0 0f f

f ff ff f
kj kjj jV V

k k

U u
H dV h dV

Y Y Y Y
αβ αββ β

α α

∂ ∂
= = =
∂ ∂ ∂ ∂

∫ ∫   (38) 

 

 Developing the necessary calculations one achieves: 

 

 
0

04 2
0 0

( ) ( ) ( ) ( )( ) ( ) j jf l l l l
kj k k

V

d d d dd dE E
H Y Y dV

d d d d d d
T T

β β

αβ α α

φ ξ φ ξ φ ξ φ ξφ ξ φ ξ
δ

ξ ξ ξ ξ ξ ξ

       ⋅ ⋅     = +            
∫

E E
  (39) 

or 

 
1

04 21 0 0

( ) ( ) ( ) ( )( ) ( )
( )

j jf l l l l
kj k k

d d d dd dE E
H Y Y A J d

d d d d d d
T T

β β

αβ α α

φ ξ φ ξ φ ξ φ ξφ ξ φ ξ
δ ξ ξ

ξ ξ ξ ξ ξ ξ−

       ⋅ ⋅     = + ⋅            
∫
E E

  (40) 

 

 Integrals (36) and (40) are solved using Gauss-Legendre quadrature. 

 The parameters used to find the internal force and Hessian matrix for fibers are not suitable to 

be directly applied in the solid solution process; in next section the necessary transformations are 

presented. 

 

4.2 Coupling strategy – kinematical fiber matrix coupling 

The procedure adopted here to embed fibers at any position of the domain without increasing the 

number of degrees of freedom is an extension of the works of Vanalli et al. (2008) where linear ele-

ments and linear elasticity were adopted. 

 

4.2.1 General fiber / solid connection  

The requisite to start the procedure to embed curved fibers in curved solid elements is to know the 

solid dimensionless coordinates related to fiber nodes coordinates. This is done solving the pair of 

dimensionless solid variable 1 2( , )p pξ ξ  associated to the physical fiber node position in the following 

nonlinear system, 

 

 1 2( , )P P l P
l i iX Xφ ξ ξ =   (41) 

 

where lφ  are the shape functions of the solid element, P
iX  are the known physical coordinates of 

fiber nodes (generated independently of solid mesh) and l
iX  are the know solid nodes coordinates. 

To solve Eq. (41) one expands it in Taylor series until the first order and starts with a trial dimen-

sionless coordinate, 1 2( , )pt ptξ ξ , i.e.: 

 

 

1 2

1 2
1 2

( , )

( , )
( , )

Pt Pt

P Pt Pt l l
i l i j

j

X X

ξ ξ

φ ξ ξ
φ ξ ξ ξ

ξ

∂
≅ + ∆

∂
   or   P Pt

i i ij jX X H ξ= + ∆  (42) 
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in which Pt
iX  is a trial position of the fiber node calculated from the solid element geometry and 

the trial dimensionless coordinates and ijH  is a two dimensional matrix. The correction of the trial 

dimensionless coordinates iξ∆  is calculated solving the following linear system of equation: 

 

 P Pt
ij j i iH X Xξ∆ = −   (43) 

 

 The procedure is a simple and fast Newton-Raphson nonlinear solver that relates all fiber nodes 

to the connected solid element revealing the pair of dimensionless variables 1 2( , )p pξ ξ . From this in-

formation one also knows the current position of fiber nodes as a function of solid nodes positions, 

i.e., 
 

 1 2( , )P P P l
i l iY Yφ ξ ξ=   (44) 

 

in which l
iY  are the current positions of solid nodes. Equation (44) ensures the connection among 

nodes of fibers and the matrix 2D elements.  

 In the next item it will be necessary to differentiate the fiber strain energy regarding the solid 

nodal coordinates using the chain rule. To make it possible one has to differentiate Eq. (44) regar-

ding a generic nodal solid coordinate, as: 

 

 1 2 1 2( , ) ( , )
P l
i i P P P P

l i l l

Y Y

Y Y
α ββ β

α α

φ ξ ξ δ δ φ ξ ξ
∂ ∂

= =
∂ ∂

  (45) 

 

 If the fiber node P  belongs to the solid element then 1lβδ =  and if direction α  (solid) is equal 

to direction i  (fiber) then 1iαδ =  and expression (45) results 1 2( , )P P P
iY Y βα βφ ξ ξ∂ ∂ = , otherwise it 

results zero. 

 

4.2.2 General internal force  

The strain energy stored in a reinforced body is the sum of the strain energies stored in the matrix 

and fibers, 

 

 mat fU U U= +   (46) 

 

where matU  is the strain energy stored in the 2D solid finite elements used to discretize the matrix 

and fU  is the strain energy stored in the fiber finite elements. Therefore, the internal force at a 

node β  following direction α , considering both fiber and matrix contributions is found by the con-

jugate energy concept, such as: 

 

 
int

1 2

( )
( , )

P
mat P fmat f f fmat mat i P P

P
i

U U U UU U Y
F F F

Y Y Y Y Y Y

β β

α β α αβ β β β β
α α α α α

φ ξ ξ
∂ + ∂ ∂∂ ∂ ∂

= + = + = + =
∂ ∂ ∂ ∂ ∂ ∂

  (47) 

 

where Eqs. (18), (36) and (45) have been used and there is no summation over P .  
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4.2.3 Hessian Matrix  

Proceeding as described for the calculation of internal forces, we develop the second derivative of 

strain energy of the reinforced finite element regarding the solid nodal parameters, as follows 

 

 
( )

0 0 0

2 2 222

0 0 0

( )

f

mat f mat f fmat f

V V V

U U u u uuU
dV dV dV

Y Y Y Y Y Y Y Y Y Yβ ξ β ξ β ξ β ξ β ξ
α γ α γ α γ α γ α γ

∂ + ∂ + ∂∂∂
= = = +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∫ ∫ ∫   (48) 

 

 The first integral at the last term of Eq. (48) is known, Eq. (22). However, it is necessary to 

observe that the kernel of the last integral is the specific strain energy of a fiber derived twice re-

garding the solid nodal parameters. As Eq. (39) gives its value when derived regarding fiber para-

meters one has to apply the chain rule twice, described by Eq. (45), over Eq. (48), that is: 

 

 
2 2 2 2 2f f f f f f f f

f f f f f

f f f f f f f f
w

u u u u uY Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

ρ ρ ρ η η ρ η η
ω ω ω π π ω π π

β ξ ρ ρ β ξ ρ η β ξ η ρ β ξ η η β ξ
α γ ω α γ ω π α γ π ω α γ π π α γ

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
  (49) 

 
2 f f f f f f f f

f f f f f
u Y Y Y Y Y Y Y Y

h h h h
Y Y Y Y Y Y Y Y Y Y

ρ ρ ρ η η ρ η η
ω ω ω π π ω π π

ωρωρ ωρπη πηωρ πηπηβ ξ β ξ β ξ β ξ β ξ
α γ α γ α γ α γ α γ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
  (50) 

 

where fh  is the fiber Hessian matrix kernel, Eq. (38). In Eq. (50) summation is not implyied. 

 Integrating (50) over fiber volume gives: 

 

 
2 f f f f f f f f

f f f f f
U Y Y Y Y Y Y Y Y

H H H H
Y Y Y Y Y Y Y Y Y Y

ρ ρ ρ η η ρ η η
ω ω ω π π ω π π

ωρωρ ωρπη πηωρ πηπηβ ξ β ξ β ξ β ξ β ξ
α γ α γ α γ α γ α γ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (51) 

 

 Using Eq. (51) into (48) results the consistent spreading of fibers contribution over the matrix 

properties, i.e.: 
 

 ef fH H H= +   (52) 

 

5 CONTACT STRESS CALCULATION 

In the proposed formulation the contact stresses are not used to achieve the equilibrium position. 

Therefore, the contact stress calculation is done after solving the problem for positions. Two strate-

gies are presented in order to do this calculation. The first is based on differential relations and is 

presented in subsections 5.1 and 5.2. The second is an average calculation, shown at subsection 5.3, 

for which the transferred nodal force from fiber to matrix is decomposed following the tangential 

and normal directions of fiber node and divided by a influence portion of the element contact area. 

 

5.1 Shear contact stress – differential formulation 

The differential equilibrium depicted in Figure 3 is used to calculate the contact shear stress ( )q ξ  

between fiber and matrix as: 
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Figure 3: Differential equilibrium following fiber direction. 

 

 
1

. .
dN dN

q t ds dN ds q
ds t ds

= = ⇒ =   (53) 

 

where ds  is a differential of the curvilinear coordinate along the deformed fiber and t  is the fiber 

thickness. ds  is calculated as a function of dimensionless coordinate ξ  as: 

 

 
2 2

2 2 1 2
1 2 ( ).

dy dy
ds dy dy d d J d

d d
ξ ξ ξ ξ

ξ ξ

      = + = + =        
  (54) 

or 

 ( )
ds

J
d

ξ
ξ
=   (55) 

 

Using the chain rule results: 

 

 
1 1

. .
( )

dN dN d dN dN

ds d ds d ds J d

d

ξ

ξ ξ ξ ξ

ξ

= = =   (56) 

 

 Considering constant thickness the Cauchy stress is calculated from Piola Kirchhoff stress as:  

 

 
0 0

( ) ( )
( ) ( ) ( )

( ) ( )

J J
S E

J J

ξ ξ
σ ξ ξ ξ

ξ ξ
= = E.   (57) 

 
0

( )
( ) ( ).

( )

J
N E A

J

ξ
ξ ξ

ξ
= E.   (58) 

 

With ( )E ξ  given by equation (31). 

 Instead of differentiate expression (58) regarding ξ  and substituting into (56) and (53) we prefer 

to calculate the normal force nodal values using (31) and (58) and make: 

 

 ( ) ( ) P
PN Nξ φ ξ=   (59) 

therefore: 

 
( )

( )
p p

ddN
N

d d

φ ξ
ξ

ξ ξ
=   (60) 
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Substituting (60) into (56) and (56) into (53) results: 

 

 
( )1 1

( )
( )

p p
d

q N
t J d

φ ξ
ξ

ξ ξ
=   (61) 

 

 It is important to mention that the differential formulation cannot be applied for linear fiber 

element, as it results null values of ( )q ξ . 

 

5.2 Normal contact stress – differential formulation 

For an infinitesimal length ds  there is a curvature center and a curvature radius, see Figure 4. 

From this figure one writes the following geometrical relation: 

 

 .ds Rdθ=   (62) 

 

 
Figure 4: Infinitesimal part of a fiber finite element. 

 

Remembering that t  is the body thickness, the equilibrium equation following the fiber orthogonal 

direction is given by: 

 

 . . . .( . ) 2. . .
2

d
p t ds p t Rd N sen N d

θ
θ θ

 = =  =   
  (63) 

or 

 
( )1

( )
( )

N
p

t R

ξ
ξ

ξ
=   (64) 

 

As ( )N ξ  is known, equation (58), it is necessary to calculate 1 ( )R ξ , given by: 

 

 
( )

2 2
2 1 1 2

2 2

3

1

( ) ( )

d y dy d y dy

d dd d

R J

ξ ξξ ξ

ξ ξ

−

=   (65) 

 

Substituting (65) into (64) results the final expression: 
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( )

2 2
2 1 1 2

2 2

3

1
( ) ( )

( )

d y dy d y dy

d dd d
p N

t J

ξ ξξ ξ
ξ ξ

ξ

−

=   (66) 

 

 By the same reason described in the previous item, expression (66) cannot be applied for linear 

fiber elements. In section 6 examples are used to demonstrate the use of presented expressions. 

 

5.3 Average contact stress 

A generic nodal transfer force (from matrix to fiber) intF
�

 is depicted in Figure 5 together with the 

tangential and normal unit vectors (n
�
 and t

�
) calculated at the same point. The tangential and 

normal components of the transfer force are: 
 

 intQ = F t⋅
� � �

  (67) 

 intP = F n⋅
� � �

  (68) 

 

 
Figure 5: Transfer force and area of influence. 

 

The normal and tangential forces are divided by the surface influence area ( infA ) depicted in Figure 

5 and the average values results: 
 

 int
inf

q = F t A⋅
� ��

  (69) 

 int
inf

p = F n A⋅
�� �

  (70) 

 

It is worth noting that for connecting nodes the resulting value is the average between values calcu-

lated for each element. 

 

6 NUMERICAL EXAMPLES 

Five numerical examples are chosen to show the behavior of the proposed formulation regarding the 

overall behavior of reinforced structural members and the estimated contact stress accuracy. A con-

vergence analysis is carried out for both displacement and contact stresses.  

 

6.1 Simple supported beam 

This example is used to certify that the mechanical coupling between fiber and matrix is working 
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properly. Both displacement and contact stress are compared to a simple analytical solution limited 

to small displacements and strains in order to certify the coherence of results. 

 It is a simple supported reinforced beam, depicted in Figure 6, subjected to a uniformly distrib-

uted load 10 N cmq = . The simple supports are modeled by vertical distributed loads of 

100 N/cmrq =  and the adopted geometrical properties are: 400 cmL = , 20 cmh = , 1 cmb =  

and 1 cmd = , see Figure 6. The Young modulus and the Poisson´s ratio of the matrix are 
5 221x10 N cmcE =  and 0ν = , while the Young modulus and the cross-sectional area of the rein-

forcement are 5 2210x10 N cmfE =  and 21 cmfA = . Due to symmetry, only a half of the problem 

is solved as depicted by Figure 6. 

 

 

Figure 6: Geometry and boundary conditions. 

 

In order to check displacement convergence, see Figure 7, we use 160 linear fiber elements to discre-

tize the horizontal reinforcement and three different meshes of triangular third order finite elements, 

i.e., mesh (a) 8x80  elements and 12050 dof, (b) 16x160  elements and 47138 dof and (c) 32x320  

elements and 186434 dof. As one can see the displacement difference from the second to the third 

discretization is less than 0.3%  characterizing convergence. Adopting the mid position of reaction 

as the span position one achieves the technical reference value ( )4 384 1.105 cmq EI⋅ =ℓ  obviously 

smaller than the achieved numerical value. 

 

 

Figure 7: Displacement convergence. 

0 50000 100000 150000 200000

-1.1699

-1.1698

-1.1697

-1.1696

V
e
rt
ic
a
l 
d
is
p
la
c
e
m
e
n
t 
(c
m
)

Degrees of freedom (dof)

200 cm 
20 cm 

20 cm 

100 N/cm 

10 N/cm 

1 cm 

1 cm 

19 cm 

1 cm 

reinforcement 

x 

y 



R.R. Paccola et al./ Fiber-Matrix contact stress analysis for elastic 2D composite solids          599 

 

Latin American Journal of Solids and Structures 12 (2015) 583-611 

 

The convergence analysis for shear contact stress is made using linear fibers and the average tech-

nique, see Figure 8. We adopt 80 and 160 linear fibers for meshes (a), (b) and (c). As one can see 

there is no significant difference in results characterizing convergence. However, it is important to 

note that when one increases the number of fiber finite elements it is also necessary to increase the 

continuum mesh. 
 

 

Figure 8: Contact shear stress behavior. 

 

Adopting the average calculation formulation and using mesh (b), Figure 9 compares the shear con-

tact stress for equally spaced nodes using 160 linear, 80 quadratic and 53 third order fiber approxi-

mations. Figure 10 shows the same results of Figure 9 when the differential procedure is adopted to 

calculate the shear stress for second and third order approximations (remembering that the differen-

tial procedure is not applied for first order approximation). 
 

 

Figure 9: Contact shear stress for high order elements (average calculation). 

 

 From Figures 9 and 10 one concludes that when using high order fiber elements a perturbation 

of the shear contact stress appears; moreover the use of differential formulation, expected to be the 
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most precise one, introduces even more oscillations. At the beginning we did not know why this 

spurious behavior appears, however after thinking over the subject we conclude that, due to the 

nodal characteristic of internal force transfer from matrix to fibers a not recommended finite ele-

ment operation is taking place. 

 

 

Figure 10: Contact shear stress for high order elements (differential calculation). 

 

 This not recommended operation is the application of concentrated forces at central points of 

higher order finite elements which leads to well-known spurious displacements and stiffness distri-

butions. To illustrate the reason of this perturbation the horizontal displacement of node B of the 

simple example depicted in Figure 11 is solved using two first order bar finite elements and one 

second order bar finite element. 

 

 

Figure 11: Simple example to reveal the spurious contact shear stress behavior of high order reinforcement finite 

elements. 

 

 Using two linear elements one achieves exactly the analytical result, i.e., ( )2Bu Fl EA= , how-

ever when using one second order element the result is ( )3 8Bu Fl EA= , a wrong solution that 

reveals the inappropriate force transfer and stiffness distribution of high order fiber elements im-

mersed in the continuum matrix.  

 Therefore, one concludes that, although achieving a better adherence between fibers and matrix 

when using high order fiber elements (as demonstrated by Sampaio et al. (2013)) the contact stress 

distribution is better described by simple linear fiber elements. Moreover, using a good discretiza-

tion for linear fiber elements an adequate adherence is achieved, see Sampaio et al. (2013).  
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 In order to be complete, Figure 12 shows the stress distribution in the continuum matrix using 

mesh (c) and 160 linear fiber elements. Figure 13 shows the normal stress along the reinforcement. 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Figure 12: Matrix stress distribution in 2N/cm , (a) 11σ , (b) 22σ  and (c) 12σ . 

 

 

Figure 13: Normal stress along the reinforcement. 
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In this example the reinforced ring of Figure 14a is analyzed. The material properties and cross 
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developed contact stress. Due to symmetry only a half of the problem is discretized, as depicted in 

Figure 14b. The adopted matrix mesh ( 8x240 ) is chosen after a convergence analysis. 

 

 

Figure 14: Geometry and matrix discretization. 

 

 For 2kNP =  Figure 15 compares the analytical shear stress and the ones achieved using the 

average technique for 240 and 120 linear fiber elements. Obviously that the analytical solution is 

only a reference value as the Euler-Bernoulli hypothesis excessively simplifies the problem. In Figure 

16 one finds the same result using 240 quadratic and 480 cubic elements, revealing the same spuri-

ous behavior detected in the previous example for high order elements. Figure 17 shows the normal 

contact stress for the same load level using linear fiber elements. As expected the normal contact 

stress increases near the loaded region.  

 

 

Figure 15: Contact shear stress distribution – Linear elements. 
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Figure 16: Contact shear stress distribution – High order elements. 

 

 

Figure 17: Contact normal stress distribution – Linear elements. 

 

 In Figure 18 we multiply by 100 the result of Figure 15 and compare it to the shear contact 

stress achieved when effectively using 200 kNP = . This procedure indicates the influence of large 

displacements in results. Figure 19 shows the deformed configuration for 200 kNP =  with the 

Cauchy stress distribution inside the matrix. 
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as depicted in Figure 20. 
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Figure 18: Large displacement influence in contact shear stress distribution. 

 

 

(a) 
 

  

 

(b) 
 

 

 

(c) 
 

 

Figure 19: Cauchy stress distribution for 200 kNP = , (a) 11σ , (b) 22σ  and (c) 12σ . 
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part. These values are compared to the shear contact stress of example 1. The difference in position 

is obvious as the curved bar is longer than the horizontal one. 
 

 

Figure 20: Geometry and reinforcement details. 

 

 From this comparison one may note that when using curved reinforcement a faster transfer of 

the reinforcement normal force to the continuum occurs. Moreover, a change of sign of this transfer 

appears at the free extremity of the curve, corresponding to a normal contact stress among fiber 

and matrix, see Figure 22. 
 

 

Figure 21: Horizontal component of contact stresses. 

 

 

Figure 22: Contact normal stress – curvilinear coordinate. 
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 In Figure 23 the vertical component of the contact stresses is depicted. As it is expected, inte-

grating the area above and under the zero line of this graphic results zero.  

 

 

Figure 23: Vertical component of contact stresses. 

 

6.4 Stretch of a reinforced bar (long fiber) 

This example is the stretch of a reinforced bar as depicted in Figure 24. The length of the bar is 

200 cm=ℓ , the height is 20 cmh =  and the thickness is 1 cmb = . The reinforcement has area 
21 cmA =  and is placed at the center of the cross section distant 20 cm  from the bar extremities. 

Due to symmetry a half of the problem is solved, see Figure 24. The matrix property is the same as 

the adopted in the first example. The reinforcement elastic modulus is varied from 
5 2210x10 N cmmE =  to 7 2210x10 N cmfE = . A distributed traction load of 250.000 N/cm is ap-

plied at the extremities. 

 

 

Figure 24: Geometry and boundary conditions. 

 

 The adopted matrix discretization is 32x320 , mesh (c) of example 1. In Figure 25 the contact 

shear stress is evaluated for 5 2210x10 N cmfE =  and using 80, 160 and 320 linear fiber elements. 

Due to the previous results the average strategy is assumed. As expected the elastic problem is 

mesh dependent because the shear stress presents unbound value at the extremity of the bar. 

 Figure 26 shows the maximum displacement of the matrix as a function of the number of fiber 

elements, the relative difference among the last two values is less than 0.05%  which characterizes 

that overall displacement presents low sensitivity to the discretization of fiber. 
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Figure 25: Contact shear stress behavior regarding reinforcement discretization. 
 

 

Figure 26: Maximum matrix displacement. 

 

 In Figure 27 we present the shear contact stress behavior regarding the elastic modulus of the 

reinforcement. The behavior of the shear stress does not present a proportionality regarding the 

stiffness of reinforcement, but becomes more singular, i.e., presents a more pronounced maximum at 

extremities as the elastic modulus difference between fiber and matrix grows.  
 

 

Figure 27: Contact shear stress behavior regarding reinforcement stiffness. 
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 Figure 28 illustrates the reinforcement influence on the matrix 11σ  stress behavior. Almost all 

stress is transferred to the bar along less than 25 cm. It is important to mention that the limits 

adopted in legend of Figure 28 are taken on purpose to show the transition that is hidden if the 

total stress range is assumed. 

 

Figure 28: Matrix horizontal stress behavior ( 7 2210x10  N/cmfE = ). 

 

6.5 Stretch of a reinforced bar (short random fibers) 

The same bar of example 6.5 is reinforced by 4000 random short fibers instead of a single long fiber. 

Short fibers are 5cm  long and have a cross section area of 20.1 cm . Three values of elastic modulus 

are adopted: 6 2210x10 N cmfE = , 7 2210x10 N cmfE =  and 8 2210x10 N cmfE = . The random 

fibers and the matrix discretization are depicted in Figure 29. 

 

 

 

Figure 29: Random fibers and matrix discretization. 

 

 The matrix horizontal stress distributions for different fiber elastic modulus are presented in 

Figure 30. The same maximum and minimum values have been adopted to facilitate comparisons. 

 
6 2210x10 N cm

f
E =  

 
7 2210x10 N cm

f
E =  

 
8 2210x10 N cm

f
E =  

 

 

 

Figure 30: Matrix stress ( 11σ ) distribution – same scale - 2N/cm . 
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 As the reinforcement elastic modulus grows the average matrix stress reduces. It is obvious that 

at the extremities of reinforcements localized high stress appears, as depicted in Figure 31. 

 

6 2210x10 N cmfE =  

 

 

 

7 2210x10 N cm
f

E =  

 

 

8 2210x10 N cm
f

E =  

 

 

Figure 31: Matrix stress ( 11σ ) distribution – different scale - 2N/cm  

 

7 CONCLUSIONS 

In this study an alternative methodology to analyze elastic reinforced solids, fiber matrix coupling, 

including the calculation of contact stresses is proposed. The procedure is applied in 2D domains 

and does not increase the number of degrees of freedom of the original 2D mesh. Two methodologies 

to calculate the contact stress between fiber and matrix are proposed and implemented. The first is 

applicable to high order fiber elements and is based on differential relations among the reinforce-

ment (or fiber) internal normal stress and the contact stresses, tangential and normal. The other 

methodology is based on the division of the internal transfer force by a contact influence area. The 

last is also applicable to straight linear fiber elements. 

 From the examples we conclude that the overall displacement behavior is almost insensible to 

both order and number of the adopted fiber finite element discretization. However, an unexpected 

surprise reveals that the contact stresses for high order elements present spurious behavior for both 

average and differential calculations. Moreover no convergence is achieved if the number of fiber 

elements is increased. We concluded that this unexpected and undesirable behavior is due, though 

hidden, to the improper application of concentrated forces on intermediate node of high order finite 

elements used to discretize reinforcements. The application of random short fibers is also successful-

ly tested. 
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 In future works we intend to apply the successful developments of this paper to consider slip 

among fiber and matrix without increasing the number of degrees of freedom. 
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