
317 

Abstract 

This research is dedicated to the inspection of a thin rectangular 

plate dynamic behavior traversed by an accelerated moving mass. 

BCOPs (boundary characteristic orthogonal polynomials) are 

utilized to treat the constitutive equation of plate vibration for 

different boundary conditions. Comprehensive parametric surveys 

are carried out to shed light on the effects of the plate fixities and 

aspect ratios as well as the moving mass weight, velocity and 

acceleration on the plate DAF (dynamic amplification factor). The 

convenience of adopting the presented solution dealing with vari-

ous plate fixity cases makes it a superior approach comparing with 

eigenfunction expansion method. 
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1 INTRODUCTION 

There are several types of civil structures and mechanical devices, which carry dynamic forces or 

moving loads with varying positions and magnitudes such as bridges, sleepers, cable ways, guide 

ways, overhead cranes, rails, road ways and run ways (Ouyang, (2011); Olsson, (1991)).  Engineers 

also encounter the moving load dynamic problems in the analysis of rotating machinery, computer 

disk file memories and guided circular saws as well as decks of ships on which aircraft lands 

(Cifuentes, and Lalapet, (1992); Frýba, (1999); Ebrahimzadeh Hassanabadi et al. (2014a)) . Frýba 

(1999) has presented a comprehensive monograph on the moving load problems citing a considera-

ble number of published researches before 1999. In contrast to the availability of a voluminous liter-

ature discussing beams acted upon by the traveling masses (Nikkhoo et al. (2007); Kiani et al. 
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(2009a, 2009b, 2010); Kiani and Nikkhoo (2012); Ahmadi and Nikkhoo (2014), Nikkhoo et al. (2015); 

Bulut and kelesoglu (2010); Zarfam et al. (2013); Eftekhar Azam et al.(2013); Ebrahimzadeh Has-

sanabadi et al.(2013)), vibration of plates under the action of the moving loads has so far received 

slight attention.  

 A traveling inertial load can either be simulated by the moving force or the moving mass frame-

works. A moving force is a simplified definition of a traveling load wherein the inertia of the moving 

object is ignored. The moving mass is a realistic model of a moving load in which the inertial effects 

of the traveling load are considered in the problem formulations. In the aforementioned, the analyt-

ical solution to the problem would hardly exist (Frýba, (1999)). In order to handle the plate vibra-

tion problems excited by the moving loads, numerical (Wu, (2003, 2005); De Faria and Oguama-

nam(2004); Mohebpour et al.(2011); Esen,(2013)) or semi-analytical methods (Shadnam et al.(2001); 

Rofooei and Nikkhoo (2009); Ghafoori et al.(2011); Nikkhoo and Rofooei (2012); Vaseghi Amiri et 

al.(2013); Nikkhoo et al.(2014)) could be utilized. Amongst semi-analytical approaches, eigenfunc-

tion expansion method has been widely employed. In this regard, Shadnam et al.(2001) tackled the 

problem of a rectangular Kirchhoff plate vibration with simply supported edges traversed by a mov-

ing mass. Although only the vertical component of the moving mass out-of-plane acceleration was 

considered in their formulations, but consideration of moving load, inertial effects were reported to 

be crucial. The influence of the whole components of the moving mass out-of-plane translational 

acceleration terms have been evaluated by Nikkhoo and Rofooei (2012). Oni and Awodola (2011) 

and Awodola and Oni (2013) investigated the problem of a thin plate rested on a variable Winkler 

elastic foundation traversed by a moving force or a moving mass with simple and some other 

boundary conditions of the structure, respectively. They employed separation of variables method in 

joint with the modified method of Struble and integral transformations to solve the mathematical 

governing equation. Their results were indicatory of the moving force inertial effects on the dynamic 

parameters pertinent to the understudy structure response. Vaseghi Amiri et al.(2013) explored the 

dynamic behavior of a rectangular Mindlin plate with different boundary conditions and patterns of 

moving load distribution via eigenfunction expansion method. They underlined the significance of 

the shear deformations for moderately thick plates. However, the main body of their parametric 

studies was confined to a simply supported plate. Nikkhoo et al. (2014) studied the resonance of a 

single span rectangular plate due to multiple opposing masses. The complex analytical handling of 

the plate natural mode-shapes could be mentioned as the main deficiency in utilizing the eigenfunc-

tion expansion method for non-simply supported plates.  

 BCOPs have been extensively used dealing with free vibration of plates with various geometries 

and boundary conditions. Bhat (1985) employed a set of beam orthogonal polynomials in the Ray-

leigh-Ritz method to calculate natural frequencies of the rectangular plates. Chakraverty (1992) and 

Singh and Chakraverty (1994) generated two-dimensional orthogonal polynomials to study vibra-

tion problems of plates for a variety of the plate geometries. Liew et al. (1990) took advantage of 

BCOPs in the free vibration analyses of the rectangular plates with different boundary conditions. 

The rapid convergence rate and handiness of modeling plates with arbitrary classical boundary con-

ditions are the major benefits of this approach.  

 In this article, the application of BCOPs is extended to the determination of the response spec-

tra of a thin rectangular plate excited by a traveling mass. There is a lack of investigation in the 
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existing literature on the plate dynamic behavior under a traveling load with varying velocity. Ad-

ditionally, the previously carried out parametric surveys by different researchers are just limited to 

a simply supported plate. This is while a moving load in practice is more likely to have non-zero 

traveling acceleration. Besides, the plate boundary conditions could be a key factor in determining 

the plate dynamic performance. Consequently, in this article, dynamics of a rectangular plate excit-

ed by an accelerating mass is studied in detail accounting for initial mass velocity, acceleration and 

weight. Different plate fixities are included in the numerical examples to assess the influence of 

boundary conditions on the plate dynamic response. The explorations indicate that the maximum 

response of the plate increases with an increase in initial mass acceleration for some high initial load 

velocities. It is also observed that with the increase in the load acceleration, the dynamic amplifica-

tion factor of the plate almost decreases.  

 
2 PROBLEM DEFINITION AND FORMULATION 

An elastic isotropic thin rectangular plate with arbitrary boundary conditions is assumed. This sys-

tem is supposed to be undamped. 0 x A   and 0 y B   and 
2 2

h h
z     describe the plate 

domain in xyz plane and     , YX t t  designates the parametric trajectory of the moving mass as 

shown in Fig .1.  
 

 
 

Figure 1: (a) The layout of the problem; (b) Plate boundary conditions. S, C and F, 

respectively, stand for simple, clamped and free edge.  

 

The linear strains
ij due to the bending deflection w  are: 
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The principle of virtual displacements for the time-dependent case can be stated by: 
 

 

3 3 2
2

2 2 2
2  d 0x x y y xy xy

V

w w w w w
z w V f w
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  (2) 

 
 

Where,   denotes the mass per unit volume of the plate,
ij  signifies the stress and V  stands for 

the plate volume and f denotes the external load. The volume integral can be written as  
/2

/2
d d d

h

h
V

dV z x y


   . Therefore, Eq. (2) can be reproduced arriving at: 
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in which h  is the plate thickness and 
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(4) 

 

In Eq. (4)
3

212(1 )

Eh
D





 is the plate rigidity, 

2(1 )

E
G





 is the shear modulus, E and   are the 

plate’s modulus of elasticity and Poisson’s ratio, correspondingly. The mathematical definition of 

the transverse dynamic force f  due to a moving mass is( Frýba, (1999)): 
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 (5) 

                                                   

M and g  are the mass of the moving load and acceleration of gravity in Eq. (5), respectively. In 

this study, the moving mass is assumed to remain connected to its supporting structure during its 

motion on the plate surface area. This constraint has been considered by many researchers; however 

in some studies, possible separation of the mass and the plate has been evaluated by monitoring the 
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contact force (Ebrahimzadeh Hassanabadi et al., 2014b); this restriction has been removed in the 

computational process of the problem by Lee (1996) and Stăncioiu et al. (2008). The expanded ver-

sion of 
2

0

2

d ( )

d

w t

t
in Eq. (5) is  
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(6) 

 

By substituting Eq. (5) and (6) into Eq. (3) the weak form of the problem becomes: 
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Let wbe interpolated by a series of the form 
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where, 
jA denote the time-varying nodal amplitudes, ( , )j x y are the boundary characteristic or-

thogonal polynomials and n  is the number of the involved shape functions. Reproducing Eq. (7) 

with regard to Eq. (8) yields: 
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Where, for moving mass problem 1   and in moving force case 0  . 

  
2.1 Generating the BCOPs 

The Gram-Schmidt algorithm is proposed herein to generate the BCOPs,  ,i x y . The procedure 

is applied on a linearly independent set of the form: 
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The plate boundary conditions are determined by assigning the values of 0, 1 or 2 to the parameters 

, ,o p q and r . For clarity, 2p  , will force the plate edge at 1x    to be clamped; 1p   desig-

nates the side 1x   to be simply supported; and 0p   signifies that the side 1x   is free. ( , )g x y  

satisfies the essential boundary conditions of the plate and ( , )is x y are properly chosen linearly 

independent functions. The recursive Gram-Schmidt procedure can be applied according to 
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where, the constants
ij  are specified by 
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2.2 Solution in Time Domain 

The state- space representation of Eq. (9) could be expressed by: 

)()()()( tttt γXβX 
, (18) 
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A solution to Eq. (18) could be achieved via matrix exponential: 
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Where, U is the fundamental solution matrix and Q  is a transfer matrix. 

An approximation can be used to obtain  Q  (Brogan, (1991)): 
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in which,
1k k kt t t    is the specified time step. Thus, Eq. (21) would easily be solved leading to: 
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3 NUMERICAL EXAMPLES 

A steel plate with ( ) 2( ) 1( )A m m cm    dimensions and with the modulus of elasticity, 

11 22.059 10E N m  , mass density, 
3

7850
kg

m
   , Poisson’s ratio, 0.3   is considered. Plate 

aspect ratio, 
A

B
   varies between 1 and 3 in the numerical examples and 

PM hAB  signifies 

the plate mass. The moving mass travels along a rectilinear path on the plate’s surface with differ-

ent accelerations, velocities and weights. The rectilinear path lies on the center of the plate in y 

direction parallel to x axis as is depicted in Fig. 1-(a), that is: 
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In which,a  is the constant acceleration, and  
0v  is the initial velocity of the moving mass. Four 

different boundary conditions according to Fig. 1-(b) have been chosen for the implementation of 

the analyses, SSSS, CCCC, SFSF and CFFF.  
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3.1 Validation 

Intended in Tables 1 and 2 respectively for 1.0   and 2.0   are giving a measure of conver-

gence rate and error estimation according to the exact solution (Leissa, (1973)). To this end, the 

computational error percentage of the plate natural frequencies in comparison with their exact val-

ues is indicated. It is evident that increasing the number of involved BCOPs improves precision. 

From an engineering practitioner stand point it can be noted that involving more than 25, 36, 49, 

64 and 81 shape functions do not cause a noticeable improvement for the first, 4th, 9th, 16th and 25th 

natural frequencies, correspondingly. 

 

 

Assumed mode shapes 25 63 49 64 81 

frequency      

first 2.65E-05 2.96E-08 1.16E-11 1.51E-12 6.59E-12 

4th 0.137562 0.008236 5.28E-05 8.3E-07 1.66E-07 

9th  3.917068 0.12875 0.00172 0.00165 9.84E-06 

16th 42.68562 7.765838 0.438665 0.010594 0.000128` 

25th 246.8608 73.07376 27.63008 13.67999 3.853367 
 

Table 1: - Error percentage of the frequencies for the plate with 1.0   and SSSS boundary condition. 

 

 

Assumed mode shapes 25 63 49 64 81 

frequency      

first 4.46927E-05 3.32131E-08 9.71906E-12 6.96837E-13 8.06322E-13 

4th 0.002292011 5.03986E-06 5.03682E-06 5.59054E-09 3.33709E-12 

9th  2.85186715 2.850895044 0.141149617 0.00306609 0.002739483 

16th 72.74046477 25.16953101 9.953054093 1.001344734 0.479836497 

25th 336.131711 75.93077998 8.797073947 7.646938583 0.668243947 
 

Table 2: - Error percentage of the frequencies for the plate with 2.0   and  SSSS boundary condition. 

 

 

In this article, the DAF for SSSS, CCCC and SFSF boundary conditions refers to the maximum 

plate center point dynamic response divided into the corresponding maximum static deformation. In 

the case of a cantilever plate, the midpoint of the plate free edge at x A   is the reference point 

for capturing the DAF. Moreover, a velocity type parameter 
1

2A
v

T
    is introduced herein to ac-

complish normalization, in which, 
1T  is the first natural period of the plate. The first 36 BCOPs are 

taken into account and both the moving force, and the moving mass are included. To examine the 

validity of calculations, the DAF spectra for a simply supported plate is exported by the present 

approach and compared with the benchmark solution provided via eigenfunction expansion method 

by Nikkhoo and Rofooei (2012) in Fig. 2, wherein, an excellent agreement can be realized. Nikkhoo 
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and Rofooei (2012) have provided the curves employing the first 25 natural shape functions of the 

plate. They mentioned that mode-shapes higher than 25 do not have a significant contribution. In 

view of the preceding, inclusion of the first 36 BCOPs seems to be sufficient enough to conduct the 

current study without a remarkable loss of precision within the scale of the diagrams. 
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Figure 2: DAF spectra of a simply supported plate ( ― moving mass 

(Nikkhoo and Rofooei ,(2012)), ‒ · ‒   moving force(Nikkhoo and Rofooei ,(2012)),  ‐‐‐  present 

study moving mass, ··· present study moving force)
P0.15M M , 2.0  , 0a  . 

 
3.2 Parametric Studies 

Most of the previously carried out parametric investigations have confined their findings by merely 

considering the case of a simply supported plate and the issue is open to discuss for other plate fixi-

ties. In Fig. 3, the DAF of the plate is displayed versus the initial velocity for the boundary condi-

tions of SSSS, CCCC, SFSF and CFFF. Moving mass weight ratio within 0.05
P

M
M

  up to 

0.2
P

M
M

  is regarded to cover a practical range of inertia. For the SSSS, CCCC and SFSF 

plate fixities, a similar pattern of DAF spectra is evident and the lower/upper bound curves corre-

spond to the lower/higher load inertia. However, sensitivity of the plate response to the variation of 

load inertia in SFSF boundary condition is less than SSSS and CCCC. Moving to the CFFF plate, 

a substantially disparate scheme of DAF change can be seen. In the preceding case, the heavier load 

produces the lower amplitude of vibration even featuring below unit values. To elucidate, a bench-

mark time history of the cantilever plate at its free edge is depicted in Fig. 4, where the moving 

force framework observed to overestimate the plate response due to a moving mass. Accordingly, 

the boundary condition of the plate seems to be a key parameter in the dynamic behavior of a plate 

under a moving mass that can no longer be neglected. Hence, the contribution of plate fixity is tak-

en into account in Figs. 5, 6, 7 and 8. As a general rule, by increasing the mass weight and velocity 

of the moving force, it is like the base structural natural frequency is virtually decreasing because of 

the inertial effects. Therefore, the response of the structure under a moving mass increases in most 

of the cases where the base plate behaves as a softer structure in comparison with the moving load 

excitation (this fact is not true for the CFFF boundary condition (Kiani et  al. (2009a)).   
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Figure 3: The effects of the moving load velocity and plate boundary conditions on the DAF for  0.1  

and 0a . (a)  SSSS, (b) CCCC, (c) SFSF, (d) CFFF. (― moving force,  ‐‐‐  P05.0 MM  , 

 ‒ · ‒  P1.0 MM  , ― · · ― P15.0 MM  ,  ··· P2.0 MM  ). 
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Figure 4: Time history of a cantilever plate dynamic response captured at ByAx 5.0 ,  ; 

vv  5.00 , aa  4.0 , 0.1 , P15.0 MM  . (― moving  mass,  ‐ ‐ ‐ moving  force). 

 

The effects of the plate aspect ratio parameter have been recently assessed by Nikkhoo and Rofooei 

(2012) while only the case of a SSSS plate has been focused. In case of a cantilever plate, it is ob-

served herein that the aspect ratio does not cause sensible influence on the plate maximum DAF. In 
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Fig.5, the maximum DAF extracted from SSSS and CCCC boundary conditions cover a range of 

1.5 to 4.5 considering a variation of the aspect ratio between 1 and 3.  According to the Fig.5, the 

SSSS case shows a rather faster rate of the maximum DAF variation with respect to the aspect 

ratio change in comparison with the CCCC and SFSF cases.  

 

 

Figure 5: The effects of the moving load velocity and plate boundary conditions 

on the máximum DAF for 0a , vv  . (a)  SSSS, (b) CCCC, (c) SFSF, ( ― moving force,  ‐‐‐  

P05.0 MM  ,  ‒ · ‒  P1.0 MM  , ― · · ― P15.0 MM  ,  ··· P2.0 MM  ) 

 
In Fig .6, one can clearly distinguish the noticeable diversity of an accelerated motion comparing it 

to a non-accelerated one (Nikkhoo and Rofooei ,(2012); Vaseghi Amiri et al.(2013);Rofooei and Nik-

khoo(2009)).The general pattern of the DAF variation against the initial velocity is very similar in 

the SSSS and SFSF cases in Fig. 6. With a more optimistic point of view, the CCCC plate also 

seems to have the same manner as that of SSSS and SFSF. However, the cantilever plate demon-

strates a quite different behavior. The DAF decreases with the growth of initial velocity in the case 

of the CFFF in spite of the other assumed boundary conditions.   
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Figure 6: The effects of the moving mass initial velocity and plate boundary conditions on the DAF for 0.1  

and 
P0.15M M ; (a)  SSSS, (b) CCCC, (c) SFSF, (d) CFFF. (― 0a , ···   aa  2.0 ,  ‐‐‐ aa  4.0 ,  

‒ · ‒  aa  6.0 , ― ― aa  8.0  and ― · · ― aa  0.1 ) 

 

 

The effect of load acceleration and inertia is illustrated in Fig.7. 
2

1/TAa  is an acceleration pa-

rameter to perform the normalization of the acceleration data. The analyses feature a descending 

manner of the maximum DAF change as the acceleration grows larger in most of the cases with a 

reasonable engineering precision. Furthermore, for a specific acceleration value, it can be seen that 

increasing the inertia of the moving force leads to smaller amplitude of vibration. 
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Figure 7: The effects of the moving load acceleration and plate boundary conditions on the maximum DAF for 

0.1 , vv  ; (a)  SSSS, (b)  CCCC, (c) SFSF. (― moving force,  ‐‐‐  P05.0 MM  ,  ‒ · ‒  
P1.0 MM  , ― · · ― P15.0 MM  ,  ··· P2.0 MM  ) 

 

 

The maximum DAF values are plotted against the plate aspect ratio for different magnitudes of 

moving mass acceleration in Fig. 8, which yields to even better understanding of the role of load 

traversing acceleration and the plate boundary conditions. A clear alteration in the plate dynamic 

behavior pattern can be contrasted for the SSSS, CCCC and the SFSF cases. In the CCCC plate, 

the maximum DAF shows a more sensitivity rather than SSSS and SFSF with more irregularity. 

The maximum DAF ascends with the growth of aspect ratio in the case of CCCC regarding 
aa  2.0  and aa  4.0 , however, for  aa  6.0  two phases could be observed. The maximum 

DAF increases and after reaching a peak value decreases as the aspect ratio gets larger. In the case 

of the SFSF fixity, a relatively regular manner could be observed. For all of the acceleration values, 

the maximum DAF increases with the growth of aspect ratio considering 2.1 . Besides, for both 

SSSS and SFSF cases, the maximum DAF grows as the acceleration rises corresponding to a given 

aspect ratio except for aa   in case of the SSSS plate.  
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Figure 8: The effects of the plate aspect ratio and boundary conditions on the DAF 

for P15.0 MM   and vv  ; (a)  SSSS, (b)  CCCC, (c) SFSF, (d) CFFF. 

( ···   aa  2.0 ,  ‐‐‐ aa  4.0 ,  ‒ · ‒  aa  6.0 , ― ― aa  8.0 , ― · · ― aa  0.1 ) 

 

 

4 CONCLUSIONS 

The classical plate theory is utilized to achieve dynamics of an isotropic undamped rectangular 

plate due to an accelerating moving mass. BCOPs are used as the computational approach to ob-

tain the solutions which show a rapid convergence rate regarding the number of the involved or-

thogonal shape functions. Four different boundary conditions, i.e., SSSS, CCCC, SFSF and CFFF 

are scrutinized in the numerical examples. Parametric evaluation of the plate DAF was widely per-

formed accounting for a broad range of the parameter's variation to explore the effects of the mov-

ing mass acceleration, initial velocity, weight and plate’s aspect ratio on the plate DAF. The follow-

ing observations could be highlighted according to the presented study: 
 

 The application of at least 36 BCOPs seems to be adequate to accomplish sufficiently precise 

computation desired by an engineering practitioner. 

 In switching between different plate boundary conditions, the method of BCOPs is more flexible 

and convenient with respect to the eigenfunction expansion method. BCOPs can handle all pos-

sible 21 combinations of S, C and F classical boundary conditions of a rectangular plate demand-

ing just simple manipulation of splines. While in the modal analysis, the theorem is mathemati-

cally quite general but in practice, analytical solution of thin rectangular plate, free vibration on-

ly exists for 6 boundary conditions (Leissa (1973) Leissa and Qatu, (2011)). It should be empha-
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sized that in the case of non-simply supported plates, the closed-form solution of free vibration 

becomes more complex, which is not favorable for an engineering practitioner.  

 The accelerating traveling mass can lead to substantially different patterns of plate dynamic 

behavior that may not appear in a non-accelerating case. 

 Consideration of plate boundary condition is an important governing factor in the determination 

of the plate vibration due to a traveling inertial load. 
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