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Abstract 

This research develops nonlinear electromechanical stability of a 

circular functionally graded plate integrated with functionally 

graded piezoelectric layers under compressive radial force. Geome-

tric nonlinearity is considered in the strain-displacement relation 

using Von-Karman relation. The structure is loaded under mecha-

nical and electrical loads. Distribution of electric potential is con-

sidered along the radial and thickness direction. The top and 

bottom of both piezoelectric layers is short-circuited. The effect of 

various values of non homogenous index for both functionally 

graded (FG) and functionally graded piezoelectric (FGP) layers 

can be considered on the responses of the system. Furthermore, a 

comprehensive study for evaluation of geometric parameters can 

be performed on the critical loads of the structure. 
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1 INTRODUCTION 

Functionally graded materials have been produced for usage in environment with opposite condi-

tions. Opposite conditions means such environment that needs two or more properties for cove-

ring all requirements. For example, some researchers have tried to create a material that is appli-

cable in spacecrafts. As we know, the temperature of spacecraft body at outer layers is very high 

while the temperature at inner layers is not very high. For these conditions, the researchers pro-

vide some innovative materials with variable properties. 
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For example a combination of ceramic and metal can be used as functionally graded mate-

rials. The material properties are changed gradually from metal to ceramic. This change may be 

described by a function along the thickness or other dimension of the structure. Composition of 

functionally graded materials with piezoelectric elements proposes new intelligent materials that 

can be studied in this paper. The piezoelectric effect has been presented scientifically by Pierre 

and Jacques Curie in 1880. Piezoelectric structures are very applicable in the industrial systems 

as sensor or actuator in various geometries such as plates, cylinders and shells. In order to control 

the distribution of the displacement or electric potential in a piezoelectric structure, functionally 

graded piezoelectric material (FGPM) can be used. An investigation on the literature can justifies 

necessity of this research. 

Wu  et al. (2002) have used GDQR (generalized differential quadrature rule) for free vibra-

tion analysis of solid circular plates. O¨ zakc et al. (2003) have focused on the buckling load op-

timization of variable thickness circular and annular plates using finite element approach. Ma and 

Wang (2003) have presented deflection bending of a functionally graded circular plate using the 

classical nonlinear von Karman plate theory. The plate has been subjected to various types of 

loading such as mechanical and thermal loadings. As the results of that study, nonlinear bending 

and critical buckling temperature and thermal post-buckling behavior of the FGM plates were 

discussed. The stability of parametric vibrations of circular plate subjected to in-plane forces was 

analyzed using the Liapunov method by Tylikowski and Frischmuth (2003).  

Zhou et al. (2003) employed Chebyshev–Ritz method in three-dimensional free vibration analysis 

of circular and annular plates. They used a linear analysis with small strain assumption. Based on 

the geometric properties of circular and annular plates, the vibration was divided into three dis-

tinct categories: axisymmetric vibration, torsional vibration and circumferential vibration. Li et 

al. (2004) used a large deflection bending analysis of an axisymmetric simply supported circular 

plate. The incremental load technique was developed for solving the bending problem of a thin 

circular plate with large deflection. They have found that the employed technique has capability 

in solution of engineering problems. A circular plate containing piezoelectric layers as actuator 

under static and dynamic mechanical and electrical loads and using Kirchhoff plate model have 

been sudied by Sekouri et al. (2004). Experiments using a thin circular aluminum plate structure 

with distributed piezoelectric actuators were also conducted to verify the analysis and the compu-

ter simulations.   

Kang et al. (2005) presented a closed form solution for finding the natural frequencies and 

mode shapes of a circular orthotropic plate using Rayleigh–Ritz method. They have found that 

the obtained results have capability in designing of circular plates such as wood disk as an ort-

hotropic composite material.  

Nosier and Fallah (2009) studied axisymmetric and asymmetric behavior of functionally gra-

ded circular plates under transverse mechanical loading using the first-order shear deformation 

plate theory with von Karman non-linearity. By introducing a stress function and a potential 

function, the problem were uncoupled to form equations describing the interior and edge-zone 

problems of FG plates. A perturbation technique, in conjunction with Fourier series method to 

model the problem asymmetries, is used to obtain the solution for various clamped and simply 

supported boundary conditions. Camier et al. (2009) studied Large-amplitude and geometrically 
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nonlinear vibrations of free-edge circular plates with geometric imperfections. Free vibration ana-

lysis of circular thin plate with three types of boundary conditions have been studied by Yalcin et 

al. (2009). The solution procedure has been performed using differential transform method. The 

obtained results using this semi-numerical–analytical solution technique have been compared with 

results of Bessel function solution. Axisymmetric bending and buckling of perfect functionally 

graded solid circular plates have been studied by Saidi et al. (2009) based on the unconstrained 

third-order shear deformation plate theory (UTST). The obtained results have been compared 

with those results extracted using lower order shear deformation theories. Sahraee and Saidi 

(2009) investigated axisymmetric bending and stretching of functionally graded (FG) circular 

plates subjected to uniform transverse loading based on fourth-order shear deformation plate 

theory (FOST). Gradation of used material has been considered along the thickness direction 

based on a power law function. Vivio and Vullo (2010) introduced a new analytical method for 

evaluation of elastic stresses and deformations in the solid and annular circular plates with varia-

ble thickness subjected to transverse loading. Arefi (2013) and Arefi and Nahas (2014) presented 

nonlinear analysis of the functionally graded piezoelectric cylinder and sphere, respectively. Three 

dimensional analysis of a functionally graded piezoelectric shell under multi fields has been stu-

died by Arefi (2014).  

An investigation on the literature indicates that there is no published work to study the non-

linear electromechanical stability of a functionally graded circular plate integrated with functiona-

lly graded piezoelectric materials under mechanical and electrical loads. Some useful information 

about linear and nonlinear analysis of functionally graded piezoelectric materials can be conside-

red in the literature [Asemi et al. 2014, Arefi and Rahimi 2011, Arefi and Rahimi 2012 (a, b, c, d, 

e, f), Rahimi et al, 2011, Khoshgoftar et al, 2009]. 

 
2  FORMULATION 

Fundamental equations for mechanical stability of the functionally graded plates integrated with 

two functionally graded piezoelectric layers at top and bottom of plate is developed in the present 

section. Classical plate theory (CPT) is used for simulation of deformation components of the 

plate. , ,r z is used for components of coordinate system and ,u w  is used for symmetric compo-

nents of plate deformation. Based on the above assumptions, the deformation components can be 

given as follows: [Arefi and Rahimi, 2012] 
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The strain components can be derived from nonlinear strain-displacement relation (Von-Karman) 

[Arefi and Rahimi, 2012] 
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Using above relation, three in-plane components of strain can be obtained as follows: 
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The simplified notation can be shown as follows: 
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After determination of strain components, the constitutive equations can be separately derived for 

both functionally graded and functionally graded piezoelectric layers. These equations for functio-

nally graded layer are: [Arefi and Rahimi, 2012; Gaur and Rana, 2014] 
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And for functionally graded piezoelectric layers are: [Arefi and Rahimi, 2012] 
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 (6) 

 

In order to complete the constitutive relations, in this step, the electric potential distribution 

must be defined. A three dimensional distribution of electric potential can be represented as mul-

tiplication of two functions one through radial direction ( )r and another through thickness direc-

tion ( )f z . 
 

( , ) ( ) ( )r z r f z   (7) 
 

where, ( )f z  must satisfy electric potential boundary conditions along the thickness (transverse) 

direction. The short-circuited boundary conditions is considered for both top and bottom piezoe-

lectric layers. By employing a second order approximation for electric potential distribution along 

the z direction, we’ll have: [Ebrahimi and Rastgo, 2008] 
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Using the above equation, the electric filed components can be derived as follows: 
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 (9) 

 

By substitution of electric field components from Eq. (9) into constitutive equations of piezoelec-

tric layers (Eq. (6)), we will have: 

 

, ,

, ,

( ) ( )

( ) ( )

p p
rr rrrr rm r rr m rrr r rrz z

p p
rr rm r m r r z z

C z C z e f e f

C z C z e f e f

  

      

      

      

      


     

 (10) 

 

In order to attain the final governing equations, the resultant of force and moments per unit 

width must be evaluated.  
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As mentioned above, the integral must be evaluated along the thickness direction. Since the plate 

is included two different materials, above integral must be decomposed into two integral  
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Substituting the stress relations in terms of strain components and electric potential presents the 

resultant of force and moments as follows: 
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where, mentioned coefficients ,i iE A  may be considered in Appendix A.  
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Defined components of the resultant of force and moments must satisfy equilibrium equations 

as follows: 
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Substitution of resultant of force and moments in equilibrium equations yields:  
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Electric displacement equations along the three directions are [Gaur and Rana, 2014]: 
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Discharge equation that implies divergence of electric displacement vanishes through the piezoe-

lectric section yields third equation as follows: [Ebrahimi and Rastgo, 2008] 
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Substitution of electric displacement equations into discharge equation yields: 
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In this step, we can collect three essential equations for evaluation of the results of the problem. 

These equations include two mechanical equations and one electrical equation. 
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By considering the displacement fields and electric potential as follows: 
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We can evaluate the results of the problem in terms of different geometrical and material proper-

ties. Before final evaluation of the results, the distribution of material properties must be defined. 

 
3  RESULTS AND DISCUSSION  

Before solution of the problem, it is appropriate to define the material properties for the FG and 

FGP layers. For FG layer, it is assumed that the bottom of the plate is steel and top of that is 

ceramic. Therefore the distribution of the material properties for FG layer is (Ebrahimi and 

Rastgo 2008):    
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where, ( )e mE z h E   , ( )e cE z h E  , 2 eh  is thickness of elastic solid section of the plate and n is 

the non-homogenous index of ceramic-metal section of the plate. Figure 1 show the distribution of 

modulus of elasticity along the thickness direction of the plate in terms of different values of non 

homogenous index. 
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 The distribution of the mechanical and electrical properties for the two FGP layers can be 

supposed as a power function along the thickness direction as follows (Khoshgoftar et al 2009; 

Arefi and Rahimi, 2010):   
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E z E h z h h

h
     

(

(22) 

 
 

where, iE  represents the value of the all mechanical and electrical components at ez h  and eh is 

thickness of the piezoelectric section. Other numerical parameters are considered as:  
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Figure 1: Distribution of variable modulus of elasticity of FGM along the thickness direction. 

 

 

After defining the material properties, buckling load of FG circular plate integrated with piezoe-

lectric layers can be evaluated. As a first case study, the effect of thickness of smart layers can be 

investigated on the buckling loads. For this study, three values of e

p

h

h
 are considered. 
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Shown in figure 2 is the distribution of buckling load for different values of ratio of thickness e

p

h

h
 

in terms of non homogeneous index. The obtained results indicate that with increasing the ratio 

of thickness e

p

h

h
, the buckling load of plate decrease. Shown in figure 3 is the distribution of buc-

kling load for different values of outer radius of plate ( bm
a

 ) in terms of non homogeneous 

index.  

The obtained results indicate that with increasing the values of outer radius of plate ( bm
a

 ), 

the buckling load doesn’t obeying a uniform behavior. For selected values of outer radius 

( 1.5,2,3m  ), it is observed that for increasing the value of m from 1.5 till 2,  the buckling load 

increases and then with increasing the m from 2 till 3, the buckling load decreases.  
 

 

 

 

Figure 2: Buckling load of a FGP circular plate for of different values 

of piezoelectric thickness ( e

p

h
h

) in terms of non homogeneous index. 
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Figure 3: Buckling load of a FGP circular plate for different values of outer radius 

( bm
a

 ) in terms of non homogeneous index. 

 

 

 
 

Figure 4: Buckling load of a FGP circular plate for different values of modulus elasticity 

of ceramic ( c

m

E
E

) in terms of non homogeneous index. 
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As another results of this research, the effect of stiffness of material can be considered on the 

results of the problem. This investigation can be performed by employing a dimensionless para-

meter such as ( c

m

E
E

).  This study can be performed for three values of ( 1.9,1.45,1c

m

E
E

 ) and 

in terms of various non homogenous index.         

The obtained results in this figure indicate that the behavior of buckling load versus increasing or 

decreasing the ratio of modulus of elasticity ( c

m

E
E

) is not uniform. With increasing the c

m

E
E

from 1 till 1.45, the buckling load increases and then with decreasing the c

m

E
E

 from 1.45 till 

1.95, the buckling load decreases.  

 
4  CONCLUSION 

Electromechanical stability of a functionally graded circular plate integrated with two functiona-

lly graded piezoelectric layers under radial compressive load has been studied in this paper. All 

mechanical and electrical properties can be varied along the thickness direction. The effect of 

different geometrical and material parameters has been considered on the buckling load of the 

paper. The obtained results in this paper can direct engineers for production of electromechanical 

structures in technical application. This analysis shows that emploting a functionally graded ma-

terial offers various options for optimized design. Evaluation of stability and buckling load is im-

portant for application of the piezoelectric structures in different conditions. The present results is 

applicable for engineer in fabrication of piezoelectric structures as electromechanical elements 

(sensor or actuator). Some important results are expressed as follows: 
 

1.  Investigation on the effect of ratio of thickness e

p

h

h
 on the buckling load of circular plate indi-

cates that with increasing the ratio of thickness e

p

h

h
, the buckling load of plate uniformly decrease.  

 

2.  Investigation on the effect of outer radius of plate ( bm
a

 ) indicates that the buckling load 

for increasing the value of m from 1.5 till 2 increases and then with increasing the m from 2 till 3, 

decreases. The same conclusion may be observed in studying the effect of the ratio of modulus of 

elasticity ( c

m

E
E

).With increasing the c

m

E
E

from 1 till 1.45, the buckling load increases and then 

with decreasing the c

m

E
E

 from 1.45 till 1.95, the buckling load decreases   
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