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Abstract

The objective of this work is to present the implementation of a hard kill material removal
algorithm in a standard BEM formulation. A topological-shape sensitivity approach is used
to select the points showing the lowest sensitivities, where material is removed by opening a
cavity. As the iterative process evolutes, the original domain has holes progressively punched
out, until a given stop criteria is achieved. Benchmarks of two-dimensional elasticity are
presented and analyzed. Because the BEM does not employ domain meshes in linear cases,
the resulting topologies are completely devoid of intermediary material densities. The results
obtained showed that the material removal strategy plays a key role in the generation of
quality results. Although the drawbacks of hard-kill methods are still present, the present
approach opens an interesting field of investigation for integral equation methods, so far
accomplished only within the finite element methods context.

1 Introduction

Topology optimization has been a major research subject in many engineering fields during the
last decades, and a number of numerical methods has emerged to perform this type of compu-
tational design task efficiently. Among these, SIMP (solid isotropic material with penalizaton)
methods are possibly the most used approaches for topology optimization of structures. Since the
early work of Bendsoe & Kikuchi [3] on homogenization methods, several SIMP techniques and
their variants have been developed and successfully used in structural optimization problems [2].
Because SIMP methods deal with variable material densities, the finite element method (FEM)
has became the natural choice for the numerical solution of the equations. Additionally, the
technique is able to generate globally optimal solutions, i.e. microstrutured designs. Although
strictly correct from the mathematical standpoint, this type of solution often fails to generate
engineering designs in a straightforward manner. In order to render a 0-1 (void-material) so-
lution, suboptimal microstructures with penalization of the density gradient are used to avoid
large areas with intermediate material (fig 1).

Since the material distribution is related to the finite element mesh, results obtained through
SIMP methods generally suffer from mesh dependency. Another major drawback of the tech-
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Figure 1: Typical optimization solution obtained with FEM and SIMP methods. (a) Initial
problem; (b) Original solution; (c) Penalized solution.

nique arises when some types of density gradient control are applied, possibly generating checker-
board instabilities that must be avoided in order to attain feasible designs (2).

Another alternative method which has also been under development during the last years
are the topological derivative (TD) or topological-shape sensitivity methods [6, 15, 16]. This
family of methods belongs to the ESO (evolutionary structural optimizaton) type, and aims the
elimination of the material density dependency.

Most of the research on topology optimization has been based on FEM methods (see, for
instance, [7]). The objective of the present work is to apply a recently developed TD approach
with boundary element methods (BEM). A previous BEM methodology developed for heat
transfer problems [8] is extended to elasticity problems. Since the BEM does not need domain
mesh, its use with TD methods renders a fully 0-1 approach, thus avoiding intermediary material
densities and the associated numerical drawbacks. First, a review of the TD formulation adopted
herein is addressed, which is particularized for 2D elasticity. Next, a numerical methodology is
devised to carry out the computational design by an iterative BEM procedure. A number of
examples are solved with the proposed formulation and the results are discussed.

2 A short review of topological-shape sensitivity for 2D elasticity equation

The idea behind topology derivative is the evaluation of a cost function sensitivity to the creation
of a new cavity. Wherever this sensibility is low enough the material can be progressively
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Figure 2: Example of checkerboard instability in optimization solution obtained with FEM and
SIMP methods. (a) Initial problem; (b) original (unstable) solution; (c) controlled solution.

eliminated.
The original concept of topological derivative is related to the sensitivity of a given cost

function ψ when the topology of the analysis domain Ω is changed by inserting a small hole of
radius ε centered on x̂. The local value of the topological derivative at a point x̂ for this case
evaluated by:

D∗
T (x̂) = lim

ε→0

ψ(Ωε)− ψ(Ω)
f(ε)

(1)

where ψ(Ω) and ψ(Ωε) are the cost function evaluated for the original and the changed domain,
respectively, and f is a regularizing, problem dependent, function such that f → 0 when ε → 0.
The major drawback of this concept is that it is not possible to establish an isomorphism between
domains with different topologies, making the evaluation of Eq.(1) rather difficult or impossible
(fig.3).

Feijoo et. al [6] and Novotny et. al [12] circumvented this problem introducing the mathe-
matical idea that the creation of a hole can be accomplished by simply perturbing an existing
one, whose radius tends to zero (Fig. 4). Now both domains have the same topology and it is
possible to establish a mapping between each other:

DT (x̂) = lim
ε→0
δε→0

ψ(Ωε+δε)− ψ(Ω)
f(ε + δε)− f(ε)

(2)

where δε is a small perturbation on the hole’s radius. It is important to note that Eq.(2) is
formally rendering a shape sensitivity character to the original expression, but it can be proven
that the Eqs.(1) and (2) are equivalent. The evaluation of DT is, however, much easier than its
original counterpart D∗

T .
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Figure 3: The original concept of topological derivative. (a) Original domain. (b) Perturbed
domain.

In the present work, the interest rests on the evaluation of DT for problems governed by
the elasticity operator. Following the work of Novotny et. al [12], the topological derivative
equations for linear elasticity will be reviewed. The direct problem is stated as:

Find: {uε |divσε = b} on Ωε (3a)

Subjected to:





uε = ū on Γu

σεn = t̄ on Γt

σεn = 0 on Γε

(3b)
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Figure 4: The modified concept of topological derivative. (a) Original domain. (b) Perturbed
domain.

Let a general form for cost function be written as total strain energy function:

Ψ (uτ ) =
1
2

∫

Ωτ

COτuτ · OτuτdΩτ −
∫

Ωτ

b · uτdΩτ −
∫

Γt

q̄ · uτdΓτ

=
1
2
aτ (uτ ,uτ )− lτ (uτ ) (4)

where τ is the perturbation parameter associated to the shape change velocity (i.e. xτ (x) =
x + τv(x) ). The sensibility of the cost function with respect to τ can be obtained from the
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Gâteaux derivative of the perturbed configuration given by Eq.(4):

d

dτ
Ψ(Ωτ )τ=0 = lim

τ→0

Ψ (Ωτ )−Ψ
(
Ωτ |τ=0

)

τ
= 0 on ∂Γε (5)

After an intensive analytical work, the topological derivative results, in absence of body
loads:

DT (x̂) = − lim
ε→0

1
f ′ (ε)

∫

Γε

1
2ρE

σtt
ε dΓε

Using an asymptotic analysis of the solution uε, the following expression is found:

DT (x̂) =
2

1 + ν
σ · ε+

3ν − 1
2(1− ν2)

trσtrε (6)

which can be particularized for plane strain problems as

DT (x̂) =
2

(1 + ν)(1− 2ν)
σ · ε +

(1− ν)(4ν − 1)
2(1− 2ν)

trσtrε (7)

A similar expression can be derived for the plane stress case. Further details about the
derivation of eqs.(6) and (7) can be found in [6].

3 Numerical methodology

In order to evaluate Eq.(7), the BEM was used in its direct version [4, 5]. Since the evaluation
of physical variables on internal points with the BEM is a post-processing step, the recovery of
local values for DT can be easily implemented. Furthermore, because the BEM shows better
accuracy for the evaluation of boundary variables than other popular methods like the FEM,
it is expected a good performance of the approach for boundary points (which is an important
issue in shape changes).

1. The optimization process is carried in four basic steps (see Fig. 5):

2. The standard BE problem is solved, and the variables are evaluated on a suitable grid of
interior points.

3. The points with the lowest values of DT are selected.

4. Holes are created by removing material areas centered on the previously selected points.

5. Check stopping criteria, rebuild the mesh, and return to step 1, if necessary.

At this point, the desired topology is expected. It is important to stress that, strictly speak-
ing, the punching strategy here adopted is a type of hard-kill method for material elimination.
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Figure 5: BEM iterative procedure for material removal.

This can be an issue in some non-convex problems, when material creation (filling) may occur
simultaneously with material elimination.

It is worth to comment some aspects regarding the step 2. A common drawback in many
shape and topology optimization methods is the progressive lost of symmetry in originally sym-
metric problems. This is related to the numerical evaluation of sensitivities, which are always
prone to round-off and truncation errors. The material removal strategy also has influence on
the final results, since symmetric topologies demand symmetric elimination of material. The
material removal rate has a heavy influence on the computational cost of the analysis. These
issues were faced in the early stages of the present work [8], and three strategies were successively
devised to overcome it:

• Method A: Creation of a single hole per iteration: This is a very crude form of material
removal, and computationally very inefficient. The point with the lowest DT value is used
to create the hole. Besides being unable to create more than one hole at each iteration
(with obvious lost of symmetry), a large number of iterations is necessary to achieve a
given solution.

• Method B: Creation of Nh holes per iteration: This is a natural improvement over
method A, where a preset number of holes is allowed to be created at each iteration. It is
computationally more efficient that its predecessor, but there is no simple way to guarantee
symmetric solutions.

• Method C: It is a cut-off method: This method was devised to try to remove larger areas
of material in each iteration. The ideal solution would be to remove all areas inside the
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isolines at a given level of topological derivative, for each iteration. A simpler shortcut is
to define a cut-off value:

Dcutoff = min
(
Di

T

)
+ ρ

[
max

(
Di

T

)−min
(
Di

T

)]
(8)

where i =1..number of sampling points (internal and boundary points). Therefore, all
points with DT ≤ Dcutoff are used to remove material.

After a number of preliminary tests, the methods B and C were found to be the best ones,
and it was used throughout this work. By selecting suitable values of ρ, the rate of material
removal can be controlled, provided it is not very large. Values in range 0.2% ≤ ρ ≤ 5% proved
to be sufficient for most applications.

4 Numerical results

This section presents a number of cases analyzed using the proposed formulation. These are
initial results, used to test the formulation. Traction free boundary conditions were employed on
the holes. In all cases, the total potential energy was used as the cost function. The total amount
of material removed was checked at the end of each iteration and compared to a reference value
until the desired volume is achieved. All cases used linear discontinuous boundary elements
integrated with 8 Gauss points. The regularly spaced grid of internal points was generated
automatically, taking into account the radius of the holes to be created during each iteration.
The radius was taken as a fraction of a reference dimension of the domain (r = αlref). They may
vary in order to accelerate or decelerate the material removal rate, but usually lref = min(H, L)
was adopted, where H and L are the height and length of the domain. The material volume is
to be minimized in all cases. The current area of the domain (Af ) was checked at the end of
each iteration until a reference value is achieved (Af = βA0, where A0 is the initial value). The
examples shown in this section employed circular holes discretized with six boundary elements.

4.1 Benchmark 1 - Fixed support

In this case a square domain has its left edge clamped and is subjected to a load on its upper
right corner (Fig.6). Holes with fixed radius were used throughout the process (r = 0.025a).

The evolution history is shown in Fig.7, for Nh = 4. The process was halted when Af = 0.4A0

was reached. Figure 8 shows the results obtained for this case when Nh = 8. Both cases delivered
the same topologies, but evidently the solution was much faster in the latter one.

The results of Figures 7 and 8 show clearly that the use of hexagon-shaped holes, along with
internal points meshes not sufficiently refined deliver very irregular boundaries. although not the
main focus of the present work, it is important to note that better results can be obtained with
different punching procedures. This benchmark was re-analyzed using a regularly spaced internal
points mesh and quadrilateral holes. The spacing between the internal points was specified in
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Figure 6: Illustration of benchmark 1.

Figure 7: Optimization history of benchmark 1 – Method B with Nh = 4.

such a way that there is no overlap between two holes. This type of material removal procedure
was tested in heat transfer problems before [8], and results in a tiled pattern for the holes, similar
to FEM designs in SIMP methods. This procedure was developed to remove the jagged edges
of the boundary. Results for r = 0.035a are shown in Fig.9.
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Figure 8: Optimization history of benchmark 1 – Method B with Nh = 8.

Figure 9: Optimization history of benchmark 1 – Method B with Nh = 8 using tile pattern and
rectangular holes.

Latin American Journal of Solids and Structures 5 (2008)
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4.2 Benchmark 2 - Cantilever beam

In this case rectangular cantilever structure has its left edge clamped and is subjected to a load
on its upper right corner (Fig. 10). Three different solution strategies were used to solve this
problem.

Figure 10: Illustration of benchmark 2.

The first solution used r = 0.04a and method C with a fixed value of ρ in Eq.(8). The
evolution history is shown in Fig. 11. Because a larger hole was used, the algorithm eliminated
material very fastly, resulting a slender design with Af = 0.15A0 after 57 iterations.

The second solution used r = 0.03a and method B with Nh = 12. As shown by the evolution
history in Fig. 12, in this case the smaller radius of the holes and the more controlled material
removal provided by method B allowed the formation of internal reinforcement bars, similar to
those also found in FEM solutions [1, 2]. The process was halted in the 40th iteration, when
Af = 0.35A0.

The third solution repeated the last one, but using a slightly more dense internal points
grid. As a consequence, the DT sampling space was enriched and a more refined reinforcement
pattern was found (Fig. 13).

The final design took 32 iterations to reach Af = 0.45A0. This dependence is deeply rooted in
the existence of a global optimum, which is microstructured. As the internal mesh is refined (and
the holes radius decreased) the likelihood of finding a microstructured solution also increases.

This is in good agreement with similar results obtained with the FEM [14], but still suffers
from jagged edges and non-physical appendices. Again, this can be solved by using tiled holes.
Figure 14 exemplifies the results obtained with the tiling procedure which, again, resamble
SIMP-like results.

4.3 Benchmark 3 - Michell truss

In this case refers to the popular Michell truss [11,13]. The geometry, boundary conditions and
loading for this benchmark are depicted in Fig. 15a. Two possible optimal solutions are shown
in Fig. 15b. The theoretical solutions of Fig. 15b have their configurations dependent on the
number of bars used.

This case was initially analyzed with the proposed formulation using method B with r =
0.02a and Nh = 8. The corresponding optimization history is depicted in Fig. 16. This case
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Figure 11: Optimization history of benchmark 2 - Method C with r = 0.04a.
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Figure 12: Optimization history of benchmark 2 - Method B with r = 0.04a and Nh = 12.
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Figure 13: Optimization history of benchmark 2 - Method B with r = 0.03a and Nh = 12.
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Figure 14: Optimization history of benchmark 2 - Method B with r = 0.05a and Nh = 24 using
tile pattern and rectangular holes.

Figure 15: (a) Illustration of benchmark 3. (b) Theoretical optimal solution (Michell truss).
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shows clearly that reinforcement bars result more heavily affected by thin appendices, although
rougly resembling the structure of Fig. 15b. Evidently, the use of the tiling procedure reduces
the effect, as shown in Fig.17.

Figure 16: Optimization history of benchmark 3 - Method B with r = 0.02a and Nh = 8.

5 Additional comments

The results presented in the previous section show clearly that, although useful results can
be obtained with the proposed methodology, it shares the very same problems of most hard
kill methods. If conveniently controled, the designs thus obtained are acceptable, but it may
be virtually impossible to specify a sufficiently general material removal rule regardless the
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Figure 17: Final design of benchmark 3 (iteration 42) - Method B with r = 0.04a and Nh =
8.using tile pattern and rectangular holes.

application. Furthermore, the imposition of restrictions to the problem is rather complex, since
the analytical expressions for DT have been derived without considering them.

A major issue in the present formulation is related to the relative magnitude of the DT

values as the iterative process evolves. After the first few iterations, the gradient of DT along
the domain becomes very low, since the optimal solution has constant DT . Considering that some
areas of the domain may be more affected by modeling and discretization errors than others, a
fine tuning becomes mandatory to avoid material rejection at non-optimal locations. The other
issue is related to the (non-mathematical) stopping criteria used. Specified volume fractions are
relatively easy to implement. In the present approach, the current volume is compared with the
target volume at the end of each iteration, and the process is halted if necessary (this is possible
because the number of holes and the diameters are known during run time). Although useful for
material saving, this criteria is devoid of further information like energy content or compliance
values.

If, by one side, ESO methods like the one presented here show serious limitations, on the other
side one can make interesting usages of DT , particularly in conjunction with other optimization
methods. For instance, if a surface of DT values is contructed, its isolines could be used to
specify a material rejection criteria. Figure 18 shows the case of benchmark 1, where a map of
normalized DT values was plotted for the original domain. All material inside isolines with a
specified treshold value (12%, in the example) was removed by intersecting the DT map with the
original domain. In the first iteration, the areas with the lowest sensitivities are still very clear.
However, since the normalization is kept constant, these areas become less evident in the next
iteration, and the intersection of the isolines (keeping the same treshold value) with the previous
domain results in less material removal. This is expected, as discussed above, and depending
on the treshold value the intersection may not happen at all. However, the domain obtained
after the first iteration can be a good starting point for SIMP methods or a shape optmization
analysis. Figure 19 presents similar results obtained for benchmark 2, and exemplifies the fast
decay in the gradients of DT after the first pass. Although these results present smoother
boundaries than the ones presented in the previous section, finding a general rejection criteria
based solely on treshold values seems an impossible task.
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Figure 18: Designs obtained using DT isolines as a rejection criteria for benchmark 1.

Figure 19: Designs obtained using DT isolines as a rejection criteria for benchmark 2.
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Another point to be highlighted here is possibility of using of post-processing algorithms
to smooth the boundaries obtained not only with the BEM methodology shown here, but also
to eliminate the see-saw aspect of most SIMP approaches reported. Line simplification or line
generalization algorithms encompass a family of tools largely used in cartographic and geographic
applications, and can be used to render topology optimization solutions more close to the actual
manufacturing designs [9, 10].

Finally, it is worth to point out that the tiling scheme generates solutions very similar to
the ones obtained with SIMP methods. Obviously the size of the tiles must be reduced in order
to increase the resolution of the boundaries. This will reflect heavily on the number of internal
points used to evaluate the sensitivities, and consequently will increase the computational cost
of the BEM analysis.

6 Conclusions

The present approach has presented essentially the application of a hard kill strategy for topol-
ogy optimization of 2D elasticity problems using the boundary element method. The relevant
expressions for topological derivative evaluations are reviewed, aiming their implementation
for problems governed by plane stress or plane strain equations. The formulation is derived
by introducing a specially devised iterative material removal procedure in a BEM framework.
Some classical benchmark cases are solved in order to verify the feasibility of the proposed
procedure. Because the BEM does not employ domain meshes in linear cases, the resulting
topologies are completely devoid of intermediary material densities. Two schemes for material
removal are tested, one based on puching out discs of material, and other based on the removal
of non-intersecting tiles of material. While the first generated designs containing very jagged
boundaries, the later produced results very similar to those obtained with SIMP methods. Both,
however, show the well known problems associated with hard-kill methods.

It is important to mention that the topological derivate approach presented herein is not a
well posed problem from the optimization point of view. The cost function (potential energy
density) is not explicitly given, and extensions of the formulation to other types cost function
will demand elaborate analytical derivations. The imposition of constraints also deserves further
investigation.

The presented results proved that the formulation has potential to be used in conjunction
with other optimization methods, but its general application as a standalone method must
be based on a more mathematically established stopping criteria and material rejection rules.
Maybe more important, it opens an interesting field of investigation for integral equation meth-
ods, so far accomplished only within the finite element methods context.
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