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Creating wave-focusing materials

A.G. Ramm∗

Department of Mathematics, Kansas State University – Manhattan, USA

Abstract

Basic ideas for creating wave-focusing materials by injecting small particles in a given
material are described. The number of small particles to be injected around any point is
calculated. Inverse scattering problem with fixed wavenumber and fixed incident direction
of the plane acoustic wave is formulated and solved.
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1 Introduction

This paper contains the results presented at the author’s plenary talk at the IPDO-2007 sym-
posium on inverse problems, design and optimization. A method for creating materials with a
desired refraction coefficient is given. This coefficient, in particular, may be chosen so that the
new material has a desired wave-focusing property (see also [2–13]).

We want to investigate the following problem. Let D be a bounded domain filled with a
material whose properties are known, for example, a homogeneous material with known speed
propagation of sound waves. Can one inject into D small particles in such a way that the
resulting new material would have some desirable wave-focusing properties? For example, is it
possible to create in this way a material that scatters an incident plane wave in a desired solid
angle?

There is a large engineering and physical literature on creating “smart” materials. Photonic
crystals, quantum dots, coating, are some key words. However, there seems to be no prior work
which deals with the question posed above.

In this paper this question is studied rigorously: the “smallness” of the particles is specified,
the number of these particles around the point x is specified, the role of the shapes of these
particles is explained, and the notion of wave-focusing is made precise.

The basic results of this paper are:

1) It is proved that the injection of a suitable number of small, acoustically soft particles in a
given bounded region, filled by some material with known properties, allows one to create
a new material such that its scattering amplitude is arbitrarily close to a given scattering
amplitude.
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2) A method is given to calculate the density N(x) of small particles, to be injected in a unit
volume around a point x ∈ D, in order that the new material has the scattering amplitude
close to the desired scattering amplitude.

3) For the first time the problem of finding a compactly supported potential q(x) which
generates the scattering amplitude A(β) := A(β, α, k), approximating an arbitrary fixed
given function f(β) ∈ L2(S2) with any desired accuracy is formulated and solved. Here
the wavenumber k > 0 and the incident direction α ∈ S2 are fixed, S2 is the unit sphere
in R3.

In Section 2 detailed statements of the problems are given. In Section 3 the inverse scattering
problem with fixed wavenumber k > 0 and fixed incident direction α ∈ S2 is discussed.

In Section 4 the ill-posedness of the above problems is discussed.
For engineers the paper gives a “recipe” for creating materials with a desired refraction

coefficient. No such receipes were given earlier, to the author’s knowledge, although there were
many papers (see book [1] and references therein) in which an effect of embedding small spheres
or ellipsoids into a homogeneous material on the effective dielectric and magnetic properties of
the material was discussed, and the new material was a homogenized material. Homogenization
in the literature was studied mostly for elliptic positive-definite operators, while we study wave
propagation and the corresponding operator is not positive-definite.

Another principal difference between this paper and the earlier published results consists
in the statement of the problem: we are not considering the distribution of small particles,
embedded into the material, as uniform or random, but solve a design problem of creating
materials with a desired refraction coefficient.

Moreover, we give (see also [10–12]) a precise recipe for creating such material for practically
arbitrary refraction coefficient.

The two technological (engineering) problems to be solved for this recipe to be practically
implemented, can be formulated precisely as well:

a) How does one practically embed in a given material many small particles given the number
of the particles per unit volume around every point of the original material?

b) How does one prepare practically small particles with a desired boundary impedance?

In this paper we consider small particles with the Dirichlet boundary condition, correspond-
ing to acoustically soft particles. Problem b) will arise if one considers the small particles on
the boundary of which an impedance boundary condition is imposed. Varying the boundary
impedance as a function of positions of particles, one can create refraction coefficients with the
desired absorption properties. This was discussed in more detail in [12].
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2 Statement of the problem and some results

Consider a bounded domain D ⊂ R3 with a smooth boundary S. The scattering of a plane wave
on this domain is described by the equations

[∇2 + k2n2
0(x)]u = 0 in D, k = const > 0, (1)

u = eikα·x + A0(β, α, k)
eikr

r
+ o

(
1
r

)
,

r := |x| → ∞, β :=
x

r
.

(2)

Here α ∈ S2 is given, A0(β, α, k) is the scattering amplitude, k > 0 is fixed throughout the
paper, n2

0(x) > 0 is a given function, the refraction coefficient, n2
0(x) = 1 in D′ := R3\D, n2

0(x)
is piecewise-continuous. The function n2

0(x) describes the material properties of the region D.
Problem (1)–(2) has a unique solution u ∈ H2

loc(R
3), where H2

loc(R
3) is the Sobolev space.

Equation (1) can be written as a Schrödinger equation

[∇2 + k2 − q0(x)]u = 0, q0(x) := k2[1− n2
0(x)],

q0 = 0 in D′. Suppose that M small acoustically soft particles (bodies) Dm are injected into
domain D. Smallness means that ka << 1, where a is the characteristic size of the small
bodies. One may define a := 1

2 max1≤m≤M diamDm. Assume that the boundaries Sm of Dm are
uniformly Lipschitz, i.e., the Lipschitz constant does not depend on m. Acoustically soft means
that u|Sm = 0, where u can be interpreted as acoustic pressure.

The scattering problem in the new region can be formulated as follows:

[∇2 + k2n2
0(x)]U = 0 in R3 \

M⋃

m=1

Dm, (3)

U|Sm = 0, 1 ≤ m ≤ M, (4)

U = u+AM (β, α, k)
eikr

r
+ o

(
1
r

)
,

r →∞,
x

r
= β,

(5)

where u solves (1)-(2). One can replace (5) by the following:

U = eikα·x + A(β, α, k)
eikr

r
+ o

(
1
r

)

r →∞,
x

r
= β.

(6)

From (2), (5) and (6) one gets A = A0 +AM .
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Since n2
0(x) is known, A0 is known.

Problem (3)-(5) has a unique solution.
Problem 1 is to show that one can distribute sufficiently large number M of small particles

in D in such a way that A(β, α) := A(β, α, k), k > 0 is fixed, will approximate in L2(S2) an
arbitrary fixed scattering amplitude f(β, α) with any desired accuracy. We consider also the
following problem.
Problem 2: Can one distribute small particles in D so that the resulting new material would
have the scattering amplitude A(β) (k > 0 and α ∈ S2 are both now fixed), which approximates
in L2(S2) an arbitrary given function f(β) ∈ L2(S2) with any desired accuracy?

If A(β, α) := A(β, α, k) (k > 0 is fixed) is a scattering amplitude, known for all β, α ∈ S2,
then one can find the unique, corresponding to A(β, α), potential q(x) by the Ramm’s method
[2,3]. This method gives a stable approximation of q even in the case when noisy data Aδ(β, α)
are given, supβ,α∈S2 |A(β, α)−Aδ(β, α| < δ.

If q(x) is found from A(β, α), then we define p(x) := q−q0(x) and prove that p(x) = N(x)C0,
where N(x) is the number of small particles per unit volume around a point x, i. e. , the spatial
density of the number of the particles, and C0 is the electrical capacitance of a small conductor
of the same shape as the particle. Here we assume that all the small particles are identical, but
this assumption can be dropped (see [4, 6] ).

Let us summarize: If one injects small particles with the spatial density N(x) = p(x)
C0

, where
p(x) := q(x)− q0(x), then the resulting new material will have practically the desired scattering
amplitude A(β, α), corresponding to a potential q(x).

This gives a solution to Problem 1. Note that the scattering amplitude A(β, α), ∀β, α ∈ S2,
corresponding to a real-valued potential q ∈ L2(D), determines q uniquely. Since q0(x) is known,
the function

N(x) =
q(x)− q0(x)

C0

gives an approximate solution to Problem 1. This solution is not exact because we did not pass
to the limit

M →∞, ka → 0,
a

d
→ 0,

but took just sufficiently small identical particles with C0 being electrical capacitance of the
perfect conductor of the same shape as a single particle.

The number of small particles per unit volume is O( 1
d3 ). Their volume per unit volume of

the original medium is O(a3

d3 ). This quantity tends to zero as a
d → 0. The capacitance per unit

volume is O( a
d3 ). Thus, the limit of the ratio a

d3 is finite and non-zero, while the limit of the
relative volume of the injected small particles is zero because a3

d3 tends to zero.
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3 Inverse scattering with fixed k and α

Our solution to Problem 2 is based on the idea used in Section 2 in solving Problem 1. Given
f(β), we find q(x) ∈ L2(D), such that the corresponding to q scattering amplitude Aq(β) (k > 0
and α ∈ S2 are fixed) approximates f(β) with a desired accuracy: ‖f(β) − Aq(β)‖L2(D2) < ε,

where ε > 0 is an a priori given small number. If such a q is found, then N(x) = q(x)−q0(x)
C0

as in
Section 2. The principally novel problem is finding q from f(β) and ε. This problem has many
solutions, as we prove. However, a priori it is not at all clear if this problem has a solution.
Let us outline our solution to this problem. First, recall the well-known exact formula for the
scattering amplitude:

Aq(β) = − 1
4π

∫

D
e−ikβ·xq(x)u(x)dx,

where u(x) is the scattering solution,

[∇2 + k2 − q(x)]u = 0 in R3,

u = u0 + Aq(β)
eikr

r
+ o(

1
r
), r →∞,

β = x
r , u0 := eikα·x, α ∈ S2 and k > 0 are fixed, u(x) = u(x, α, k). Denote h(x) = q(x)u(x).

Then
Aq = − 1

4π

∫

D
e−ikβ·xh(x)dx,

where Aq is the scattering amplitude, corresponding to the potential q. Given f(β) and ε > 0,
however small, one can find (many) h such that

‖f(β) +
1
4π

∫

D
e−ikβ·xh(x)dx‖L2(S2) < ε. (7)

The function h can be found, for example, as a linear combination hn =
∑n

j=1 cjϕj(x), where{ϕj}
is a basis of L2(D). If n is sufficiently large and cj are found from the minimization problem

‖f +
n∑

j=1

cj

4π

∫

D
e−ikβ·xϕj(x)dx‖L2(S2) = min,

then (7) holds. In [6] another, analytical, solution to (7) is given.
If h = hε(x) is found, then q(x) can be found from the nonlinear equation h = qu. This

equation for q is nonlinear because the scattering solution u = u(x; q) depends nonlinearly on q.
One has

u(x) = u0(x)−
∫

D
g(x, y)q(y)u(y)dy, (8)
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where u0 = eikα·x and g := eik|x−y|
4π|x−y| . Let

q(x) :=
h(x)

u0(x)− ∫
D g(x, y)h(y)dy

. (9)

If the right side of (9) is an L2(D) function, then (9) solves our inverse scattering problem.
Indeed, define

u(x) := u0(x)−
∫

D
g(x, y)h(y)dy.

This u solves (8) with q defined in (9). The scattering amplitude

Aq(β) = − 1
4π

∫

D
e−ikβ·xh(x)dx.

By (7) one has
‖f(β)−Aq(β)‖L2(S2) < ε.

So, Problem 2 is solved if (9) defines an L2(D) function. This, for example, is the case if

inf
x∈D

|u0(x)−
∫

D
g(x, y)h(y)dy| > 0.

If formula (9) defines a non-integrable function due to possible zero sets of the function

ψ(x) := u0 −
∫

D
g(x, y)h(y)dy,

then, as we prove, a suitable small perturbation hδ of h in L2(D)-norm will lead to a function

qδ :=
hδ

ψδ
∈ L2(D),

where
ψδ = u0 −

∫

D
g(x, y)hδ(y)dy,

and ‖h−hδ‖L2(D) < δ. Since the function − 1
4π

∫
D e−ikβ·xhδ(x)dx differs a little from the function

− 1
4π

∫
D e−ikβ·xh(x)dx, condition (7) is satisfied if h is replaced by hδ and ε by, for example, 2ε.

Therefore
Nδ(x) :=

qδ(x)− q0(x)
C0

solves Problem 2 in the case when (9) is not an L2(D)-function.
Let us explain how to choose hδ. First, without loss of generality one can assume h to be

analytic in D = D
⋃

S, because analytic functions (even polynomials if D is bounded) are dense
in L2(D). If h is analytic, so is ψ(x) in D. Therefore the null set of ψ,

N := {x : ψ(x) = 0, x ∈ D},
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is generically a line defined by two equations

ψ1 := Reψ = 0, ψ2 := Imψ = 0.

Let
Nδ := {x : |ψ| < δ, x ∈ D},

and Dδ := D\Nδ. Generically |∇ψ| ≥ c > 0 on N and, by continuity, this inequality holds in
Nδ (possibly with a different c > 0). Small perturbation of h leads to these generic assumptions.

Define

hδ =
{

h in Dδ,

0 in Nδ,

qδ :=

{
hδ(x)

u0−
∫

D g(x,y)hδ(y)dy
in Dδ,

0 in Nδ.

(10)

Then qδ ∈ L2(D) and

Nδ(x) :=
qδ(x)− q0(x)

C0

solves Problem 2.
Let us check that qδ ∈ L2(D). We prove more: qδ ∈ L∞(D). It is sufficient to check that

inf
x∈Dδ

|ψδ(x)| =

inf
x∈Dδ

|u0(x)−
∫

Dδ

g(x, y)h(y)dy| ≥ cδ > 0,
(11)

because qδ = 0 in Nδ by the definition.
Choose the origin on N and make a change of variables

s1 = ψ1(x), s2 = ψ2(x), s3 = x3. (12)

The Jacobian of this transformation of variables is non-singular because ∇ψ1 and ∇ψ2 are
linearly independent on N and in Nδ. We have

max
x∈Nδ

(|J |+ |J−1|) ≤ c,

c > 0 stands for a generic constant independent of δ. Let us check that

|ψδ(x)| ≥ cδ in Dδ.

We have
|ψδ(x)| ≥ |ψ(x)| − I(δ),

where
I(δ) =

∫

Nδ

|g(x, y)h(y)|dy.
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If x ∈ Dδ, then |ψ| ≥ δ, and
|ψδ(x)| ≥ δ − I(δ).

Moreover, maxy∈D |h| ≤ M and, using the new variables (12), one gets

I(δ) ≤ c

∫

ρ≤δ
dρ ρ

∫ 1

0

ds3√
s2
3 + ρ2

,

because the region Nδ can be described by the inequalities

ρ2 = s2
1 + s2

2 ≤ δ2, 0 ≤ s3 ≤ 1,

and we have used the estimate |J−1| ≤ c in Nδ. Integral

I(δ) = O(δ2| ln δ|) as δ → 0.

Thus
|ψδ| ≥ δ −O(δ2| ln δ|) ≥ cδ

with some constant c ∈ (0, 1). This justifies our method for solving Problem 2 in the case when
formula (9) does not yield q ∈ L2(D).

4 Ill-posedness of problems 1 and 2

Both Problems 1 and 2 are ill-posed. Since the ill-posedness of Problem 1 has been discussed in
great detail in [2, 3], we discuss only the ill-posedness of Problem 2.

In Problem 2 one has to find h, given f and ε > 0, so that (7) holds. This is an ill-posed
problem, similar to solving the first kind integral equation

Bh := − 1
4π

∫

D
e−ikβ·xh(x)dx = f(β)

for h. If this equation is solvable for a given f , it may be not solvable if f is replaced by a slightly
perturbed function fδ. If ε > 0 in (7) is small and f is not in the range of B, then ‖h‖L2(D)

is large. This leads to large maximal values of the corresponding q. Therefore any numerical
method for solving Problem 2 has to use a regularization procedure. In [13] one can find some
numerical results related to Problem 2 and a description of the regularization procedure which
was used.
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