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Abstract 

The mechanical behavior of viscoelastic materials is influenced, 

among other factors, by parameters like time and temperature. 

The present paper proposes a methodology for a 

thermorheologically and piezorheologically simple characterization 

of viscoelastic materials in the time domain based on experimental 

data using Prony Series and a mixed optimization technique based 

on Genetic Algorithms and Nonlinear Programming. The text dis-

cusses the influence of pressure and temperature on the mechani-

cal behavior of those materials. The results are compared to ex-

perimental data in order to validate the methodology. The final 

results are very promising and the methodology proves to be effec-

tive in the identification of viscoelastic materials. 
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1  INTRODUCTION 

Polymers are materials that have increasingly been used in engineering projects mainly due to their 

versatility as well as their mechanical resistance. However, the study of their behavior, when sub-

mitted to mechanical loads, is still being developed, due to its complex molecular structure, which 

molds mechanical properties that change according to time and temperature. 

 In order to predict the mechanical behavior of such material, some methods have been developed 

- starting from a few characteristic material parameters – aiming at determining the results of dif-

ferent loading application throughout time and under temperature change effects, inherent to the 

use of structural components using viscoelastic materials (VEMs). 

 The mechanical behavior model of VEMs could be represented by springs and dampers in paral-

lel or in series, as seen in the models by Maxwell and Kelvin/Voigt, respectively, also known as 
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‘integer derivative models’ (Brinson & Brinson, 2008). Another approach is given through models 

that employ a fractional derivative concept (Mainardi, 2010). For both cases, these material charac-

terizations could be performed in frequency and time domains. However, these models prove to be 

defective as a way of representing the dynamic characteristics of most materials used in engineering 

in a wide spectrum of temperature and time/frequency. 

 A study comparing molecular theories that describe VEMs behavior and models based on frac-

tional derivatives was performed by Bagley & Torvik (1983). Their work demonstrated that, from a 

reduced number of parameters, it is possible to predict with some precision the dynamic behavior of 

those materials. Using a fractional derivative model containing four or five parameters, Pritz (1996) 

has determined the characteristics of dynamic module and material loss factor of VEMs in the fre-

quency domain. Also utilizing fractional calculation models, Lopes et al. (2004) used a methodology 

based on an inverse problem to characterize those materials. Thus, using the transmissibility model 

of a simple system composed by VEM as a resilient element and nonlinear optimization techniques, 

it was possible to characterize rheologically simple materials by a global adjustment of all curves 

measured at different temperatures. In the study by Lima et al. (2004), a methodology was estab-

lished to perform the modeling in finite beam elements and rectangular plaques with a VEM layer, 

in order to attenuate the effect of vibration on structures by using the GHM model. Therefore, 

through numerical simulations, the answer in frequency functions was obtained, modal properties 

were calculated and finally compared to experimental data obtained from vibration tests carried out 

in laboratory. Another technique recently developed to determine the mechanical properties of 

VEMs is nanoindentation. In one of those applications, Huang et al. (2004) used nanoindentation 

with a spherical indentator to measure the flexibility modulus of polymethylmetacrilate and poly-

carbonate. In order to validate the results of calculations from nanoindentation tests, the same ma-

terials were also tested by using a dynamic mechanical analysis. 

 Prony Series were used by Park & Schapery (1999) in an attempt to apply an efficient numerical 

method in the time domain to relate relaxation and creep functions of VEMs, which were tested 

using experimental data from a few polymeric materials. A method for determining the Prony Series 

coefficients of a viscoelastic relaxation modulus was developed by Chen (2000) using load versus 

time data for different sequences of load ratio adjusted to the convolution integrals of tested mate-

rials. In temperatures above glass transition, components exhibit a more pronounced viscoelastic 

behavior. In a study presented by Hu et al. (2006), a tensile relaxation test was used to characterize 

the viscoelasticity of an epoxy component by determining the material relaxation modulus as a 

function of time. Beake (2006) also used nanoindentation to investigate the creep behavior of semi-

crystalline and amorphous polymers. Experimental data - for the first twenty seconds of load - were 

adapted to a logarithmic equation that represents the fractionate increase of depth in penetration 

during creep and, by adjusting creep data, it was possible to predict the extension and creep ratio 

for load ratio and maximum load.  Two alternative approaches for estimate viscoelastic material 

functions under random excitation were proposed and analyzed by Sorvari & Malinen (2007). In the 

first one, Boltzmann’s superposition principle and Tikhonov’s regularization were used in a linear 

equation system. Then, the integral was transformed into a recursive expression using a Prony Se-

ries based representation of viscoelastic material functions, in which an optimization technique 

based on gradients was also applied. Results were compared in order to validate the proposed nu-
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merical method. Felhös et al. (2008) have determined the viscoelastic mechanical properties of 

EPDM (ethylene propylene diene monomer) rubber through a dynamic mechanical thermal analy-

sis. These authors used a fifteen-term Maxwell’s generalized model to describe the material behav-

ior, the frictional aspect of which was tested in a rolling ball on a plate-like device. The rolling test 

was simulated by FEM using mechanical VEM properties and the calculated results proved to be 

fairly in accordance with the experimental results. In another study, Sorvari & Hämäläinen (2010) 

evaluated conventional semi-analytic and implicit Runge-Kutta numerical methods both analytical-

ly and numerically in order to solve integral models of linear viscoelasticity using Prony Series. 

 During VEMs characterization process, the influence of temperature variation on the behavior of 

those materials becomes clear. A material can be defined as thermorheologically simple when all 

relaxation times are affected by temperature in the same way, thus allowing the application of the 

Time-Temperature Superposition Principle (TTSP) (Leaderman, 1943; Schwarzl & Staverman, 

1952). When applying TTSP to a thermorheologically simple material, master curves emerge using 

a reduced time variable or shift factor to comprise a wider time range of data from a given material 

function (Ferry, 1980). Master curves from a relaxation modulus logarithm versus a time logarithm 

were built by Tobolsky (1956) from experimental data for a few polymers in different temperatures 

and superposed through a horizontal shift along the time logarithm axis. Chae et al. (2010) per-

formed tensile relaxation experiments in polymeric components in the time domain in order to de-

termine the relaxation modulus master curve with Prony Series application. These authors used the 

technique developed by Williams, Landel and Ferry (1955), in which shift factors can be determined 

graphically or by using the experimentally based equation, also known as WLF equation. This 

method uses the ratio αT  - or shift factor - of all relaxation times at temperature T, compared to a 

reference temperature value Ts, in order to determine the relation between temperature and poly-

mer characteristics. By using WLF equation and TTSP, Li et al. (2007) researched the dependence 

on temperature and fatigue damage tensile levels on polymethilmetacrylate, which was tested in 

different temperature conditions and tensile creep, resulting in the master curve for that material. 

 Another factor that exerts some influence on VEMs behavior is hydrostatic pressure. Like 

thermorheology, there is piezorheology, which determinates the influence of pressure in VEMs be-

havior. In order to perform the pressure superposition throughout time, the material must be 

piezorheologically simple, in other words, all relaxation times must be affected by pressure in the 

same way, allowing the calculation of a shift factor (Ferry, 1980). O’Reilly (1962) studied the effect 

of pressure in polyvinyl acetate behavior in the glass transition temperature region, Tg, by using 

dielectric and volumetric measurement techniques. Subsequently, this author developed a shift fac-

tor that considers the effect of pressure - α� - which contains an exponential relation between a 

characteristic material Constant and the pressure applied to the material. A comparison of shift 

factor models that evaluate pressure influence on the mechanical properties of materials was per-

formed by Tschoegl et al. (2002). Among these models, Ferry-Stratton’s model (FS) applies to low 

pressure ranges - around 10 MPa - because it does not take into account the dependence of the 

compressibility factor on pressure.  However, models like O’Reilly’s (OR) and Kovacs-Tait’s (KT) 

incorporate an inverse dependence of the compressibility factor on pressure. 

 The present work proposes a methodology for the characterization of VEMs from tensile versus 

strain experimental data for different strain ratio. This methodology is best described in Pacheco  
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(2013). The proposed model is based on Prony Series and the adjustment between experimentally 

obtained curves and their numerical equivalents - in order to identify the material - is performed 

through hybrid optimization techniques. 

 
2 THEORETICAL CONCEPTS AND MATHEMATICAL FORMULATION 

2.1 Constitutive VEM models 

VEMs are materials whose mechanical behavior is strongly dependent on speed application of loads 

at constant temperature. A material can be considered as ‘linear viscoelastic’ when its strain and 

strain rate are infinitesimal, and the stress-strain relation can be expressed by linear differential 

equations with constant coefficients. In linear VEMs, the constitutive relations can be posed by 

hereditary relations that are expressed by the linear viscoelasticity superposition principle and use 

the relaxation and creep modulus function. 

 Starting from Maxwell’s Generalized Model and adding one more spring term leads to a model 

known as Wiechert model (Brinson & Brinson, 2008), according to Figure 1. This model could be 

represented by the relaxation modulus function ���� as follows (Christensen, 1971; Ferry, 1980) 
 

, (1) 

 

where �� is the equilibrium modulus, and �� and 	� are the elastic components and relaxation time 

associated to the q-th �1 ≤ � ≤ �� Maxwell model component. In this case, TN is the total num-

ber of Prony Series terms. This relaxation function, which presents the sum of a series of exponen-

tial terms, could be interpreted as a mechanical element model like the one in Figure 1, also known 

as Prony Series. 
 

 
Figure 1: Wiechert material model. 
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. (3) 

 

In this case, �� represents the material equilibrium modulus. 

 Considering a historical account of uniaxial strain - ε��� - the tensile σ��� can be obtained apply-

ing the hereditary integral (Flügge, 1975) as 
 

, (4) 

 

where ε�0� is the accumulated strain up to the initial instant (t = 0). 

 
2.2 Identification Process Formulation in the Time Domain 

In the present work, the identification process of mechanical properties of a VEM in the time do-

main considering the Wiechert model uses a family of experimental data obtained through uniaxial 

traction tests performed according to norm ISO 527/1B (ISO, 2012), with a constant strain rate. 

Thus, 

. (5) 

 

Considering this special case and a null initial strain, a reduced expression relating stress to histori-

cal strain can be obtained as follows 

. (6) 

 

Thus, the stress obtained from the Prony Series model (denoted by ������) can be expressed as 
 

. (7) 

 

A graphic visualization of the stress experimental values (����) and the numerically obtained stress 

using the Prony Series (������) for a given pair of strain rate ( ) and temperature (T) is illustrat-

ed in Figure 2. 
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Figure 2: Experimental and Prony tensile versus strain for a determined strain rate. 

 

Note that the σ-
�./01

 stress is evaluated according to the constitutive Prony model by the hereditary 

integral (Eq. (7)), and σ-
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sampled. The symbol | | represents the absolute value of the function. 
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or by the average quadratic error ( ) defined as 
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, (11) 

 

and the temperature shift factor α8 can be obtained by Williams, Landel and Ferry’s model – the 

WLF model – (Williams et al., 1955) as 
 

. (12) 

 

In this model, T is the temperature in which the material’s response is measured, Ts is the reference 

temperature, and  are characteristics material properties, and  is the shift factor of all 

relaxation times. Thus, the convolution integral can be defined as 
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which the relaxation modulus ��$�; �′� is defined, the material response for a given pressure is 

translated as 
 

. (17) 

 

Thereby, considering the influence of hydrostatic pressure on instant t, the relaxation modulus ex-

pression could be written as 
 

. (18) 

 

Here, the pressure shift factor (;�) considered in the present work was proposed by O'Reilly (1962) 

as 
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where C is a constant characteristic of the material. Substituting the relaxation modulus expression 

E(t), Eq. (18), in the convolution integral, Eq. (6) yields the stress in a given instant t as 
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Figure 3: Integration interval division. 
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2.5 Optimization Process 

The present work has studied the influence of two variables in an independent way upon material 

behavior, temperature, and hydrostatic pressure. In the first case, the material properties referring 

to the influence of average pressure on the material at a constant temperature could be obtained by 

the solution of the following optimization problem: 
 

. 

(26) 
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3 NUMERICAL RESULTS 

3.1 VEM Experimental Analysis 

The experiments were supplied by material manufacturer SABIC, and were realized on material 
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(ISO, 2012). According to SABIC, the material was submitted to three sets of tests of pure traction, 

each one at a different and constant temperature (-35°°°°C, 23°°°°C, and 80°°°°C). In each of those tempera-

tures, that material has been submitted to four different strain rates, constant throughout each 

particular test (0.0001(mm/mm)/s, 0.01(mm/mm)/s, 0.1(mm/mm)/s, and 1(mm/mm)/s). By per-

forming these tests, it was possible for supplier SABIC to obtain tensile and strain experimental 

data for each strain rate and temperature. Those experimental data are shown in the appendix, and 

compose the entry file for the identification process in the shape of an inverse problem, whose codes 

were implemented on MATLAB software. 

 
3.2 Implemented Computational Structure 

The flowchart of the implemented computational structure is shown in Figure 4. First step is the 

reading of data from experimental tests, followed by the preparation of GA routine and its execu-

tion. Then, the best point obtained from the optimization process using GA serves as entry data for 

the preparation of the nonlinear programming routine and its execution. The final result reaches the 

global optimum point. Finally, results are displayed. In this optimization process, the MATLAB: 

GA (for genetic algorithm) and the FMINCON (for nonlinear programming) toolboxes were used. 

 

 
 

Figure 4: Scheme of routine set implemented on MATLAB software for material characterization. 

 

Input  experimental  data

Definition of model parameters:  

Number of terms and relaxation times

Definition of the design variables 

limits. 

Definition of parameters to be used by 

GA.m (Matlab)

Optimization by Genetic Algorithm

Optimum point X by GA (XGA)

Definition of parameters for nonlinear 

programming

Optimization by nonlinear 

programming (Starting point: XGA)

Probable global optimum point X*.

Results display.
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3.3 Identification of VEM Considering Influence of Pressure and Constant Temperature 

The results presented in this section consider the material model with one spring term according 

to Figure 1, or Wiechert model, which contains one term representing pure elastic behavior. 

Therefore, the objective is to obtain the minimum error resulting from a comparison between 

experimental data and the data obtained from Prony Series implementation, and analyzing the 

influence of pressure, with constant temperature. In all following analysis performed and present-

ed, some parameters of the optimization process are common and named in Table 1. 

 In the numerical identification process, the relaxation times were arbitrated as 	 = {0.010000; 

0.071969; 0.517947; 3.727594; 26.82696; 193.069773; 1389.495494; 10000.000000} and the range of 

reference pressure was also arbitrated in the interval from -3⋅Pmed to Pmed in order to impress 

more flexibility to the adjustment, and Pmed is equivalent to one third of the maximum tensile of 

the curve. 

 

CoefficientCoefficientCoefficientCoefficient    SymbolSymbolSymbolSymbol    ValueValueValueValue    

GA - Population  200 

GA - Generations  200 

GA – Function Tolerance TolFun 1e-6 

GA - Mutations MutationFcn @mutationadaptfeasible,0.02 

NLP MaxFunEvals 100 

NLP MaxIter 400 

NLP Algorithm Active-set  

Equilibrium Modulus E∞ 0 MPa ≤ E∞ ≤ 10000 MPa 

Prony Series components Ei (i = 1...TN) (TN = 8) 0.0 MPa ≤ Ei ≤ 5000 MPa 

OR – Material constant C -0.4 ≤ C ≤ 0.4 

OR – Reference pressure P0 -3*Pmed ≤ P0 ≤ Pmed 

Table 1: Coefficients used on pressure influence analysis. 

 
3.4 Identification Considering the Influence of Pressure at -35°C Constant Temperature 

This section presents the results obtained for the constant temperature of -35ºC, and a compari-

son between experimental data and data obtained through Prony Series calculation. The results 

contemplate the comparison focusing on each of the strain rates separately, for a fixed tempera-

ture of -35°°°°C. 

Analyzing the results in Table 2, one can observe that the strain rate applied in the experi-

mental test has a strong influence over the constants that characterize the relaxation modulus 

behavior and over the reference pressure P0, which significantly present different values for each 

strain rate. In another way, the value of constant C0 presented quite a low value for all the strain 

rates. It can also be observed that the equilibrium modulus showed values different from zero for 

all strain rates. Inserting the values obtained in Table 2 into Eq. (18) yields the relaxation modu-

lus function, which can be visualized in Figure 6. 
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�a�	�� = 0.0001((mm/mm)/s) �b�	�� = 0.01((mm/mm)/s) 

  

�Q�	�� = 0.1 ((mm/mm)/s) �R�	�� = 1 ((mm/mm)/s 
 

Figure 5: Figure 5: Figure 5: Figure 5: Comparison between experimental tensile results (+) and the values 

obtained from Prony model (---) for -35°C temperature and four single strain rates.  

 

 

Figure 6: Relaxation modulus function identified considering strain rates and -35°C temperature. 
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Strain Strain Strain Strain raterateraterate    ((mm/mm)/s)((mm/mm)/s)((mm/mm)/s)((mm/mm)/s)    S�= 0.0001= 0.0001= 0.0001= 0.0001    S�= 0.01= 0.01= 0.01= 0.01    S�= 0.1= 0.1= 0.1= 0.1    S�=1=1=1=1    
GlobalGlobalGlobalGlobal    

adjustmentadjustmentadjustmentadjustment    

		E (s) 0.010000 �E (MPa) 1009.1 713.8 499.0 205.4 595.2 

	7 (s) 0.071960 �7 (MPa) 206.2 259.8 149.7 11.5 0.0 

	T (s) 0.517896 �T (MPa) 0.0 0.0 0.0 146.0 739.3 

	U (s) 3.727297 �U (MPa) 0.0 121.2 155.2 78.8 0.0 

	V (s) 26.825356 �V (MPa) 187.6 368.7 323.6 355.2 0.0 

	W (s) 193.062086 �W (MPa) 825.6 500.9 406.1 57.6 0.0 

	X (s) 1389.467834 �X (MPa) 3189.2 554.4 435.9 92.7 1139.5 

	Y (s) 10000.000000 �Y (MPa) 1856.7 1094.3 806.9 622.2 448.0 

E∞ (MPa) 1045.6 4646.0 5373.7 6574.6 4947.3 

C 0.4 0.4 0.4 0.4 0.4 

$� (MPa) 11.6369 14.9452 20.3969 10.5366 -4.8053 

GA Error (MPa2) 0.0298 2.1177 0.7736 0.5757 2.9194 

Minimum error (MPa2) 2.1678E-04 3.4934E-05 1.9042E-05 2.9437E-06 1.1756 

 

Table 2: Results of the identification process for -35°°°°C temperature. 

 
3.5 Identification Considering Only the Influence of Temperature 

The results presented in the subsequent sections also consider the Wiechert model, which contains 

one term representing pure elastic behavior. In this case, the minimum error is obtained as a re-

sult of the comparison between experimental data and the data obtained from the implementa-

tion of the model based on Prony Series, now analyzing the influence of temperature. It can be 

said that those results do not consider the influence of average pressure on the model point.  In 

the following analysis, performed and presented, the optimization process parameters for GA and 

NLP and the relaxation times are shown in Table 3. 

 

Coefficient Symbol Value 

WLF – Material constant 1 C1 -10.0 ≤ C1 ≤ 10.0 

WLF – Material constant 2 C2 -200.0º C ≤ C2 ≤ 200.0º C 

WLF – Reference temperature Ts -90.0º C ≤ Ts ≤ 90.0º C 

Table 3: Coefficients used in the analysis of temperature influence. 
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3.5.1 Identification considering strain rate 1 ((mm/mm)/s) and temperatures 

of -35°C, 23°C, and 80°C 

This section presents the results for temperatures of -35°°°°C, 23°°°°C, and 80°°°°C, comparing experi-

mental data and the data obtained from the calculation of Prony Series for the strain rate of 1.0 

(mm/mm)/s. Figure 8 presents the relaxation modulus function for the reference temperature of -

55.46°°°°C, obtained by inserting the values from Table 4 into Eq. (11). Analyzing the results in 

Table 4, it becomes clear that the influence is not only that of temperature, but also of the strain 

rate applied to the load on the material test, with variation on the equilibrium modulus values 

and on the constants related to each component of the series. 

 
3.5.2 Identification Considering all Strain Rates and Temperatures 

This section presents the results for temperatures of -35°°°°C, 23°°°°C, and 80°°°°C comparing experi-

mental data and the data obtained from Prony Series calculation for all strain rates presented 

before (Figure 7). 
 

 
	

(a) T = -35°C. 

 
	

(b) T = 23°C. 
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(c) T = 80°°°°C. 
 

Figure 7: Comparison between experimental tensile results and those obtained from Prony Series for 

temperatures of -35°C, 23°C, and 80°C, and strain rate of 1.0 (mm/mm)/s. 
 

The results presented in Table 5 used the Wiechert model, obtaining equilibrium modulus greater 

than zero. This shows the influence of pure elastic behavior on the VEM behavior. One could also 

assure the influence of temperature by the variation of constants C1, C2, and reference tempera-

ture Ts, which are parameters used in the calculation of temperature shift factor, αT. 

Inserting the values obtained in Table 5 into Eq. (11) yields the relaxation modulus function. 

This function can be visualized in Figure 9, and it considers the history of all temperatures and 

strain rates, constituting the master curve for reference temperature of, approximately, -18.38°°°°C, 

obtained through the optimization process. 

 

Identification Process Results for Strain Rate  ��= 1 ((mm/mm)/s) 

Relaxation time (s) Relaxation Modulus 

		E (s) 0.010000 �E (MPa) 0.0 

	7 (s) 0.071960 �7 (MPa) 0.0 

	T (s) 0.517896 �T (MPa) 2524.9 

	U (s) 3.727297 �U (MPa) 0.0 

	V (s) 26.825356 �V (MPa) 0.0 

	W (s) 193.062086 �W (MPa) 2301.1 

	X (s) 1389.467834 �X (MPa) 0.0 

	Y (s) 10000.000000 �Y (MPa) 1021.0 

E∞ (MPa) 2217.5 

C1 10.0 C2 (ºC) 103.8183 

Ts (ºC) -55.4621 

GA Error (MPa2) 0.6899 

Minimum error (MPa2) 0.3051 
 

Table 4: Results of the identification process for temperatures 

of -35°°°°C, 23°°°°C, and 80°°°°C, and strain rate of1.0 (mm/mm)/s. 
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Figure 8: Relaxation modulus function identified considering strain 

rate of 1.0 (mm/mm)/s and temperatures of -35°C, 23°C, and 80°C. 

 

The glass transition temperature of the analyzed material is 0°°°°C, but in the researched literature 

different options were adopted for the reference temperature of the temperature shift factor WLF, 

which is the model adopted in the present work. After performing tests with different options of 

reference temperature Ts, - from glass transition temperature to 50°°°°C above it - it was decided 

that this could be consider a free parameter, with boundaries between +/- 90°°°°C. 
 

Identification Process Results 

Relaxation time (s) Relaxation Modulus 

		E (s) 0.010000 �E (MPa) 992.7 

	7 (s) 0.071960 �7 (MPa) 0.0 

	T (s) 0.517896 �T (MPa) 0.0 

	U (s) 3.727297 �U (MPa) 1911.5 

	V (s) 26.825356 �V (MPa) 233.7 

	W (s) 193.062086 �W (MPa) 0.0 

	X (s) 1389.467834 �X (MPa) 1228.9 

	Y (s) 10000.000000 �Y (MPa) 0.0 

E∞ (MPa) 2369.4 

C1 10.0 

C2 (ºC) 101.1856 

Ts (ºC) -18.38 

GA Error (MPa2) 22.2881 

Minimum error (MPa2) 21.2534 
 

Table 5:  Results from identification process for all temperatures 

(-35°°°°C, 23°°°°C, and 80°°°°C) and all strain rates (0.0001, 0.01, 0.1, and 1.0 (mm/mm)/s). 
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Figure 9: Relaxation modulus function identified considering 

all strain rates and temperatures for  Ts =  -18.38°C. 

 
4 CONCLUSIONS 

The present work proposes a methodology for VEM characterization through an inverse identifi-

cation problem in the time domain. The methodology developed permits to characterize viscoelas-

tic materials with a thermorheologically and piezorheologically simple behavior. For this purpose, 

experimental data, extracted from tensile versus strain curves - in different strain rates and tem-

peratures - were used as a starting point. 

The implemented formulation was based on the constitutive model of Prony Series. The in-

verse identification process used a hybrid optimization technique (GA and NLP) implemented in 

MATLAB.  

The following simulations were performed: 
 

a) Influence of pressure 

Case 1 – A single strain rate for a single temperature; 

Case 2 – Several strain rates for a single temperature; 
 

b) Influence of temperature 

Case 3 – A single strain rate for several temperatures; 

Case 4 – Several strain rates for several temperatures. 
 

In case 1, where the curves are adjusted individually, the final quadratic errors ranged from 10-04 

MPa2 to 10-06 MPa2, which indicates that the constitutive model used could be adequate for the 

material under study, and the methodology adopted proved to be efficient for the identification of 

mechanical properties. For case 2, where several curves are adjusted for a single temperature, the 
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errors ranged from 1 MPa2 to 4 MPa2. This increase in average error resulting from the adjust-

ment can be attributed to the fact that the chosen model for evaluating the influence of pressure 

is linear. 

In case 3, where several temperatures are adjusted for the same strain rate, the errors can be 

considered as low value errors, but higher than the ones in case 1. This can be attributed to the 

fact that the influence of pressure was not considered, but only the influence of temperature. At 

last, in case 4 - where a global adjustment occurs - considering all strain rates and temperatures 

available, the error was around 21 MPa2. Despite being higher when compared to the errors found 

in the other cases, it can still be considered satisfactory, because it represents an average error of 

around 5% in each sampled point. 

The results show that the implemented methodology can be considered adequate for character-

izing viscoelastic materials in the time domain, provided that they have a behavior similar to that 

of the hypothesis considered, although better results can be obtained by using more precise mod-

els that are able to take into consideration the influence of pressure, the influence of temperature, 

and a combined influence of pressure and temperature. It must be stated that it may also be the 

case that the investigated material is not thermorheologically and piezorheologically simple, and a 

study aiming at confirming such statement could be developed in the future. 
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APPENDIX 

Appendix 1 – Data from experimental testing for all strain 

rates and temperatures of -35ºC, 23ºC and 80ºC  

In this section experimental data provided by supplier of material STAMAX are presented for 

strain rates of 0.0001, 0.01, 0.1 and 1 (mm/mm)/s and temperatures of -35ºC, 23ºC and 80ºC. 

 

 

Strain rate: 0.0001 (mm/mm)/s Strain rate: 0.01 (mm/mm)/s 

Strain (mm/mm) Stress (MPa) Strain (mm/mm) Stress (MPa) 

0.000000 0.000000 0.000000 0.000000 

0.000250 1.757970 0.000250 1.814182 

0.000500 3.502835 0.000500 3.615712 

0.000750 5.234583 0.000750 5.404579 

0.001000 6.953206 0.001000 7.180774 

0.001249 8.658691 0.001249 8.944286 

0.001499 10.351029 0.001499 10.695105 

0.001748 12.030210 0.001748 12.433220 

0.001998 13.696222 0.001998 14.158623 

0.002247 15.349055 0.002247 15.871302 

0.002497 16.988700 0.002497 17.571247 

0.005236 34.151298 0.005236 35.427315 

0.007968 49.702776 0.007968 51.727852 

0.010693 63.629183 0.010693 66.459329 

0.013212 75.078506 0.013212 78.705590 

0.015184 83.065019 0.015184 87.351327 

0.016365 87.435287 0.016365 92.131625 

0.017349 90.834579 - - - - - - 
 

 

Table 6:  Experimental data for temperatures -35°°°°C and strain rates 0.0001 and 0.01 (mm/mm)/s. 
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Strain rate: 0.1 (mm/mm)/s Strain rate: 1.0 (mm/mm)/s 

Strain (mm/mm) Stress (MPa) Strain (mm/mm) Stress (MPa) 

0.000000 0.000000 0.000000 0.000000 

0.000250 1.870858 0.000250 1.987724 

0.000500 3.730444 0.000500 3.966243 

0.000750 5.578749 0.000750 5.935549 

0.001000 7.415763 0.001000 7.895636 

0.001249 9.241478 0.001249 9.846495 

0.001499 11.055894 0.001499 11.788118 

0.001748 12.858974 0.001748 13.720499 

0.001998 14.650736 0.001998 15.643628 

0.002247 16.431162 0.002247 17.557500 

0.002497 18.200243 0.002497 19.462106 

0.005236 36.908734 0.005236 39.799030 

0.007968 54.231174 0.007968 59.003677 

0.010693 70.155383 0.010693 77.065871 

0.013410 83.661453 0.013410 92.784735 

0.015184 93.399564 0.015184 87.351327 

- - - - - - 0.016365 92.131624 

 

 

Table 7:  Experimental data for temperatures -35°°°°C and strain rates 0.1 and 1.0 (mm/mm)/s. 
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Strain rate: 0.0001 (mm/mm)/s Strain rate: 0.01 (mm/mm)/s 

Strain (mm/mm) Stress (MPa) Strain (mm/mm) Stress (MPa) 

0.000000 0.000000 0.000000 0.0000000 

0.000250 1.138259 0.000250 1.174656 

0.000500 2.268033 0.000500 2.341120 

0.000750 3.389315 0.000750 3.499385 

0.001000 4.502098 0.001000 4.649445 

0.001249 5.606374 0.001249 5.791293 

0.001499 6.702138 0.001499 6.924922 

0.001748 7.789383 0.001748 8.050326 

0.001998 8.868101 0.001998 9.167498 

0.002247 9.938286 0.002247 10.276432 

0.002497 10.999931 0.002497 11.377122 

0.005236 22.112459 0.005236 22.938662 

0.007968 32.181811 0.007968 33.493018 

0.010693 41.198953 0.010693 43.031430 

0.013410 49.154851 0.013410 51.545140 

0.016119 56.040471 0.016119 59.025388 

0.016857 57.731429 0.016857 60.884942 

0.018822 61.846778 0.018822 65.463413 

0.021517 66.564739 0.021517 70.850457 

0.022739 68.347039 0.022739 72.949312 

0.024205 70.185319 0.024205 75.177759 

0.024693 70.725000 0.024693 75.850000 

- - - - - - 0.025668 77.088305 
 

 

 

Table 8:  Experimental data for temperatures 23°°°°C and strain rates 0.0001 and 0.01 (mm/mm)/s. 
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Strain rate: 0.1 (mm/mm)/s Strain rate: 1.0 (mm/mm)/s 

Strain (mm/mm) Stress (MPa) Strain (mm/mm) Stress (MPa) 

0.000000 0.000000 0.000000 0.000000 

0.000250 1.211353 0.000250 1.287022 

0.000500 2.415407 0.000500 2.568083 

0.000750 3.612157 0.000750 3.843180 

0.001000 4.801597 0.001000 5.112307 

0.001249 5.983720 0.001249 6.375459 

0.001499 7.158522 0.001499 7.632632 

0.001748 8.325995 0.001748 8.883819 

0.001998 9.486134 0.001998 10.129018 

0.002247 10.638934 0.002247 11.368221 

0.002497 11.784387 0.002497 12.601425 

0.005236 23.897858 0.005236 25.769282 

0.007968 35.113882 0.007968 38.204006 

0.010693 45.424571 0.010693 49.899009 

0.013410 54.822039 0.013410 60.847702 

0.016119 63.298402 0.016119 71.043497 

0.016857 65.449238 0.016857 73.692634 

0.018822 70.845771 0.018822 80.479805 

0.021517 77.456262 0.021517 89.150038 

0.022739 80.149186 0.022739 92.836022 

0.024205 83.121988 0.024205 97.047607 

0.024693 84.050000 0.024693 98.400000 

0.025668 85.811357 - - - - - - 

0.026642 87.446174 - - - - - - 
 

 

Table 9:  Experimental data for temperatures 23°°°°C and strain rates 0.1 and 1.0 (mm/mm)/s. 
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Strain rate: 0.0001 (mm/mm)/s Strain rate: 0.01 (mm/mm)/s 

Strain (mm/mm) Stress (MPa) Strain (mm/mm) Stress (MPa) 

0.000000 0.000000 0.000000 0.000000 

0.000250 0.740421 0.000250 0.807246 

0.000500 1.475680 0.000500 1.608983 

0.000750 2.205773 0.000750 2.405205 

0.001000 2.930697 0.001000 3.195909 

0.001249 3.650447 0.001249 3.981089 

0.001499 4.365019 0.001499 4.760741 

0.001748 5.074409 0.001748 5.534862 

0.001998 5.778612 0.001998 6.303445 

0.002247 6.477625 0.002247 7.066488 

0.002497 7.171444 0.002497 7.823986 

0.006479 17.562684 0.006479 19.186152 

0.010445 26.606053 0.010445 29.109403 

0.014396 34.284568 0.014396 37.575581 

0.018331 40.581244 0.018331 44.566529 

0.022251 45.479096 0.022251 50.064090 

0.024693 47.822366 0.024693 52.733637 

0.026155 48.961139 0.026155 54.050106 

- - - - - - 0.027615 55.151462 

- - - - - - 0.028587 55.765718 

- - - - - - 0.030044 56.506422 
 

 

 

Table 10:  Experimental data for temperatures 80°°°°C and strain rates 0.0001 and 0.01 (mm/mm)/s. 



J. E. L. Pacheco et al. / Viscoelastic materials characterization with Prony series application    445 

Latin American Journal of Solids and Structures 12 (2015) 420-445 

 

 

 

 

Strain rate: 0.1 (mm/mm)/s Strain rate – 1.0 (mm/mm)/s 

Strain (mm/mm) Stress (MPa) Strain (mm/mm) Stress (MPa) 

0.000000 0.000000 0.000000 0.000000 

0.000250 0.822801 0.000250 0.833062 

0.000500 1.641201 0.000500 1.663745 

0.000750 2.455197 0.000750 2.492049 

0.001000 3.264786 0.001000 3.317970 

0.001249 4.069963 0.001249 4.141507 

0.001499 4.870725 0.001499 4.962658 

0.001748 5.667068 0.001748 5.781420 

0.001998 6.458989 0.001998 6.597791 

0.002247 7.246485 0.002247 7.411770 

0.002497 8.029551 0.002497 8.223354 

0.006479 19.953262 0.006479 20.881299 

0.010445 30.727342 0.010445 32.917063 

0.014396 40.337018 0.014396 44.322065 

0.018331 48.767515 0.018331 55.087725 

0.022251 56.004057 0.022251 65.205464 

0.024693 59.914027 0.024693 71.196215 

0.026155 62.031871 0.026155 74.666700 

0.027615 63.977660 0.027615 78.043658 

0.028587 65.178882 0.028587 80.242781 

0.030044 66.836181 0.030044 83.462854 

0.031983 68.774905 - - - - - - 
 

 

 

Table 11:  Experimental data for temperatures 80°°°°C and strain rates 0.1 and 1.0 (mm/mm)/s. 


