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Abstract 

The analysis of cracked brittle mechanical components considering 

linear elastic fracture mechanics is usually reduced to the evaluation 

of stress intensity factors (SIFs). The SIF calculation can be carried 

out experimentally, theoretically or numerically. Each methodology 

has its own advantages but the use of numerical methods has be-

come very popular. Several schemes for numerical SIF calculations 

have been developed, the J-integral method being one of the most 

widely used because of its energy-like formulation. Additionally, 

some variations of the J-integral method, such as displacement-

based methods, are also becoming popular due to their simplicity.  

In this work, a simple displacement-based scheme is proposed to 

calculate SIFs, and its performance is compared with contour inte-

grals. These schemes are all implemented with the Boundary Ele-

ment Method (BEM) in order to exploit its advantages in crack 

growth modelling. Some simple examples are solved with the BEM 

and the calculated SIF values are compared against available solu-

tions, showing good agreement between the different schemes. 
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1 INTRODUCTION 

Numerical methods are necessary to solve many fracture mechanics problems. The Finite Element 

Method (FEM) and the Boundary Element Method (BEM) have become very popular for the anal-

ysis of fracture mechanics in solids. The BEM has been widely used in recent years because it allows 

a very accurate stress analysis along crack faces and modelling of crack propagation without re-

meshing (Aliabadi, 2002). Under a linear elastic approach, fracture mechanics allows the determina-

tion of the stress field at the crack tip using stress intensity factors (SIFs) as a function of the crack 

geometry and loading. 
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 The application of the BEM to fracture mechanics problems was initiated by Cruse through two 

works presented in 1970 and 1971 (Cruse, 1996). These early works reported inaccurate SIF results 

(Aliabadi, 2002). Later, Cruse and Wilson (1977) implemented quarter-point elements to improve 

the accuracy of the BEM calculations, but the method had other difficulties for its application to 

crack problems. In general, these initial applications of the BEM to crack problems were limited by 

the fact that the two surfaces that form the crack were coplanar, generating a mathematical degen-

eration (Cruse, 1996). 

 In the early nineties, Portela et al. (1992) for two dimensions, and Mi and Aliabadi (1992) for 

3D solids, proposed the Dual Boundary Element Method (DBEM) in which a displacement bounda-

ry integral equation (BIE) is applied on a surface of the crack and a traction BIE is applied on the 

other crack surface, thus avoiding the degeneracy in the Kelvin formulation found by Cruse (1996). 

From there, many works have been developed in the area, such as dell'Erba and Aliabadi (2001) 

who developed a DBEM methodology to solve 3D thermo-elasticity problems using the J-integral 

for evaluating the SIF.  Dirgantara and Aliabadi (2002) used the DBEM to obtain mixed mode SIF 

values for cracked thin plates using crack surface displacement extrapolation and the J-integral 

technique. Purbolaksono et al. (2012) calculated the SIF in deformable plates using the DBEM and 

displacement extrapolation techniques. Wen and Aliabadi (2012) developed an algorithm to model 

smooth curve cracks using the DBEM. 

 Several alternative methods have been proposed for calculating SIF values at the crack tip using 

the FEM or the BEM as primary methods to solve the linear elasticity problem, such as: 

 

• Displacement Extrapolation (DE), which consists in extrapolating the numerical displacement 

field with the analytical solution to obtain the SIF. Cruse and Wilson (1978) used the DE with 

quarter-point elements, obtaining reasonable results.  

• Strain Energy Release, which calculates the strain energy of the deformed body or the external 

work done by loads for small crack advances in order to differentiate it and extract the SIF. This 

method was used by Cruse (1988) but was computationally expensive due to the small crack ad-

vance needed to achieve a reasonable accuracy.  

• J-integral, a path-independent integral proposed by Rice (1968), which is a contour integral that 

measures the strain energy flux across its boundary. This technique has been used to compute 

the SIF in many FEM and BEM works, including Rigby and Aliabadi (1998) who proposed a 

decomposition technique to extract the mixed mode SIF, Bezerra and Medeiros (2002) who pro-

posed an alternative numerical scheme to implement the J-integral calculation, Ortiz and Cis-

ilino (2006) who developed a J-integral based methodology for 3D cracks. 

• M-integral, also called interaction integral, a variant of the J-integral used by Walters et al. 

(2005) with the Galerkin BEM to obtain the SIF for 3D curved loaded cracks. 

• Energy Domain Integral, an approach used by Balderrama et al. (2006) that measures the total 

change of potential energy (including thermal strains) when the crack advances.  

• Crack Closure Integral, originally developed for the FEM, which is a stress-based approach to 

extract the SIF by measuring the force needed to close the crack. Singh et al. (1998) developed a 

formulation to be applied with the BEM, obtaining good results.  
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• The Least Squares method was used by Ju (1998) to extract the KIII SIF through a least square 

fit of the stress solution obtained from the FEM.  

• The Generalized Displacement Correlation method, recently developed by Fu et al. (2012) for the 

FEM, uses the displacement solution at crack surfaces for an explicit calculation of the mixed 

mode SIF. 
 

In this work, a new displacement-based technique is proposed to calculate SIFs for different geomet-

ric configurations using the DBEM. Different schemes are proposed to be used with this new tech-

nique, and numerical results are compared with those obtained using the J-integral technique in 

order to compare their accuracy and computing performance. 

 
2 THE BOUNDARY ELEMENT METHOD  

The formulation of the BEM is based on Betti’s reciprocal theorem where the following integral 

equation relating displacements u with tractions t for the boundary S is used (Becker, 1992),  
 

 

where ��� = ��� 2⁄  for smooth surfaces, with  ��� the Kronecker delta, ��� and 	�� are traction and 
displacement kernels for the displacement integral equation,  p is the collocation point and Q is a 

generic boundary point.  

 The boundary geometry is discretized using quadratic elements (adopted in this work) and then 

Eq. (1) is written for each node, generating a square system of equations after known boundary 

conditions are applied. 

 However, for a cracked body, the crack geometry schematized in Figure 1, defined by S�� and S�, 
has the same nodal coordinates if the crack faces are coplanar. This generates an ill-posed problem 

since Eq. (1) written for the S�� nodes is linearly dependent on the S� equations. To overcome this 
issue, Portela et al. (1992) developed the DBEM for two-dimensional problems.  
 

 

Figure 1: Cracked body geometry. 
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The DBEM consists on applying Eq. (1) to the non-crack boundary S and one crack face � , while 
the traction integral equation below is applied on the other crack face � �, 
 12 ����� + ����� � �"����, ���"����#�$ = ����� � %"����, ���"����#�$  (2) 

 

This will result in a well-posed system of equations that can be solved to obtain displacement and 

tractions fields over the boundary. In Eq. (2),  �"�� and %"�� are traction and displacement kernels 
for the traction integral equation. 

 The kernels for Eq. (1) and Eq. (2) are shown below (Aliabadi, 2002). The different singular 

behaviors of the integrands require special treatment to obtain meaningful and accurate results. 
 

 

 
 

 

 

 

 

 

 

 

 

  

In this work, the DBEM implementation is done using isoparametric quadratic elements; regular 

integration is performed using Gauss quadrature, and the Cauchy principal value and the 

Hadamard finite-part regularization are used to evaluate the kernels with singular integrals. 

 
3 STRESS INTENSITY FACTORS 

The validity of the linear elastic fracture mechanics (LEFM) assumption resides in the small scale 

yielding hypothesis, meaning that plastic strains are only developed, at the crack tip, in a small 

region compared to the whole geometry, thus they can be neglected since their contribution to the 

global response is negligible. The stress and displacement fields are given by,  
 

 	�� = − 18'μ�1 − )� *�3 − 4)�-� .1/0 ��� + /,�/,�1 (3) 

 ��� = − 14'�1 − )�/ 23/3� 4�1 − 2)���� + 2/,�/,�5 − �1 − 2)�6/,��� − /,���78 (4)    
 %"����, �� = 14'�1 − )� .1/0 9�1 − 2)� :��" 3/3;� + ��" 3/3;� − ��� 3/3;"< + 2 3/3;�

3/3;�
3/3;"= (5) 

 �"����, �� = >2'�1 − )� . 1/?0 @�� 92) 3/3;�
3/3;" + �1 − 2)���"= + �� *2) 3/3;�

3/3;" + �1 − 2)���"1
+ �" 92�1 − 2)� 3/3;�

3/3;� − �1 − 4)����=
+ .3/3�0 9�1 − 2)���� 3/3;" + ) :��" 3/3;� + ��" 3/3;�< − 4 3/3;�

3/3;�
3/3;"=A 

(6) 
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where B is the shear modulus, C = 3 − 4) for plane strain and C = �3 − )� �1 + )�⁄  for plane stress, 

in accordance with the crack geometry coordinate system shown in Figure 2 (Gross and Seelig, 

2011). 
 

 
 

Figure 2: Crack tip coordinate system. 

  

Now, the fracture mechanics problem with the LEFM approach is reduced to the determination of 

stress intensity factors. The easiest way to calculate the SIF is by obtaining stress values directly at 

the crack tip, but this task is unsuitable since numerical results near the crack tip are generally 

imprecise. 

 
4 COMPUTATION TECHNIQUES FOR SIFS 

In order to obtain stress intensity factors for cracked bodies, the classic approach begins by calculat-

ing the stress field near the crack tip and extrapolating the results to the crack tip with Eq. (7). 

This approach leads to numerical inaccuracies due to the singular behavior of the stress field near 

the crack tip, which is usually underestimated in the elastic solution of the problem by numerical 

methods including the BEM (Cruse, 1996). 

 

4.1  The J-Integral 

The J-integral is a contour integral that measures the strain energy flux across its boundary. Set-

ting the integration contour far from the crack tip, the strain and stress fields can be accurately 

computed to evaluate the contour integral and obtain the SIF values. The J-Integral for plane prob-

lems is calculated as follows: 

 
DEE
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DEE
EEE
F−�T� QR2S :2 + �OP QR2S �OP .3R2 0<

�T� QR2S �OP QR2S �OP .3R2 0
�OP QR2S :1 − �T� QR2S �T� .3R2 0< IJJ

JJJ
K (7) 
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The relationship between J and the SIF for the LEFM approach is given by  

 
 

  

A circumferential integration contour centered at the crack tip is defined to implement the J- inte-

gral technique, as shown in Figure 3. The contour is discretized into quadratic elements (Bezerra 

and Medeiros, 2002) parameterized with an intrinsic variable (z). After some manipulations of Eq. 

(9), the integrand is rewritten in quadratic form as a function of the displacement gradient as,  
 

 

 

 

 
 

Figure 3: Contour integral discretization.  

 
The first array in Eq. (11) corresponds to the constitutive matrix that relates stresses to defor-

mations, where [ and > are Lame´s parameters, while the second array contains the arrangement 
for the contour outward normal. The contour integration is parameterized by means of the Jacobian \� and the J-integral can be evaluated by the summation of the values at the Gauss points ��]� 
times their weights ^� for each element of the contour �_. 
 The gradient of the displacement field � (∇�), defined below, is written in vector form and can 
be decomposed into its symmetric and anti-symmetric parts using the method proposed by Rigby 

and Aliabadi (1998) to obtain LM, 

 \ = �6	��H − G����,H7���#  (9) 

 \ = 1ab 6LM? + LMM?7 + 12B LMMM? (10) 

 
\ = c c
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4.2  Displacement-based methods 

Displacement extrapolation 

From the displacement field solution, the easiest way to obtain the SIF is by using the displacement 

extrapolation method (DE). This could be accomplished by taking the nearest crack tip opening 

displacement value obtained immediately after solving the problem and using Eq. (13) to retrieve 

the SIF directly (Aliabadi, 2002), 

 

   

This technique is very efficient because the numerical solution at crack nodes is immediately availa-

ble from the BEM and no internal nodes need to be evaluated. 

 The displacement field near the crack tip is well behaved and can be retrieved with good accura-

cy using the BEM even at the crack tip, but the DE results are very sensitive to displacement nu-

merical errors.   

 

Displacement fitting 

The displacement field given in Eq. (8) is valid at any point near the crack tip because it only in-

cludes the leading term √/ of the power series. However, from the complete crack tip solution, it is 
known that the next term in the power series is /, which must be included in the approximation in 
order to consider its contribution to the displacement field accompanied with a R function, as 
shown in Eq. (14) below 

 

   

An internal or surface mesh with an arbitrary set of nodes, as shown in Figure 4, can be used to 

apply this methodology; the displacement field can be retrieved using Eq. (1) at each of the nodes 

from the BEM solution. 
 

Figure 4: Nodes for displacement fit. 

 h��i� = *3�H3; 3�H3t 3�?3; 3�?3t 1 (12) 

 LM = u2'/ B�C + 1� v∆�?�/�w LMM = u2'/ B�C + 1� v∆�H�/�w (13) 

 U�H�?V = LM2B√2' √/ *]HM�R, C�]?M�R, C�1 + LMM2B√2' √/ *]HMM�R, C�]?MM�R, C�1 + / *xH�R�x?�R�1 (14) 
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The displacement field can be decomposed to decouple the SIF in Eq. (14), in order to take ad-

vantage of its symmetry properties (Aliabadi, 2002). The decomposition can be carried out using 

Eq. (15). For the given set of twelve internal nodes in Figure 4, the displacement field (modes I and 

II) is known from the BEM numerical solution. The position of these nodes in the crack tip coordi-

nate system is also known. 

 

  

Writing Eq. (14) in matrix form, separating unknowns from geometric parameters, the following 

equation is obtained  
 

 

The / coefficients in Eq. (14) are considered as unknown. The numerical displacement field for each 
node is equaled to Eq. (14) considering the idea of the DE method. This leads to a system of equa-

tions with four unknowns (LM , LMM , �H, �?), 
 

  

The system of equations (17) is solved through the least square method. Renaming the terms in Eq. 

(17) gives, 

The fitting solution is retrieved using the pseudo-inverse approach as the equation system is linear, 

as follows,  
 

 U�H
�?VM = 12 U�H� + �H

�?� − �?V
U�H
�?VMM = 12 U�H� − �H

�?� + �?V (15) 

 U�H�?V = 12B√2' 9√/]HM�R, C� √/]HMM�R, C� / 0√/]?M�R, C� √/]HMM�R, C� 0 /= X LyLyy�1�2
Y (16) 
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EE
F�HH
�?H

⋮
�H$
�?$IJ

JJ
JJ
JJ
K

= 12B√2' DEE
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JK X LMLMM�H�?
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 v	w = 12B√2' v{w X LMLMM�H�?
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 X LMLMM�H�?
Y = 2B√2'v�{|{�H{|w}	~ (19) 
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Thus, LM and LMM can be retrieved from a completely arbitrary node distribution, by fitting the nu-
merical solution to the analytic field. This procedure is suitable to the BEM where the internal so-

lution for the displacement field is easily calculated in a post-processing routine using Eq. (1), which 

is more efficient than evaluating the stress integral equation needed in the J-integral calculations. 

 
5 METHODOLOGY 

5.1  General 

In order to compare the performance and accuracy of the different schemes for calculating the SIF, 

six examples are solved and compared with their respective reference solutions, which can be found 

in Tada et al. (1985) for specimen cases, Shahani and Tabatabaei (2008) for the FPB specimen and 

in API 579-1/ASME FFS-1 (2007) for cylinder cases. The material properties are set to a =200B�� and ) = 0.3 to solve the linear elasticity problem. 
 The geometries are generated and meshed using an automatic crack growth algorithm developed 

in MatLab. All geometries were modelled from a relation varying from a/t=0.1 until a/t=0.6. LM 
values are calculated at each crack growth step using the following schemes:  
 

• J-integral: Evaluated using four symmetric elements and a contour radius of one element 

length to guarantee a straight crack inside the integrating contour. 

• Displacement Fitting Technique (DFT). The following schemes were used to fit the solu-

tion considering that this technique could be applied to any arbitrary set of nodes: 

o Surface nodes (S nodes): In the crack tip element, there are three boundary nodes because 

the element is quadratic as shown in Figure 5. Displacements are directly available from the 

BEM solution and the DFT can be used to calculate the SIF. 

 

 
 

Figure 5: Surface nodes for displacement fit. 

 

o Contour nodes (J nodes): The nodes resulting from the discretization of the circular con-

tour to evaluate the J-integral are taken as follows: a node belongs to the surface of the crevice 

and the remaining nodes are internal (see Figure 6). These nodes are evaluated using Eq. (1), ob-

taining another particular approach to apply the DFT. 

 

;H 

;? 
Crack Nodes 

/ 
Crack 
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Figure 6: Contour nodes for displacement fit. 

 

o  Internal nodes (M nodes): A symmetric mesh with twelve internal nodes is used for cal-

culating the SIF (Figure 7). Several internal nodes at different angles and radius are used. 

 

 

 
 

Figure 7: Internal nodes for displacement fit. 

 

 

Six different geometries are evaluated to determine the performance of the numerical schemes used 

in this work. The values obtained are compared to the corresponding reference solutions. The com-

parison is carried out using the following expression: 

 

 
 

  

 % a//O/ = ��O-�s� − �O-$���O-�s� � × 100 (20) 
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5.2  Single Edge Notched Tension (SENT) 

A SENT geometry is solved with dimensions � = 1� and � = 3� as shown in Figure 8 with an 
initial crack length �� = 0.1� and a crack growth advance of ∆� �⁄ = 0.05. The boundary condi-
tions and loads are also schematized with the BEM contour mesh.  

 
 

 
 

Figure 8: SENT schematic. 
 

 

5.3  Three and Four Point Bend (TPB and FPB) 

As a second case, a TPB specimen is modelled using the dimensions � = 1� and � = 4� (keeping 
the relation � �⁄ = 4). On the other hand, the FPB specimen is solved using the dimensions � = 1�, � = 6� and � = 1.5�. An initial crack length �� = 0.1� is also used and a crack growth 
vance ∆� �⁄ = 0.05 is established. The boundary conditions and loading are also schematized in the 
BEM contour meshes shown in Figure 9. 
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Figure 9: TPB and FPB schematic. 

 

 

5.4  Compact Specimen (CS) 

The CS geometry is modelled with the required dimensions for the experimental testing given by 

ASTM E647. However, some simplifications are carried out to model the CS, e.g. the loading pin 

holes are neglected and the tensile load is directly applied as shown in Figure 10. The geometry 

thickness is set to � = 1�, �$ = 0.2�, � = 1.2�, and the initial crack length �� = 0.2�.  
 

 
 

Figure 10: CS schematic. 

 

5.5 Thick and Thin Walled Cylinders (CYL1 and CYL50)  

Finally, a thick walled cylinder (Z� �⁄ = 1) and a thin walled cylinder �Z� �⁄ = 50� are modelled, 
both with an infinite long radial crack subjected to internal pressure (Figure 11). The boundary 
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conditions are defined at symmetry planes and a pressure loaded crack is located at an angle of 45º 

measured from the ends. The thickness is set to � = 1� and the initial crack length is  �� = 0.1�. 
 

 

 
 

Figure 11: CYL schematic. 

 
6 RESULTS 

6.1  Single Edge Notched Tension (SENT) 

Results obtained for the SENT geometry are shown in Figure 12. The  LM values calculated with the 
J-integral method and the DFT applied with the different schemes used (S-nodes, J-nodes and M-

nodes) are compared with the respective reference solution.  
 

 
Figure 12: SENT results. 
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First, the general response of the  LM behavior is well retrieved by both approaches (the J-integral 
and DFT). On the other hand, comparing the numerical results versus the reference solution by 

means of Eq. (20), a numerical error lesser than 2% is obtained for all the proposed schemes except 

for the S-nodes approach for small cracks. This difference could be attributed to numerical errors 

associated to the closeness of the crack tip. Nevertheless, the other DFT results are in very good 

agreement with the reference solution.  

 Figure 13 shows the deformation pattern of the SENT geometry. 

 
Figure 13: Deformed shape of SENT geometry for � �⁄ = �. �. 

 

6.2  Three Point Bend (TPB) 

Figure 14 shows the results for the TPB specimen. There,  LM has a sharper behavior compared with 
the SENT results, but all the schemes successfully capture this response. In this case, the J-integral 

method gives more accurate results compared with displacement based ones, although a difference 

lesser than 4% is found. The S-nodes scheme again produced the highest differences for small crack 

sizes (a/tL0.4). These differences are attributed to the model and the boundary closeness, leading to 

the conclusion that the S-nodes scheme is very sensitive to this error.   

 The geometry deformation pattern is shown in Figure 15, where the symmetry of the solution 

and the crack opening mode could be appreciated. 

 

 
Figure 14: TPB results. 
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Figure 16 shows the results for the FPB specimen. In this example, the crack opening mode II is the 

most important, and LMM values are also calculated and compared to the reference solution (Shahani 
and Tabatabaei, 2008). In this example, for small cracks, the J-integral method gives more accurate 

results compared with displacement based ones. For longer cracks, the displacement based methods 

show comparable precision to the J-Integral. 

 

 
Figure 15: Deformed shape of TPB geometry for � �⁄ = �. �. 

 

 
Figure 16: FPB results. 

  
In Fig. 17, a non-symmetric displacement behavior leading to a crack opening mode II is observed. 

 

 
Figure 17: Deformed shape of FPB geometry for � �⁄ = �. �. 
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6.3  Compact Specimen (CS) 

Figure 18 shows the results obtained for the CS geometry. The J-integral method has a higher dif-

ference (almost 7%) to the reference solution; this difference is due to the effect of the initial notch, 

which is not considered in the reference solution and is mitigated for longer cracks. In this example, 

the DFT results are more accurate than the J-integral results, with the exception of the S-node 

scheme. These results justify the simplification made to the original CS geometry.  The compact 

specimen displacement solution is plotted in Figure 19. 

 

 

 
Figure 18: TPB results. 

 

 

 
Figure 19: Deformed shape of CS geometry for � �⁄ = �. �. 
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The thick walled cylinder is a more complicated geometry because of its configuration and loading, 

and a finer mesh is needed to achieve convergence. Results for this geometry are shown in Figure 

20, using the reference solution obtained from the API 579 standard for comparison.  
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Figure 20: CYL1 results. 

 
The pressure load acting at the inner cylinder face lead to a symmetric load with respect to the 

crack surface as can be seen in Figure 21. The crack growth mode is LM since the crack grows 
straight for this load case. 

 

 
 

Figure 21: Deformed shape of CYL1 geometry for � �⁄ = �. �. 
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cylinder, the symmetry is well retrieved and the displacement variation through the thickness is 

negligible.  
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Figure 22: CYL50 results. 

 

 

6.6 Computing time 

The performance of the different schemes in terms of computing time and accuracy is analyzed in 

the context of the BEM. After solving the elasticity problem, boundary displacements and tractions 

are known and the solution at any internal point can be retrieved in a post-process routine by 

means of Eq. (1). 
 

 
 

Figure 23: Deformed shape of CYL50 geometry for � �⁄ = �. �. 
 

The specific SIF calculations for each scheme are small compared to the calculation time of the 

internal points, and proportional to the number of evaluating points. Figure 24 shows a comparison 

between the schemes where the number of required evaluating points and internal points for each 
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Figure 24: Computing load for the different schemes

  

The faster scheme corresponds to S nodes because this scheme only uses information from boundary 

nodes, which are directly available from the BEM solution, followed by J nodes and M nodes, which 

require less internal points than the J integral. The time spent in the evaluation of internal points 

depends of many factors, but is independent of the SIF calculation method.

 The accuracy of the schemes, however, is inversely proportional to the computation time. The 

most accurate scheme is the J-integral, closely followed by fitted M nodes and J nodes. S 

less accurate than the other schemes as can be seen in

the different test specimens is shown.  

 It is noteworthy that the accuracy is proportional to the number of evaluating points. All 

schemes studied give good accuracy and can be used to estimate

vantages and is suitable for implementation in the BEM as has been demonstrated. The proposed 

methodology is also applicable to FEM models. 

Figure 25: Mean relative error for the different schemes
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7 CONCLUSIONS 

In this work, different techniques for evaluating stress intensity factors (SIF) in cracked bodies were 

compared by solving six different geometries using the BEM. The J-integral and three different new 

schemes based on the Displacement Fitting Technique (DFT) have been developed for the BEM: 

Surface nodes (S nodes), Contour nodes (J nodes) and Internal nodes (M nodes).  

 The comparison carried out showed that the J-integral and the M-node method are the most 

accurate techniques. In terms of efficiency, the computing time of the J-integral method is the high-

est, due to the calculation of displacement gradients, compared with the displacement-based 

schemes whose computing time in the BEM context is proportional to the number of internal 

points. The faster scheme corresponds to the DFT with surface nodes, but it is also the least accu-

rate, concluding that a compromise between accuracy and speed need to be assessed to select the 

appropriate scheme. 

 The BEM showed to be an efficient tool for solving fracture problems independently of the 

scheme used for the calculation of the SIF. 
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