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Abstract

In some circumstances ice floes may be modeled as beams. In general this modeling sup-

poses constant thickness, which contradicts field observations. Action of currents, wind and

the sequence of contacts, causes thickness to vary. Here this effect is taken into consideration

on the modeling of the behavior of ice hitting inclined walls of offshore platforms. For this

purpose, the boundary value problem is first equated. The set of equations so obtained is

then transformed into a system of equations, that is then solved numerically. For this sake

an implicit solution is developed, using a shooting method, with the accompanying Jaco-

bian. In-plane coupling and the dependency of the boundary terms on deformation, make

the problem non-linear and the development particular. Deformation and internal resultants

are then computed for harmonic forms of beam profile. Forms of giving some additional

generality to the problem are discussed.
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1 Introduction

Ice floes that may be characterized as beams occur in nature in diverse forms. Width is never

constant and thickness, specially, presents variations, [1]. It is therefore not realistic to model

contact problems with offshore platforms, assuming constancy of thickness. This simplification,

however, allows a close form of solution to the problem [3].

The particular way an ice floe geometry changes has been considered under diverse points

of view, included the dynamic one [8]. Invariably, starting from a perfect ice formation, driven

by wind, currents and waves, constructed models show how impact, lateral and frontal, builds

thickness variations in the ice floe. These variations result in general not symmetrical, leading to

a curved equal area plane. Furthermore observed motion and contact conduct to 2D compressive-

flexural problems. However the effect of these geometrical quantities is never analyzed in detail

and 1D beam situations are usually considered [11].

Moreover, usual analysis misses the fact that the behavior of ice, upon contact with inclined

walls of offshore platforms [10], induces deformation dependency of the loading terms. Justi-

fication given is that objective is the construction of simple first order models. Alternatively,
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use of available numerical codes, like the finite element method, under the semi-infinite charac-

terization of the problem is also approximate, as thickness variations are not embodied in their

library elements [4].

Given the situation, a model is developed here to take into account some of these different

restrictions. In it, first the boundary value problem is presented and then a system transforma-

tion of the obtained equations performed. It follows a two-point numerical scheme, addressing

the solution of the resulting equations, completed with a 3D generalization of the procedure,

that come as an additional tool of analysis.

2 Formulation

2.1 Boundary value problem

Upon contact with the inclined wall of an offshore platform, every element of the ice foe, supposed

having constant width b0 but variable height h,h(y) = h̄t, while floating as a result of buoyancy,

Fig. 1, will be under the action of internal resultants < N,M,V > that obey [2]:

∂,y(N) ∼= 0

∂,y(V ) − bγsww ∼= 0

∂,y(M) − V +N∂,y(w + wi) ∼= 0; ∂,y = d
dy

(1)

Axial equilibrium, as conveyed by normal force N , is described by the first equation, whereas

lateral equilibrium between shear component V and buoyancy forces, dependent of foundation

coefficient γsw, is considered in the second. Third equation relates to rotational equilibrium.

Additionally quasi-static conditions of loading are admitted and inertia effects discarded, given

the time frame of many observed events. The longitudinal form of the equal area axis, e.a.a., wi
is supposed derived from the thickness profile.

Early in the winter, ice floes present an elastic brittle behavior, therefore if this fact is

brought to the modeling an isotropic elastic constitutive relationship may be assumed. Hence

M = −E′I ∂,yy(w) and N = E′A∂,y(v); A = b0h. Here the pair < v,w > comprises the

axial and lateral displacements, respectively. Under these circumstances, the set of differential

equations of equilibrium, d.e.e., above combines into a single statement:

∂,yy[(
t

t0
)3∂,yy(w)] + 4γ4

0∂,yy(w) + 4δ40w = −4γ4
0∂,yy(wi) (2)

which depends on the coefficients,

γ0 = (
n0

4E′i0
)

1

4 ; n0 ≥ 0 and δ0 = (
γsw

4E′i0
)

1

4 (3)

being n0 the value of the normal force per unit width at the origin, n0 = N0

b0
, which then makes up

the coupling term γ0. The thickness h may be written about its mean value
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h̄; h̄ = < h > = limL→∞

L
∫

0

h(y)dy

L , by means of the thickness profile function t, so that h = h̄t.

Finally i0 = I0
b0

; I = bh3/12 is a second moment per unit width term at the origin. Equivalent

beam Young’s modulus E′ is introduced to take into account one-dimensional behavior of wide

floes and as such for the narrow case, setting ν = 0 converts plate equation above into a beam

one. Hence,

i0 =
h3

0

12
=
h̄3t30
12

E′ =
E

(1 − ν2)
(4)

Here E is the elastic modulus of the material and ν its Poisson’s ratio. Value of the t = t(y)

at origin is t0.

For the case where the beam is loaded at the origin by a shear force and a bending moment,

both associated to the in-plane resultant n0, as it occurs when an inertia driven ice floe encounters

a fixed offshore platform wall, loading introduced by the contact at this end may be described

by
y = 0; m0 = −E′i0∂,yy(w)0

v0 = −E′i0∂,yyy(w)0 − 3
t0
∂,y(t)0m0 − n0∂,y(w + wi)0

. (5)

These equations relay on the free parameter n0, related to the solution of the in-plane

problem. They also reveal dependence upon the deformation of the beam at the origin. Boundary

statement at the other end, the far end, requires that regularity conditions be satisfied:

y → ∞; w∞ = 0

∂,y(w)∞ = 0
. (6)
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Figure 1: Beam element with thickness variation.

2.2 System of equations

Solution of the fourth order d.e.e. shown above, Eq. (2), subjected to the stated boundary

conditions, b.c., Eqs. (5)-(6), may be accomplished by a transformation of this equation into
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a set of four equations. Relationship among derivatives is established by a matrix if vector u,

containing displacements, rotations, curvatures and rate of curvature, is defined:

uT =
⌊

w ∂,y(w) ∂,yy(w) ∂,yyy(w)
⌋

; w = ŵt(y; b.t.) (7)

Here row form representation is used and dependency with position and boundary terms, b.t.,

admitted. In particular, interface rotation θ0 = ∂,y(w)0, resulting from local deformation, will

determine the left end loading.

With the above definition, equilibrium statement will take the form of a system of equations:

{u′} = [K]{u} + {ui}; u′n = ∂,y(un); n = 1, 2, 3, 4 (8)

where the matrix [K] and vector {ui} comprises the elements,

[K] =











0 1 0 0

0 0 1 0

0 0 1 0

−4δ3
0

t3
t30 0 −6t[∂,y(t)]2+3t2∂,yy(t)+4γ4

0
t3
0

t3
−6∂,y(t)

t











; {ui} =











0

0

0
−4δ4

0
t3
0

t3
∂,yy(wi)











(9)

Boundary terms should conform as well. Considered the proper equivalent form, boundary

statements follow from Eqs. (5)-(6) and can be cast into the form:

{ϕ} = [A]{u0} + [B]{uL} − {α} − {β}; {ϕ} = {0} (10)

where the matrices [A] and [B] are such that:

[A] =









0 0 0 0

0 0 0 0

0 0 E′i0 0

0 n0 0 E′i0









; [B] =









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0









(11)

whereas the vectors {α}and {β}, in row form, will be:

bαc =
⌊

0 0 m0 v0 −m0
3∂,y(t)0
t0

⌋

; bβc =
⌊

0 0 0 −n0∂,y(wi)0
⌋

(12)

which then completes the system of equations to be solved.

2.3 Numerical solution

Solution of the above system depends, for every value of n0, on the determination of the exact

{u} vector that makes {ϕ} null for specified values of the left and right end vectors. It should be

kept in mind, however, that in general these values may depend upon the behavior of the beam,

and as such are not exactly known a priori. A numerical trial and error type of approach may
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then be applied, using a Newton scheme of solution. Specifically: trial vectors are chosen to set

conditions at the left end of the interval [0, L). It comprises an iteration sequence intended the

matching of the correct boundary conditions at the other end of the beam, the right end.

Hence, in the iterative process, if at iteration j, of an open set on which a convergence

criterion sets the stop point M ,

{ϕj} 6= {0}; {ϕj} = [A]{uj0} + [B]{ujN} + {αj} − {βj}; j = 1, 2, ...,M (13)

over a discretized space containing N + 1 stations {yi}; i = 0, 1, 2, ..., N , being

{uj0} = {uj(y0)}; {ujN} = {uj(yN )}; y0 = 0; yN = L; ∀j (14)

then requiring that the boundary conditions in the next iteration be met is equivalent to asking

for an increment that makes:

{ϕj+1} = {0}; {ϕj+1} = [A]{uj+1
0 } + [B]{uj+1

N } + {αj+1} − {βj+1} (15)

being ∆{uj+1
0 } the required vector increment. If this is so, then

∆{uj+1
o } = −[∂{uj+1

0 }(ϕ
j+1
N )]−1 · {ϕjN} (16)

where, from Eq. (15), the partial derivative with respect to the trial vector is

[∂
{uj+1

0
}
{ϕj+1}] = [A][I] + [B][∂

{uj+1

0
}
{uj+1

N }] + [∂
{uj+1

0
}
{αj+1}] − [∂

{uj+1
o }

{βj+1}] (17)

which depends, in its middle term, on the derivative at the far end (station N , numerically),

through a transfer matrix. Here [I] is the identity matrix. Application of the chain rule as:

[∂
{uj+1

0
}
{uj+1

N }] = [∂
{uj+1

N−1
}
{uj+1

N }] [∂
{uj+1

N−2
}
{uj+1

N−1}]...[∂{uj+1

1
}
{uj+1

2 }] [∂
{uj+1

0
}
{uj+1

1 }] (18)

requires a Taylor expansion to relate the derivatives

{u′jn+1} = {u′jn} + ∂,y{u′jn+1}∆y (19)

This is a truncated-to-first-term series whose calculation requires the computation of a tan-

gent modulus. A Backward Euler Method [5] may be chosen to compute this term. Though

a little bit more complicated it has the advantage of being unconditionally stable. Taking this

route and noticing from Eq.(8) that

{u′jn+1} = [Kn+1]{ujn+1} + {ui}n+1 ; [Kn+1] = [K(yn+1)] (20)

allows that the result be combined with Eq. (19) to produce:

{uj+1
n+1} = [T n+1

n ]{uj+1
n } + [Mn+1]

−1 {∆Nn+1} − [Mn+1]
−1 {∆ui} ; (21)
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where

[T n+1
n ] = [Mn+1]

−1 [Kn] (22)

that does not depend upon the iteration number. It relates vectors at successive stations. In it

the section matrix

[Mn+1] = ([I] − ∆y [K ′
n+1] [K

−1
n+1] − ∆y [Kn+1])[Kn+1]; [K ′

n+1] = ∂,y[Kn+1] (23)

appears in its inverse form. This form depends on parameters of the medium, sectional proper-

ties, loading as well as material variables. Also in Eq. (21):

[∆Nn+1] = [Kn+1] {ui} +
{

u′i
}

(24)

{∆ui} = {ui}n+1 − {ui}n (25)

Finally an operational form may be constructed from the above results and Eq. (21). It is

the complete transfer matrix, for the iteration at hand, in product form:

[TN0 ] =
N−1
∏

n=0

[T n+1
n ]; (26)

It takes the individual transfer matrices between consecutive stations, with partitions

[T n+1
n ] = [{tl}m]; l,m = 1, 2, 3, 4 (27)

whose coefficients are polynomial expressions of the discretization step;

{t}1 =















Ab∆2y +Ac∆y −A

ab∆3y + ac∆2y − a∆y

ac∆y3 + [Bb− b2 − bc′ + b′c− a]∆2y + [Bc− bc− b′]∆y + [b−B]

−a∆y3 + [Cb− bc− b′]∆y2 + [Cc− c′ − c2]∆y + [c− C]















(28)

for the first column,

{t}2 =















−Aa∆y3

[ab′ − a′b]∆y3 + [ac′ − a′c+ ab]∆y2 + [a′ + ac]∆y − a

[ac′ − a′c+ ab− aB]∆y3 + [a′ + aC]∆y2 − a∆y

[a′ + ac− Ca]∆y3 − a∆y2















(29)

for the second,

{t}3 =















−Aa∆2y

−a2∆y3

[ac′ + ab− a′c−Ba]∆y + [a′ + ac]∆y − a

[a′ + ac−Ca]∆y2 − a∆y















(30)

Latin American Journal of Solids and Structures 5 (2008)



2D bending field of variable thickness floating ice floes loaded upon impact 7

for the third, and

{t}4 =















−Aa∆y
−a2∆2y

−a2∆y3 + [a′b− ab′]∆2y − aB∆y

[a′ + ac− aC]∆y − a















(31)

for the last. In these matrices terms < a, b, c >l were defined according to: al = −4δ4
0

tl
t30, for

an = A∧an+1 = a, whereas bl = −6tl[∂,yy(t)]2
l
+3t2

l
[∂,yy(t)]l+4γ4

0 t
3
0

t3
l

with bn = B∧ bn+1 = b and finally

cl = −6
[∂,y(t)]l

tl
for cn = C ∧ cn+1 = c, being l = 1, 2, ..N and ′ ≡ ∂,y. Once the transfer matrix

is computed, for the iteration in case, the Jacobian, Eq. (17), can be calculated:

[Jj+1] = [A] [I] + [B] [TN0 ] +
∂{αj+1}
∂{uj+1

0 }
− ∂{βj+1}
∂{uj+1

0 }
(32)

which allows the calculation of an increment ∆{uj0}, Eq. (16). Convergence measure for finite

length L rests on the hypothesis that wL ≤ Kw and ∂,y(w)L ≤ Kθ, where < Kw,Kθ > are

suitably small constants.

3 Application

3.1 Loading

The impulse generated by the inertia change of the ice floe when it contacts the inclined wall

of the offshore platform produces flexure, shear and compression at the interface. The rate of

change of the linear momentum l equals the sum of the external forces, normal and shear, per

unit width at the interface:

l(τ) =

∞
∫

0

v(τ)ρihdy; l̇y = n0; l̇z = −v0 (33)

while the rate of change of the angular momentum a equals the resultant interface moment:

ax(τ) =

∞
∫

0

θ̇(τ)ρii0dy; ȧx = m0 (34)

These expressions depend on linear vT =
⌊

v̇ ẇ
⌋

, and angular θ̇, velocities, being ρi = γi

g

the specific mass of the ice. However, due to the fact that in the scenario of events, loading is

very slow, its time frame surpasses by far duration time of dynamic effects, granting then use of

quasi-static analysis.

Latin American Journal of Solids and Structures 5 (2008)



8 João B. de Aguiar

Values of normal n0, bending moment m0 and shear force v0 at the interface depend on

the contact between platform and beam [6]. They are resultants described by the coefficient of

friction µ between ice and the rigid wall of the platform, its slope angle φ and the coefficient

of eccentricity ζ, Fig. 2. Solving the normal r0en and tangential µr0et to the inclined wall in

terms of its horizontal and vertical components

z0 = r0(cos φ− µ sinφ); y0 = r0(sinφ+ µ cosφ) (35)

and denoting the rotation at the origin by θ0, it results that:

n0 = −z0 sin θ0 + y0 cos θ0
v0 = z0 cos θ0 + y0 sin θ0
m0 = −n0e

(36)

being e = ζh0;− − 0.50 ≤ ζ ≤ 0.50 the eccentricity. The coefficient µ depends on the existence

of sliding or sticking contact conditions, for every value of r0. An additional consideration has

to be introduced here, as the shear force at the origin v0 will also depend on the direction of the

motion of the beam. For the riding-up condition, or up-slope case, under slipping and sticking

regimes, putting ρ = tan−1 µ into Eq. (36) gives:

v0 ≤ n0 tan(φt); φt ≤ ρ

v0 ≤ n0 tan(φt − ρ); φt ≥ ρ
(37)

where ρ is a material parameter, related to the way the ice and wall interact, and dependent

on surface roughness and temperature among other factor. Term φt is θ0 + φ. Notice that

deformation of the beam acts to create an effective value of friction angle. Table 1 presents the

values considered in the present analysis. Aspect ratios h0/b0 = {1, 2, 4} were considered in the

simulations presented ahead.

Table 1: Set of parameters used in the analysis.

Loading and Geometric Parameters

Slope angle set, degrees φ = {15, 30, 45}
Eccentricity set ζ = {-0.5, 0, 0.5}
Friction coefficient set µ = {0.05, 0.25}

3.2 Material parameters

Ice is a quite complex material, whose constitutive equation depends on the type of microstruc-

ture considered, time of the year, form of response sought, etc. For ice features in a brittle state,

in salt water, Table 2 presents some average values of the properties of this material [12] and [9].

Foundation coefficient was set to the density of salt water, γsw = 1.0045e + 4Pa/m.
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Table 2: Some properties of the beam material.

Properties of Ice

Elastic modulus, Pa E = 0.50e + 10

Poisson’s ratio v = 0.30

Flexural strength, MPa Sf = 0.70

Compressive strength, MPa Sc = 5.0

3.3 Contact variables

In the field, the monitored variable r0, the intensity of contact, has to be used in assessing the

interface normal n0. However, because the displacements do depend on the interface conditions,

loading at origin depends on the rotation θ0 = ∂,y(w)0, Eqs. (12) and (34):

∂
{

αj+1
}

∂
{

uj+1
0

} =















0 0 0 0

0 0 0 0

0 0
∂mj+1

0

∂θj+1

0

0

0
∂vj+1

0

∂θj+1

0

− 3
∂mj+1

0

∂θj+1

0

∂,y(t)0
t0

0 0















(38)

where,

∂mj+1
0

∂θj+1
0

= −r0e{cos(φ)[µ cos(θj+1
0 ) − sin(θj+1

0 )] − sin(φ)[cos(θj+1
0 ) − µ sin(θj+1

0 )]} (39)

and,

∂vj+1
0

∂θj+1
0

= r0{cos(φ)[cos(θj+1
0 ) + µ sin(θj+1

0 )] + sin(φ)[− sin(θj+1
0 ) + µ cos(θj+1

0 )]} (40)

Moreover,

∂βj+1

∂uj+1
0

=













0 0 0 0

0 0 0 0

0 0 0 0

0 −∂nj+1

0

∂θj+1

0

∂,y(wi)0 0 0













(41)

where:
∂nj+1

0

∂θj+1
0

= −1

e

∂mj+1
0

∂θj+1
0

(42)

Therefore guessing the entrance values for the uj+1
0 vector requires that the curvature κj+1

0 =

∂,yy(w
j+1)0 be such that κj+1

0 = −mj+1

0

E′i0
, where mj+1

0 does depend on the guessed value of θj+1
0 ,
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according to the above, and it does not represent a free choice. The same can be said of the

rate of curvature at the origin, ∂,y(κ
j+1)0 that should obey the equation for shear force at the

interface, Eq.(5).
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Figure 2: Interface point contact situation.

4 Results

The numerical procedure presented above was coded into a Fortran routine and cases correspond-

ing to some particular beams run. The procedure, though based in an implicit scheme, resulted

in a code with fast rate of convergence. Results presented ahead, for the bending moment dia-

grams, come from the implementation of this routine. The profile of the beam, as set forth by

the t = t(y) function, is considered of harmonic form, as it is generated by the action of waves

and wind, mostly. A general term of this description may be written as t = 1 + at

h̄
sin(κty + ψt)

being at the amplitude, kt = 2π
λt

the wave number, λt the wave length and ψt the phase angle.

Upper and lower side thickness variations may be conceived, resulting in symmetric and anti-

symmetric thickness variations, and therefore straight and harmonic equal area axes, Figs. 3

and 4. Here only pure thickness variation effects, as uncoupled from irregularities of the equal

area axis, are studied. Table 3 shows the values adopted for these geometric variables.

Effect of the amplitude of the variations of the beam thickness on the bending moment

distribution, fixed all parameters but the amplitudes, may be represented by a function m =

m̂t/at
(y;n0; at, λt, ψt) in Figure 5 for h0/b0 = 2 and λt/λ0

= 0.125;ψt = 0, with boundary terms

set by 〈φ = 30, µ = 0.05, ζ = 0.50〉. In this plot moments are normalized with respect to the

failure bending moment mf =
2iSf

h , being Sf the flexural strength of ice, whereas positions

along the beam are normalized with the wave-like factor λ0 = 2π
δ0

. In-plane loads are normalized

with the crushing load, nc = Sch. It shows a strong dependence of the bending moments on

the amplitude of the thickness variation function. In particular it should be pointed out the

closeness of the point of occurrence of the maximum bending moment with the position of

minimum thickness.
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Table 3: Set of profile parameters used in the analysis.

Geometric Profile

Relative Amplitudes at

h̄
= {0; 0.0625; 0.125; 0.1875}

Relative Length λt

λ0={∞,0.500,0.125}

Phase Angle Ψt = {0.; 30; 60; 90}
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Figure 3: Anti-symmetrical thickness variation profile: e.a.a. curved.
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Figure 4: Symmetric thickness variation profile: e.a.a. straight.
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Dependence of the bending moment field upon the wave length of the thickness profile is

measured by m = m̂t/λt
(y;n0; at, λt, ψt) and the results are presented in Figure 6 for at/h0

=

0.0625, ψt = 0 and the same boundary terms of above. Negligible effects on bending moments

occur at lengths of the order of λ0. Truly null effects, however, only occur when λt → ∞. But,

extreme values of bending moments occur, again, at points close to minimum sectional thickness.

Additionally, because shorter wave lengths will bring the sections of minimum thickness closer

to the loading region, they will also be more effective in bringing up the extreme values of the

bending moments.
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Figure 5: Effect of amplitude of thickness variation on bending moments.

Finally, a shift of phase angle ψt increases the extreme values me of bending moments when

it brings the sections of minimum thickness closer to the loading region, as it is drawn in Figure

7 for m = m̂t/ψt
(y;n0; at, λt, ψt). In it boundary terms are conserved and at/h0

= 0.0625;λt/λ0
=

0.125. An opposite effect will be observed when it affects the first neck of the beam in an

opposite sense.

Overall, extreme values of bending moment me = m̂(ye;n0; at, λt, ψt), fixed the loading, and

geometry, occur at values yme such that ∂,y(m)ym
e

= 0. Finding this position requires an internal

loop added to the above procedure, as the value yme will not, in general, coincide with any

discretized position yn. Therefore, after an initial search that delimits this position, ym ≤ yme ≤
ym+1, an approximate Newton procedure will find ∆y = yme − ym from ∆y = − ∂,y(m)ym

∂,yy(m)ym
.

5 Discussion and conclusion

Formulation presented above permits different expansions. Thickness variation profiles present

a stocastic character. Nonetheless development of the different profiles based on the sum of

harmonic functions allows a very close representation of the observed forms. Therefore, from

Eq. (2), it is clear that if t =
∑

l

tl; tl = t̂l(y; al, λl, ψl) then solution will involve sum of

responses, not linear, but that can be obtained from the presented procedure. Care must be
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Figure 6: Effect of wave-length of thickness variation on bending moments. 
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Figure 7: Effect of phase angle of thickness variation on bending moments.

taken with the mean value h̄ and wi function, that need to be computed again, as they are

affected by the sum on t.

Coupling between thickness profile and irregularity of the e.a.a., as defined by function wi
may be sought as well. Symmetric and anti-symmetric profiles may be studied. Effects of

curvature of the e.a.a. is studied a part somewhere [2], but it is clearly a special case here.

Compression-flexure of beams upon contact to walls, in general, involves flexure in two

planes, the horizontal and vertical, as both components of velocity are present in ice fields. The

horizontal component of contact would add a horizontal H0 component of internal force H, in

the direction of the x-axis and a bending moment P , related to the in-plane curvatures. A pair

of equations of equilibrium would then be added to Eqs. (1):

∂,y(H) = −ψ∂,y(N)

∂,y(P ) = H −N∂,y(u)
(43)

where ψ = ∂,y(u) represents the in-plane rotations, being u the x-components of displacement.
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Considering the constitutive equation for P as being of the form, P = −E′J∂,yy(u) where

J = h̄t
12b

3
0, and combining the above statements, it results that:

∂,yy[E
′J∂,yy(u)] +N∂,y(ψ) = 0 (44)

subjected to the additional boundary conditions,

y = 0; H0 = −µN0

P0 = 0
(45)

at origin, and,
y = L uL = 0

∂,y(u)L = 0
(46)

which would entail a similar form of procedure to be applied to the horizontal problem. Again

a full backward Euler procedure, in the form presented above, could be developed and applied

simultaneously, or not. This conveys some additional dimension to the solution procedure de-

veloped and shows some advantages of this method with respect to some other largely used

numerical methods, as the finite element method, of difficult application in semi-infinite prob-

lems, in particular containing variable thickness and initial curvature.

It should be pointed out that an elastic-damage model could be used as constitutive equation

for the behavior of ice. In this case, load would be treated in incremental form, and a damage

surface used to separate elastic, from damaged-elastic states. Increment corrections to the

elastic modulus of the material, changed from E to ED, on a sectional basis, would have to

be implemented [7]. Though a lot more complicated, it could be made fit to the procedure

developed here.
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