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Abstract 

Natural frequencies are important dynamic characteristics of a 
structure where they are required for the forced vibration analysis 
and solution of resonant response. Therefore, the exact solution to 
free vibration of elastically restrained Timoshenko beam on an 
arbitrary variable elastic foundation using Green Function is pre-
sented in this paper. An accurate and direct modeling technique is 
introduced for modeling uniform Timoshenko beam with arbitrary 
boundary conditions. The applied method is based on the Green 
Function. Thus, the effect of the translational along with rotation-
al support flexibilities, as well as, the elastic coefficient of Winkler 
foundation and other parameters are assessed. Finally, some nu-
merical examples are shown to present the efficiency and simplici-
ty of the Green Function in the new formulation. 
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1 INTRODUCTION 

Free vibration analysis has an important role in the structural design of buildings. In fact, the free 
vibration behavior of structures influences their response to earthquake and wind. Numerous studies 
are devoted to obtaining the free vibration analysis of civil engineering constructions both in the 
past and recent years (Carrera and Pagani, 2014). On the other hand, structures resting on founda-
tion are an important class of problems in civil engineering. Therefore, numerous researches are 
presented pertaining to reports involving the calculation and analysis approach for beams and 
plates on foundation. These various types of foundation models include such as Winkler, Pasternak, 
Hetenyi, Kerr, Vlasov and Viscoelastic that are applied in the analysis of structures on elastic foun-
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dations (Mahrenholtz, 2010; Wang et al., 2005). The Winkler foundation model is frequently used 
in the analysis of structures on elastic foundation problems.  
 The natural vibrations of a Timoshenko beam on Pasternak foundation is studied by Wang and 
Stephens (Wang and Stephens, 1977). Moreover, the appropriate frequency equations are derived 
for different end restraints. Wang and Gagnon present the dynamic analysis of the continuous Ti-
moshenko beams on Winkler-Pasternak foundations (Wang and Gagnon, 1978). The free and forced 
vibrations of a three span continuous beam resting on a Winkler-Pasternak foundation are studied 
by means of the general dynamic slope-deflection equations. In addition, the natural response of an 
Euler-Bernoulli beam supported by an elastic foundation is investigated by Doyle and Pavlovic 
(Doyle and Pavlovic, 1982). Ultimately, this paper considers the vibration problem of Euler-
Bernoulli beam partially supported by a Winkler foundation. Abbas utilized the free vibration of 
the Timoshenko beam using the unique finite element model (Abbas, 1984). All the geometric and 
natural boundary conditions of Timoshenko beam with elastically supported ends can satisfy by the 
proposed method. Natural frequencies and normal modes of a spinning Timoshenko beam for the six 
classical boundary conditions are analytically solved by Zu and Han (Zu and Han, 1992). The 
backward and forward precession normal modes have become identical for beam with simply-
supported boundary conditions. The vibration of uniform Euler-Bernoulli beam on a two-parameter 
elastic foundation with initial stress is investigated by Naidu and Rao (Naidu and Rao, 1995). Fur-
thermore, the finite element formulation is applied to obtain the vibration parameter of simply sup-
ported and clamped beams. 
 Thambiratnam and Zhuge presented the free vibration analysis of beams supported on elastic 
foundations by a simple finite element method (Thambiratnam and Zhuge, 1996). An accurate solu-
tion of Timoshenko beam resting on two-parameter elastic foundation is exhibited by Wang et al. 
(Wang et al., 1998). In this study, the Green function is presented for bending, buckling, and vibra-
tion problems of Euler–Bernoulli and Timoshenko beams. Li applies a simple approach for the free 
vibration analysis of Euler-Bernoulli beam with general boundary conditions (Li, 2000). The dis-
placement of the beam is determined as the linear combination of a Fourier series and an auxiliary 
polynomial function. Ying et al. investigated the precise solutions for free vibration and bending of 
functionally graded beams on a Winkler–Pasternak elastic foundation (Ying et al., 2008). The beam 
is considered as orthotropic at any point, while material properties varying exponentially along the 
thickness direction. In addition, the differential transform method is applied to the vibration of an 
Euler–Bernoulli and Timoshenko beam on an elastic soil by Balkaya et al. (Balkaya et al., 2009). In 
this method, precise solutions are obtained without the requirement for serious calculations. 
 Motaghian et al. studied the free vibration of Euler-Bernoulli beam on Winkler foundation 
(Motaghian et al., 2011). A mathematical approach is used to find the precise analytical solution of 
the free vibration of Euler-Bernoulli beam with mixed boundary conditions. The double Fourier 
transform is employed for the free vibration analysis of the semi-rigid connected Reddy–Bickford 
beam with variable cross-section on elastic soil and under axial load by Yesilce and Catal (Yesilce 
and Catal, 2011). Bayat et al. presented the analytical study on the vibration frequencies of tapered 
beams (Bayat et al., 2011). The Max-Min Approach and Homotopy Perturbation Method are em-
ployed in order to solve the governing equations of tapered beams. Thus the nonlinear vibration of 
the clamped-clamped Euler-Bernoulli beam subjected to the axial loads is investigated by Barari et 
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al (Barari et al., 2011). Xing and Wang explained a general model for the free vibration of the Eu-
ler-Bernoulli beam restrained with two rotational and two transversal elastic springs under a con-
stant axially load (Xing and Wang, 2013). In this paper, an analytical approach is used to find the 
frequency equations and the shape functions. Ratazzi et al. considers free vibrations of Euler-
Bernoulli beam system structures with elastic boundary conditions and an internal elastic hinge 
(Ratazzi et al., 2013). The beam system is clamped at one end and elastically restrained at the oth-
er. Furthermore, the free vibration of the Euler-Bernoulli beam with variable cross-section on elastic 
foundation and under axial load is considered by Mirzabeigy (Mirzabeigy, 2014). Bazehhour et al. 
utilized a new analytical solution for the free vibration of the rotating Timoshenko shaft with vari-
ous boundary conditions (Bazehhour et al., 2014). The effect of the axial load on the natural fre-
quencies is investigated as the rotational speed increases. At the same time, the numerical method 
for solution of the free vibration of Timoshenko beams with arbitrary boundary conditions is pre-
sented by Prokić et al. (Prokić et al., 2014). Basically, the numerical method is based on numerical 
integration rather than the numerical differentiation. Yayli et al. (Yayli et al., 2014) investigated 
the analytical method for free vibration of the elastically restrained Euler-Bernoulli beam on elastic 
foundation. The Fourier sine series with the Stoke’s transformation is used to obtain the free vibra-
tion response of the beam on elastic foundation. 
 In previous studies regarding free vibration of the beam rested on a foundation, the Euler–
Bernoulli and Timoshenko beams on uniform foundation are analyzed. On the other hand, only the 
solution taken from few previous researchers can be generalized to general boundary conditions for 
Euler–Bernoulli beam on uniform foundation. In this study, an accurate solution in closed forms is 
presented for free vibration behavior of elastically restrained Timoshenko beam on an arbitrary 
variable Winkler foundation and under axial load. The Green Function method is utilized to evalu-
ate the free vibration of the Timoshenko beam. Furthermore, the free vibration expression for the 
Timoshenko beam is written in a general form. Hence, the computation becomes more efficient. 
Also, through the application of the Green function method, the boundary conditions are embedded 
in the Green functions of the corresponding beams. Therefore, the objective of this paper is: 
 

• To present a very simple and practical analytical–numerical technique for determining the 
free vibration of Timoshenko beams, with elastically restrained boundary conditions, rested on a 
partial Winkler foundation and under axial load. 
• To state precise solutions in closed forms using the Green function for free vibration of the 
Timoshenko beam with and without the partial Winkler foundation along with the axial load. 

  

This article is organized as follows. Section 2 outlines the basic equations of the Timoshenko beam 
resting on the uniform elastic foundation. Then, in section 3, the Green function and the natural 
frequency equation of the elastically restrained Timoshenko beam on an arbitrary variable Winkler 
foundation and under axial load are explained. Section 4 presents some numerical examples to illus-
trate the efficiency of the Green Function in the new formulation. Finally, in section 5, the conclu-
sions are drawn, briefly. 

 
2 MODELLING OF TIMOSHENKO BEAM ON WINKLER FOUNDATION 
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In this paper, it is supposed that a Timoshenko beam on elastic foundation where it is partially 
restrained against translation and rotation at its ends. The model of elastic foundation is assumed 
as Winkler foundation, as shown in Figure 1. KTL, KTR, KRL and KRR are the transverse and rota-
tional elastic coefficients at the supports at the left and right boundary ends, respectively. Thus, the 
coupled system of differential equations for the vibration of the uniform Timoshenko beam can be 
given by: �����,� −	,��
 + 	
�		,�� − �	,�� + ��	 = ���, ��	 (1) 

��	�,�� + ���	�	,� − �
 − 
�	�,�� = 0	 (2) 
 

where w(x,t) is the transverse deflection of the mid-surface of the beam, θ�x, t� represents the anti-
clockwise angle of rotation of the normal to the mid-surface, q�x, t� is the external load force on the 
beam. In addition, I, A, E, G, N, � and 
 are, the second moment of area, the cross-sectional area 
of the beam, the Young’s modulus of elasticity, the shear modulus, the axial load, the sectional 
shear coefficient, and the beam material density, respectively. It is assumed that each function w�x, t�, θ�x, t� and q�x, t� can be presented as a product of a function dependent on the coordinate x 
and a function dependent on the time t (with the same time function): 
 	��, �� =  ���		!�"�#$�� (3) 

���, �� = %���		!�"�#$�� (4) 

���, �� = &���	!�"�#$�� (5) 
 

where W�x�, Θ�x� and Q�x� are the beam deflection amplitude, the amplitude angle of rotation of 
the normal to the mid-surface in point x of the Timoshenko beam and the external load on the 
beam, respectively. In addition, ω is the circular frequency of the Timoshenko beam. Substituting 
Eqs. (3), (4) and (5) into Eqs. (1) and (2), result in: 
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                                                                                      L 
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Figure 1: Timoshenko beam with general boundary conditions resting on Winkler foundation. 



A. Ghannadiasl and M. Mofid / An Analytical Solution for Free Vibration of Elastically Restrained Timoshenko Beam      2421 

Latin American Journal of Solids and Structures 12 (2015) 2417-2438 

 

�−κ�� − ��� ,�� + ��� − 
�$)� + κ��Θ,� = Q��� (6) ��	Θ,�� +	�
�$) − κ��	�Θ + κ�� ,� = 0 (7) 
 

For a linear elastic, isotropic, homogeneous and uniform Timoshenko beam, these two equations can 
be combined after several transformations. The vibration equations for Timoshenko beam can be 
expressed in a form dependent only on the functions of the displacement w(x, t): 
 

�� *1 + �����, ,���� + -
�$) − �����	 ��� − 
�$)� + �� .
�$)��� − 	1/0 ,��
− ��� − 
�$)� .
�$)��� − 1/ = − �����	 &,����� − .
�$)��� − 	1/&���		

(8) 

�� *1 + �����,	Θ,���� + -
�$) − �����	 ��� − 
�$)� + �� .
�$)��� − 	1/0Θ,��
− ��� − 
�$)� .
�$)��� − 1/Θ = Q,1��� (9) 

 

For tension N1 > 0 , as well as, for compression, one is required to apply N1 < 0. It is to be noticed 
that when N1 and K6 are equal to zero, the expression given by Eqs. (8) and (9) does reduce to the 
differential equations of the motion which are obtained by Ghannadiasl and Mofid (Ghannadiasl 
and Mofid, 2014). In this paper, the initial conditions and the general boundary conditions associat-
ed with the Timoshenko beam theory are given below: 
 ∀�	@	� = 0			 ∶ 	:�0, �� = �;<	��0, ��                      	&�0, �� = −�=<		�0, ��  
∀�	@	� = >			 ∶ 	:�>, �� = −�;; 	��>, ��                  	&�>, �� = �=;		�>, ��  
∀� ∶ 																					
�	�,� 	?�@|�B� = 0                               
�		,� 	?	@|�B� = 0 

 
where M and Q are the bending moment (M = EI	θ,1) and the shear force (Q = −κAG�w,1 − θ
), 
respectively (Wang, 1995).  

 
3 GREEN FUNCTION FOR TIMOSHENKO BEAM 

The Green function is utilized to find the solution for Eqs. (8) and (9). Therefore in this case, if 
G(x,u) was the Green function for the submitted problem, the solution of Eq. (8) can be exhibited 
in the form of: 
 

 ��� = κ�� − 
�$)���κ�� + ���I &�J�	���, J�KJ
<
L  (10) 

 

where G�x, u�, the Green function for the Timoshenko beam must satisfy the boundary conditions. 
Hence, the Green function, G(x,u), is the solution of the differential equation: 
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�,���� + 
�$) − NOPQR	 ��� − 
�$)� + �� STOUVPQR − 	1W�� S1 + XYZQRW �,�� + S1 − TOU
V

ZQR W ��� − 
�$)��� S1 + XYZQRW � = ?�� − J�	 (11) 

where δ�x − u� is the Dirac delta function which is defined as: 
 

?�� − J� = \	+∞							#]	� = J
		0									#]	� ≠ J @ 

 

By applying the relationships between the individual physical quantities, Eqs. (10) and (11) can be 
written as the following: 
 

 ��� = 1 − _)`)a)���1 + ba)�I &�J�	���, J�KJ<
L  (12) 

�,���� + .α2�_2 − d� − b1 + bα2 + _2`2/ �,�� + �1 − _2`2α2��d − _2�1 + bα2 � = ?�� − J�	 (13) 

 

where ϕ is the parameter proportional to the natural frequency (ϕ) = ωVf	ghi 	), α	, the parameter 

proportional to the rigidity of the beam (α) = hiZgj), r, the radius of gyration of the beam cross sec-

tion (r) = ig), γ	, the parameter proportional to the axial load Sγ = mnhiW, and η	is the parameter pro-

portional to the elastic coefficient of Winkler foundation Sη = pqhi W. The free vibration equation of 

uniform Timoshenko beam on Winkler foundation and under axial load can be obtained in the form 
of: 

�,���� + 2	_2"1�,�� + _2"2� = 0	 (14) 

where: "1 = 1
2 S`2 − 1

_2
α2�d−_2�+b
1+bα2 W  

 

"2 = 1
_2
�1−_2`2α2��d−_2�

1+bα2   

 

The general solution of Eq. (14) can be stated as: 
 G��� = rs sin�_ws�� + r) cos�_ws�� + rz sinh�_w)�� + r| cosh�_w)�� (15) 
 

where x ∈ [0, L], λs and λ)	 are calculated as: 
 

w1 = �"1 +�"12 − "2_2  (16) 
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w2 = �−"1 + �"12 − "2_2  (17) 

 Cs, … , C| are the integration constants that are evaluated such that the Green function satisfies two 
boundary conditions at each end of the beam depending on the type of end support and the conti-
nuity conditions of displacement, slope and moment along with the shear force.  
 In this paper, the Timoshenko beam divides into three segments with the different elastic coeffi-
cient of Winkler foundation. It can be possible to write the differential equation of the free vibration 
of each segment. Therefore, the general solution for the first segment can be stated as: 
 

GL��� = r1> sin�_w1>�� + r2> cos�_w1>�� + r3> sinh�_w2>�� + r4> cosh�_w2>�� (18) 
 

where x ∈ [0, β�L], λs� and λ)�	 are calculated as: 
 

w1> = �"1> + �"1>2 − "2>_2   (19) 

w2> = �−"1> + �"1>2 − "2>_2   (20) 

 

where  

"1> = 1
2 S`2 − 1

_2
α2�d>−_2
+b1+bα2 W  

 

"2> = 1
_2
�1−_2`2α2��d>−_2
1+bα2   

 

where η� is equal to 
pq�hi . For the middle section, the general solution of free vibration takes the 

form of the following equation: 
 

GC��� = r1r sin�_w1r�� + r2r cos�_w1r�� + r3r sinh�_w2r�� + r4r cosh�_w2r�� (21) 
 

where x ∈ �β�L, L�β� + β��], λs� and λ)�	 are calculated as: 
 

w1r = �"1r +�"1r2 − "2r_2   (22) 

w2r = �−"1r +�"1r2 − "2r_2   (23) 
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where in ps� and p)�, η� is equal to 
pq�hi  . Similarly, it is possible to develop the general solution of 

free vibration for the last section of the Timoshenko beam: 
 

GR��� = r1� sin�_w1��� + r2� cos�_w1��� + r3� sinh�_w2��� + r4r cosh�_w2��� (24) 
 

where x ∈ �L�β� + β��, L], λs� and λ)�	 are calculated as: 
 

w1� = �"1� + �"1�2 − "2�_2   (25) 

w2� = �−"1� +�"1�2 − "2�_2   (26) 

 

where in ps� and p)�,  η� is equal to 
pq�hi  . Cs� − C|� , Cs� − C|� and Cs� − C|� are the constant 

unknowns of the three above-mentioned solutions. In order to find these unknowns, it is required to 
develop twelve equations. Moreover, in which are explicitly obtained using two boundary conditions 
at each end of the beam depending on the type of end support and the continuity conditions of 
displacement, slope and moment along with the shear force in the vicinities of the different segment 
connections. The boundary conditions are given below: 
 

1s�_2`2α2 S�_2�`2 + α2� − α2	d>
�>,��0� + �1 + α2	b��>,����0�W + ��>�� �L�0� 	 = 0  (27a) 

�1 + α2	b��>,���0� + α2�_2 − d>
�L�0� − ��>�� �_2α4−α4	d>+1
	�>,��0�+α2�1+α2	b��>,����0�s�_2`2α2 	 = 0  (27b) 

1s�_2`2α2 S�_2�`2 + α2� − α2	d�
��,��>� + �1 + α2	b���,����>�W − ����� �R�>� 	 = 0  (27c) 

�1 + α2	b���,���>� + α2�_2 − d�
�R�>� + ����� �_2α4−α4	d�+1
	��,��>�+α2�1+α2	b���,����>�s�_2`2α2 	 = 0  (27d) 

 

Also, the continuity conditions are defined as:  
 �L��>>� 	 = �C��>>�	 (28a) 

�>��>>� 	 = �r��>>�	 (28b) 

:>��>>� 	 = :r��>>�	 (28c) 

&>��>>
 = &r��>>
 (28d) 
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and 
 

�C��>> + �r>� 	 = �R��>> + �r>�	 (29a) 

�r��>> + �r>� 	 = ����>> + �r>�	 (29b) 

:r��>> + �r>� 	 = :���>> + �r>�	 (29c) 

&r��>> + �r>
 = &���>> + �r>
 (29d) 

 

By applying the relationships between the individual physical quantities and the Green function, 
the continuity conditions can be rewritten as follows: 
 

S�_)α| − α|	d< + 1��<,���<>� − �_)α| − α|	d� + 1���,���<>�W+ α)�1 + α)	b� S�<,�����<>� − ��,�����<>�W = 0 
(30a) 

�1 + α)	b� S�<,����<>� − ��,����<>�W +																												 																											α)��_) − d<�����<>� − �_) − d������<>�
 	= 0	 (30b) 

S�_)�`) + α)� − α)	d<��<,���<>� − �_)�`) + α)� − α)	d����,���<>�W+ �1 + α)	b� S�<,�����<>� − ��,�����<>�W = 0 
(30c) 

 

and 
 

S�_)a| − a|	d� + 1���,���<> + ��>� − �_)a| − a|	d; + 1��;,���<> + ��>�W 	+ 	a)�1 + a)	b� S��,�����<> + ��>� − �;,�����<> + ��>�W = 0	 (31a) 

�1 + a)	b� S��,����<> + ��>� − �;,����<> + ��>�W+ a)��_) − d������<> + ��>� − �_) − d;��;��<> + ��>�
 	= 0		 (31b) 

S�_)�`) + α)� − α)	d����,���<> + ��>� − �_)�`) + α)� − α)	d;��;,���<> + ��>�W 	+ �1 + α)	b� S��,�����<> + ��>� − �;,�����<> + ��>�W = 0 
(31c) 
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Finally, the matrix equation is given as: 
 

��
��
��
��
��
��
��
�s,s �s,) �s,z �s,| 0 0 0 0 0 0 0 0�),s �),) �),z �),| 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 �z,� �z,sL �z,ss �z,s)0 0 0 0 0 0 0 0 �|,� �|,sL �|,ss �|,s)��,s ��,) ��,z ��,| ��,� ��,� ��,� ��,� 0 0 0 0��,s ��,) ��,z ��,| ��,� ��,� ��,� ��,� 0 0 0 0��,s ��,) ��,z ��,| ��,� ��,� ��,� ��,� 0 0 0 0��,s ��,) ��,z ��,| ��,� ��,� ��,� ��,� 0 0 0 00 0 0 0 ��,� ��,� ��,� ��,� �|,� �|,sL �|,ss �|,s)0 0 0 0 �sL,� �sL,� �sL,� �sL,� �sL,� �sL,sL �sL,ss �sL,s)0 0 0 0 �ss,� �ss,� �ss,� �ss,� �ss,� �ss,sL �ss,ss �ss,s)0 0 0 0 �s),� �s),� �s),� �s),� �s),� �s),sL �s),ss �s),s)��

��
��
��
��
��
� 

��
��
��
��
��
��
�rs<r)<rz<r|<rs�r)�rz�r|�rs;r);rz;r|;��
��
��
��
��
��
 

	=

��
��
��
��
��
��
�000000000000��
��
��
��
��
��
 

	 (32) 

 

where the coefficient matrix [A¡,¢] is cited in the Appendix. The nontrivial solution to Eq. (32) is 

obtained from the condition where the main matrix determinant is equal to zero. Furthermore, the 
Green function for free vibration of the Timoshenko beam that is obtained by the above procedure 
has a general form. By moving close to the spring constants of the rotational and translational re-
straint to extreme values (zero and/or infinity), the suitable Green function can be attained for the 
desired combinations of end boundary conditions (i.e. simply supported, clamped and free boundary 
conditions). For example, the natural frequency equation for a general Timoshenko beam with elas-
tic end restraints	�K�� = K�� = K�	and	K¥� = K¥� = K¥�	resting	on	a uniform Winkler elastic foun-
dation (K6� = K6� = K6�) and under axial load is given by:  
 ¨#©�_ws>� �2�s ª«¨ℎ�_w)>� + �) ¨#©ℎ�_w)>��

+ 2 ª«¨�_ws>� �­s��z ª«¨ℎ�_w)>� − �| ¨#©ℎ�_w)>��
+ ­z��� ª«¨ℎ�_w)>� + �� ¨#©ℎ�_w)>��
 + �� = 0	

(33) 

where 
 

�1 = �;�� ­s­��­)­z − ­s­�� + �=�� .­)­|�­� − ­|� + ­z�­)­z − ­s­�� *�;��,
)/ + ­� �;�� *�=��,

) �­� − ­|�	
	

�) = ­)) *�=��,
) ®�­| − ­��) + *�;��,

) �­�) − ­z)�¯ + 2­)­��; *�;�� ­s­z + �=�� ­|, + .­|) − *�;��,
) ­z)/

− ­s) .­�) + *�;��,
) ­�)/ − 2�;�� �=�� ­s­z­�	

	
�z = ­� �;�� �=�� �­| − 2­�� − ­)­|­�	
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�| = �;�� ­)­|­� + �=�� .*�;��,
) ­�) + ­�) − ­|­�/	

	

�� = �=�� *­)�­� − 2­|� − �;�� �=�� ­�,	
	

�� = ­))­| + �;�� �=�� ­)­� + *�=��,
) �­| − ­��	

	

�� = 2*­s­| + �;�� �=�� ­z, *­)­� + �;�� �=�� ­�,	
	

­s = _ws1 − `)a)_) �­| + `)_)�	
	

­) = _w)1 − `)a)_) �­� + `)_)�	
	

­z = _ws1 − `)a)_) �1 + a)­|�	
	­| = a)�−d + _)� − �1 + a)b�_)ws)	
	

­� = _w)1 − `)a)_) �1 + a)­��	
3	­� = a)�−d + _)� + �1 + a)b�_)w))	

 

Although the frequency Eq. (33) is complicated and long, it can be simulated by all the boundary 
conditions that are appeared in previous studies and practical situations, which have not been pos-
sible to describe before. After finding the natural frequencies, the mode shape corresponding to each 
natural frequency can be generated. Three of the constant unknowns in the shape function (Eq. 
(15)) can be solved by three equations of boundary conditions at each end of the beam. The coeffi-
cients in mode shape function for a uniform Timoshenko beam on a uniform Winkler elastic founda-
tion with classical end conditions are listed in Table 1. Here, C), Cz and C| are solved by the three 
equations of Eq. (27). On the other hand, Cs is assumed to be non-zero in order to demonstrate 
vibration amplitude. 

 
4 NUMERICAL RESULTS 

In this section, to validate the presented Green Function, the results of different examples, which 
are solved by the new formulations, are presented. First, the high computational efficiency of the 
method is shown and then it is examined for feedback with general boundary conditions. 
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End boundary 
conditions 

Cs C)* Cz* C|* 
Pined-pinned 1 0 − °¡±�²³´<�°¡±µ�²³V<�  0 

Fixed-fixed 1 − °¡±�²³´<��¶·¶¸ °¡±µ�²³V<�¹º°�²³´<��¹º°µ�²³V<�   − »·»¸  °¡±�²³´<��¶·¶¸ °¡±µ�²³V<�¹º°�²³´<��¹º°µ�²³V<�   

Fixed-pinned 1 − °¡±�²³´<�¹º°�²³´<�  − ¹º°µ�²³V<�°¡±µ�²³V<� °¡±�²³´<�¹º°�²³V<�  °¡±�²³´<�¹º°�²³´<�  

Fixed-free 1 
¶V¶·¶¸ 	°¡±µ�²³V<��»´ °¡±�²³´<�»V ¹º°µ�²³V<��»´ ¹º°�²³´<�   − »·»¸  ¶V¶·¶¸ 	°¡±µ�²³V<��»´ °¡±�²³´<�»V�º°µ[<¼)²]�»´�º°[<¼s²]   

Pinned- fixed 1 0 − »·»¸ ¹º°�²³´<�¹º°µ�²³V<�  0 

Free - fixed 1 
¹º°�²³´<�½ ¾V¶¿¾´¶À¶V ¹º°µ�²³V<�°¡±�²³´<�½	¶´¶¸¶V¶· °¡±µ�²³V<�   − »¿»À  −DsD)

cos�ϕλsL� + ¼V»¿¼´»À»V cosh�ϕλ)L�sin�ϕλsL� +	»´»¸»V»· sinh�ϕλ)L� 	
 
 

*   Ds = _)�a) − ws)
 − a)d   D) = _)�a) + w))
 − a)d    Dz = ws�a)Ds + 1�    

    D| = w)�a)D) + 1�     D� = ws�Ds + `)_)�  D� = w)�D) + `)_)�    
 

Table 1: The coefficients in mode shape function for Timoshenko beams on a uniform 

Winkler elastic foundation and without axial load for classical boundary conditions. 

 
4.1 The Timoshenko Beam on the Uniform Winkler Foundation Under Constant Axial Load 

In order to illustrate the accuracy of the presented method in this paper, a uniform Timoshenko 
beam on the uniform Winkler elastic foundation and under constant axial load with two different 
boundary conditions, i.e. simply supported–simply supported (S–S) and clamped–simply supported 
(C–S), are considered (Figure 2). The beam is supposed with the following characteristics: 
 

_Â = $�TR<¸NO      
ÃV<V = 0.01    `) = iR 

 
 

 

 

 

 

 

 

 

 

                  a. Simply supported beam         b. Clamped – simply supported beam 
 

Figure 2: Timoshenko beams on the uniform Winkler foundation and under constant axial load  
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υ = 0.25     κ = 2/3     � = N)�s½υ�     
��< = ��� = ��; = ��   �� = −	0.6	Æ) NO<V  
 

Table 2 compares the frequency parameters of free vibration of the simply supported–simply sup-
ported and clamped–simply supported Timoshenko beam resting on the uniform Winkler founda-
tion and under axial load using the Green Function method along with the differential quadrature 
element method (Malekzadeh et al., 2003). It is seen that the results are fairly close and the maxi-
mum difference is 0.057%. It is informed from Table 2 that the first mode of the Timoshenko beam 
on the uniform Winkler elastic foundation and under constant axial load is more sensitive to the 
elastic coefficient of Winkler foundation. At the same time, it can also be seen that the maximum 
difference of the first, the second and the third frequency parameter for the simply supported beam 

with and without the uniform Winkler foundation (K6 = 0.8	π| hi�V) are approximately 167.44%, 

9.39% and 2.94%, respectively. On the other hand, the maximum difference of the first, second and 
third frequency parameter for the clamped–simply supported beam with and without the uniform 

Winkler foundation (K6 = 0.8	π| hi�V) are approximately 54.80%, 8.05% and 2.82%, respectively. 

 

� � M
od

e 

Simply supported Clamped – simply supported 

Present study 
(%Error) 

Malekzadeh et al. 
(Malekzadeh et 

al., 2003)  

Present study 
(%Error) 

Malekzadeh et al. 
(Malekzadeh et 

al., 2003) 

0 

1 3.46648 (0.101) 3.47 7.32425 (0.058) 7.32 

2 19.2209 (0.005) 19.22 20.9311 (0.005) 20.93 

3 35.0792 (0.002) 35.08 35.7458 (0.012) 35.75 

0.2	Æ| NO<V  
1 5.52398 - 8.50792 - 

2 19.6879 - 21.3650 - 

3 35.3404 - 36.0005 - 

0.4	Æ| NO<V  
1 7.00019 - 9.54555 - 

2 20.1439 - 21.7900 - 

3 35.5996 - 36.2532 - 

0.6	Æ| NO<V  
1 8.21469 (0.057) 8.21 10.4806 (0.008) 10.48 

2 20.5896 (0.002) 20.59 22.2068 (0.014) 22.21 

3 35.8568 (0.009) 35.86 36.5041 (0.011) 36.50 

0.8	Æ| NO<V  
1 9.27091 - 11.3384 - 

2 21.0257 - 22.6157 - 

3 36.1122 - 36.7532 - 

 

Table 2: The frequency parameters (ϕÉ) of free vibration of Timoshenko beams on the uniform  

Winkler elastic foundation and under constant axial load  
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4.2 The Influence of the Axial Load and the Elastic Foundation on the Frequency of Timoshenko Beam  

As an interesting application of the present method, the influence of the elastic coefficient of Win-
kler foundation and the axial load on free vibration characteristics of simply supported Timoshenko 
beam is evaluated. The beam characteristics are as follows: 
 

υ = 0.3
     

κ = 0.85   

Ã< = 0.05	    _Â = $�TR<¸NO    

 

Variation of the first frequency parameter (ϕÉ� of free vibration of Timoshenko beam is shown in 
Table 3. In addition, it is evident from the obtained values of the frequency parameter that the 
natural frequencies will increase when the values of K6 and N1 increase. The influence of axial load 
would be more significant when the stiffness of the Winkler foundation is coming close to zero. 
However, the effect of the axial load would be less significant when the value of the stiffness of the 
Winkler foundation is coming close to 	π| hi�V.  
 
4.3 The Influence of the Spring Supports on the Frequency of the Timoshenko Beam 

Resting on the Partial Winkler Foundation 

For verification of the efficacy of the present method, the influence of the spring supporting the 
behavior is evaluated based on free vibration characteristics of Timoshenko beam partially support-
ed on a Winkler foundation (Figure 3). For this purpose, a Timoshenko beam is assumed with gen-
eral boundary conditions, KT and KR. The stiffness of the rotational and the translational restraint 
are taken as having the same values at both of the supports. The beam characteristics are as fol-
lows: 
 ��� = Æ| NO<V    ��< = ��; = 0    β� = β� = β� = >/3 

N1 = 0     υ = 0.30
    

κ = 0.85 

 

 

                                                                                                                                                                                                            

 
  

                    KR                                                                                                                                                                                                                 KR 

 

                                  KT                                                                                                                                                        KT 

                                                           KWC 

 
 

 

                                                                                                     

                                          L/3     L/3    L/3 
 

 

 

Figure 3: Timoshenko beam with general boundary conditions partially supported on Winkler foundation. 
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N 1*	

π)EI L),	 K6�	π| hi�V�  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

-1.0 0.000 1.687 3.519 4.682 5.609 6.403 7.108 7.750 8.343 8.896 9.417 

-0.9 1.687 3.519 4.682 5.609 6.403 7.108 7.750 8.343 8.896 9.417 9.910 

-0.8 3.519 4.682 5.609 6.403 7.108 7.750 8.343 8.896 9.417 9.910 10.380 

-0.7 4.682 5.609 6.403 7.108 7.750 8.343 8.896 9.417 9.910 10.380 10.830 

-0.6 5.609 6.403 7.108 7.750 8.343 8.896 9.417 9.910 10.380 10.830 11.262 

-0.5 6.403 7.108 7.750 8.343 8.896 9.417 9.910 10.380 10.830 11.262 11.677 

-0.4 7.108 7.750 8.343 8.896 9.417 9.910 10.380 10.830 11.262 11.677 12.079 

-0.3 7.750 8.343 8.896 9.417 9.910 10.380 10.830 11.262 11.677 12.079 12.467 

-0.2 8.343 8.896 9.417 9.910 10.380 10.830 11.262 11.677 12.079 12.467 12.844 

-0.1 8.896 9.417 9.910 10.380 10.830 11.262 11.677 12.079 12.467 12.844 13.210 

0 9.417 9.910 10.380 10.830 11.262 11.677 12.079 12.467 12.844 13.210 13.566 

0.1 9.910 10.380 10.830 11.262 11.677 12.079 12.467 12.844 13.210 13.566 13.913 

0.2 10.380 10.830 11.262 11.677 12.079 12.467 12.844 13.210 13.566 13.913 14.252 

0.3 10.830 11.262 11.677 12.079 12.467 12.844 13.210 13.566 13.913 14.252 14.583 

0.4 11.262 11.677 12.079 12.467 12.844 13.210 13.566 13.913 14.252 14.583 14.906 

0.5 11.677 12.079 12.467 12.844 13.210 13.566 13.913 14.252 14.583 14.906 15.223 

0.6 12.079 12.467 12.844 13.210 13.566 13.913 14.252 14.583 14.906 15.223 15.533 

0.7 12.467 12.844 13.210 13.566 13.913 14.252 14.583 14.906 15.223 15.533 15.837 

0.8 12.844 13.210 13.566 13.913 14.252 14.583 14.906 15.223 15.533 15.837 16.135 

0.9 13.210 13.566 13.913 14.252 14.583 14.906 15.223 15.533 15.837 16.135 16.428 

1.0 13.566 13.913 14.252 14.583 14.906 15.223 15.533 15.837 16.135 16.428 16.715 

 

Table 3: Variations of the first modal frequency parameter of free vibration of Timoshenko 

beam on uniform Winkler elastic foundation and under axial load 
 

ÃV<V = 0.01	   _Â = $�TR<¸NO     

KTL = KTR = KT   KRL = KRR =KR 

 

The frequency parameter (_Â� of free vibration of Timoshenko beam with and without partially sup-
ported on Winkler foundation is demonstrated in Table 4. It is observed that the beam on founda-
tion can be considered as fixed-fixed at both ends when the values of K¥ EI⁄  and K� EI⁄  are greater 
than 100000.  
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K¥ EI⁄  Mode 
�; ��⁄   

0 1 10 100 1000 10000 100000 

0 
1 
 

1.772 
(0) 

4.486 
(0) 

5.491 
(0) 

5.510 
(0) 

5.512 
(0) 

5.512 
(0) 

5.512 
(0) 

 
2 
 

5.381 
(0) 

5.425 
(4.0682) 

7.625 
(7.3142) 

8.578 
(8.2742) 

8.695 
(8.3914) 

8.707 
(8.4033) 

8.708 
(8.4045) 

 
3 
 

17.746 
(16.819) 

19.610 
(18.794) 

24.181 
(23.332) 

26.036 
(25.193) 

26.276 
(25.434) 

26.301 
(25.459) 

26.303 
(25.461) 

1 
1 
 

2.919 
(1.3990) 

5.016 
(1.4022) 

5.699 
(1.4070) 

5.712 
(1.4085) 

5.713 
(1.4087) 

5.714 
(1.4087) 

5.714 
(1.4087) 

 
2 
 

5.622 
(2.3093) 

5.653 
(4.6405) 

5.699 
(7.5930) 

8.799 
(8.5013) 

8.911 
(8.6127) 

8.922 
(8.6241) 

8.923 
(8.6253) 

 
3 
 

17.884 
(16.984) 

19.801 
(18.934) 

24.262 
(23.423) 

26.102 
(25.267) 

26.341 
(25.506) 

26.365 
(25.530) 

26.367 
(25.533) 

10 
1 
 

7.168 
(4.0329) 

7.172 
(4.1188) 

7.178 
(4.2550) 

7.180 
(4.2968) 

7.181 
(4.3018) 

7.181 
(4.3023) 

7.181 
(4.3024) 

 
2 
 

7.40535 
(7.1547) 

8.275 
(8.0262) 

9.933 
(9.6741) 

10.527 
(10.263) 

10.602 
(10.337) 

10.610 
(10.345) 

10.611 
(10.346) 

 
3 
 

19.147 
(18.450) 

20.895 
(20.179) 

24.999 
(24.240) 

26.699 
(25.926) 

26.920 
(26.145) 

26.942 
(26.168) 

26.945 
(26.170) 

100 
1 
 

10.262 
(7.4030) 

10.753 
(8.0912) 

11.851 
(9.5749) 

12.304 
(10.173) 

12.363 
(10.252) 

12.369 
(10.260) 

12.370 
(10.261) 

 
2 
 

18.669 
(18.442) 

18.673 
(18.444) 

18.680 
(18.449) 

18.683 
(18.451) 

18.683 
(18.451) 

18.683 
(18.451) 

18.683 
(18.451) 

 
3 
 

29.049 
(28.802) 

29.664 
(29.373) 

31.181 
(30.783) 

31.843 
(31.402) 

31.931 
(31.484) 

31.940 
(31.493) 

31.941 
(31.493) 

1000 
1 
 

11.110 
(8.2925) 

11.940 
(9.3196) 

14.146 
(11.939) 

15.333 
(13.224) 

15.497 
(13.405) 

15.514 
(13.424) 

15.516 
(13.426) 

 
2 
 

25.008 
(24.685) 

25.437 
(25.117) 

26.607 
(26.295) 

27.194 
(26.887) 

27.276 
(26.971) 

27.285 
(26.979) 

27.286 
(26.980) 

 
3 
 

42.730 
(42.414) 

42.809 
(42.505) 

43.003 
(42.728) 

43.092 
(42.830) 

43.104 
(42.844) 

43.106 
(42.845) 

43.106 
(42.845) 

10000 
1 
 

11.204 
(8.3933) 

12.077 
(9.4637) 

14.487 
(12.247) 

15.748 
(13.643) 

15.930 
(13.842) 

15.949 
(13.863) 

15.951 
(13.865) 

 
2 
 

25.718 
(25.385) 

26.282 
(25.948) 

27.886 
(27.556) 

28.728 
(28.401) 

28.848 
(28.522) 

28.860 
(28.534) 

28.862 
(28.536) 

 
3 
 

44.557 
(44.218) 

44.821 
(44.499) 

45.521 
(45.245) 

45.859 
(45.605) 

45.906 
(45.655) 

45.911 
(45.660) 

45.912 
(45.660) 

100000 
1 
 

11.213 
(8.4035) 

12.090 
(9.4784) 

14.518 
(12.278) 

15.791 
(13.687) 

15.974 
(13.887) 

15.993 
(13.908) 

15.995 
(13.910) 

 
2 
 

25.788 
(25.454) 

26.365 
(26.031) 

28.017 
(27.685) 

28.888 
(28.559) 

29.012 
(28.684) 

29.025 
(28.697) 

29.027 
(28.699) 

 
3 
 

44.723 
(44.382) 

45.011 
(44.687) 

45.780 
(45.504) 

46.154 
(45.900) 

46.206 
(45.955) 

46.211 
(45.961) 

46.212 
(45.961) 

 

Note: Values in parentheses are the frequency parameter for Timoshenko beam without foundation. 
 

Table 4: Variations of the frequency parameter of free vibration of Timoshenko beam 

with general boundary conditions partially supported on Winkler foundation. 
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From Table 4, it illustrates that in the Timoshenko beam with 
pÍhi = 100000 and 

p�hi = 100000, the 

first, second and third frequency parameter for beam on partial Winkler foundation are 15.995, 
29.027 and 46.212, respectively. Also, the first, second and third frequency parameter for Timoshen-
ko beam without the Winkler foundation are 13.910, 28.699 and 45.961, respectively. In comparison 

with the Timoshenko beam with 
pÍhi = 100000 and 

p�hi = 100000, the maximum difference of the 

first, second and third frequency parameter for the beam with 
pÍhi = 100000 and 

p�hi = 0 with and 

without the partial Winkler foundation are approximately 33.43%, 1.31% and 0.77%, respectively. 
Also, the Euler-Bernoulli beam model can be obtained from the Timoshenko beam model by setting r) to zero (that is, if the rotational effect is ignored) and α) to zero (that is, if the shear effect is 
ignored) (Mei and Mace, 2005). Therefore, the non-dimensional frequency parameter (ϕÉ� of free 
vibration of Euler-Bernoulli beam with and without resting on the partial Winkler foundation is 

demonstrated in Table 5. In comparison with the Timoshenko beam with 
pÍhi = 100000 and p�hi = 100000, the maximum difference of the first, second and third frequency parameter for the 

Euler-Bernoulli beam with 
pÍhi = 100000 and 

p�hi = 100000 with and without the partial Winkler 

foundation are approximately 2.21%, 0.37% and 0.07%, respectively. Table 5 clearly shows that the 
values of the first frequency parameters are almost the same when the stiffness of the rotational 
springs is larger than 100.  

 
4.4 The Mode Shapes of the Fixed-free Timoshenko Beam on Winkler Foundation 

The influence of the elastic coefficient of uniform Winkler foundation on the mode shapes of fixed-
free Timoshenko beam is evaluated. Thus the beam is considered with the following characteristics: 
 
υ = 0.3      κ = 0.85    

L=10 m      r) = szLL	    

α) = )�s½υ�
κ
r)       N1 = 0 

K6� = K6� = K6� = K  

 
The first four mode shapes of the fixed-free Timoshenko beam on uniform Winkler foundation and 
without axial load are shown in Figure 4. It is observed that there are no slight differences between 
the results for K=5EI and K=0 along with the maximum difference being less than 39% for the 
maximum magnitude of the 3rd mode shape.  
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K¥ ��⁄  Mode 
�; ��⁄   

0 1 10 100 1000 10000 100000 

0 
 

1 
 

1.8925 
(0) 

4.8213 
(0) 

5.5948 
(0) 

5.6135 
(0) 

5.6157 
(0) 

5.6159 
 

5.6160 
 

 
2 
 

5.4882 
(0) 

5.5314 
(4.3931) 

8.6295 
(8.3363) 

9.9583 
(9.6778) 

10.129 
(9.8499) 

10.147 
 

10.149 
 

 
3 
 

23.229 
(22.373) 

26.261 
(25.490) 

34.733 
(34.097) 

39.318 
(38.724) 

39.989 
(39.400) 

40.059 
 

40.066 
 

1 
 

1 
 

3.0980 
(1.4025) 

5.3712 
(1.4058) 

5.7872 
(1.4106) 

5.8005 
(1.4122) 

5.8021 
(1.4122) 

5.8023 
 

5.8024 
 

 
2 
 

5.7125 
(2.4466) 

5.7424 
(4.9877) 

8.8899 
(8.6046) 

10.161 
(9.8859) 

10.326 
(10.051) 

10.343 
 

10.344 
 

 
3 
 

23.390 
(22.552) 

26.395 
(25.635) 

34.807 
(34.176) 

39.369 
(38.778) 

40.037 
(39.451) 

40.108 
 

40.114 
 

10 
 

1 
 

7.2186 
(4.1304) 

7.2230 
(4.2190) 

7.2301 
 (4.3608) 

7.2324 
(4.4047) 

7.2327 
(4.4100) 

7.2328 
 

7.2328 
 

 
2 
 

7.9041 
(7.6541) 

8.8466 
(8.6041) 

10.937 
(10.699) 

11.821 
(11.580) 

11.940 
(11.698) 

11.952 
 

11.953 
 

 
3 
 

24.842 
(24.141) 

27.598 
(26.933) 

35.486 
(34.892) 

39.837 
(39.269) 

40.478 
(39.912) 

40.545 
 

40.551 
 

100 
 

1 
 

10.941 
(8.2757) 

11.582 
(9.1789) 

13.167 
(11.298) 

13.895 
(12.234) 

13.994 
(12.361) 

14.005 
 

14.006 
 

 
2 
 

21.905 
(21.751) 

21.907 
(21.753) 

21.913 
(21.757) 

21.917 
(21.760) 

21.917 
(21.760) 

21.917 
 

21.917 
 

 
3 
 

37.187 
(36.920) 

38.308 
(38.017) 

42.123 
(41.764) 

44.601 
(44.268) 

44.989 
(44.590) 

45.031 
 

45.035 
 

1000 
 

1 
 

12.324 
(9.6787) 

13.620 
(11.251) 

18.139 
(16.344) 

21.450 
(19.887) 

22.015 
(20.482) 

22.075 
 

22.081 
 

 
2 
 

36.667 
(36.446) 

37.852 
(37.367) 

42.798 
(42.604) 

47.229 
(47.051) 

48.055 
(47.879) 

48.145 
 

48.154 
 

 
3 
 

73.540 
(73.369) 

73.852 
(73.687) 

75.238 
(75.096) 

76.581 
(76.460) 

76.842 
(76.724) 

76.870 
 

76.873 
 

10000 1 12.492 13.884 18.959 22.921 23.617 23.692 23.699 

 2 39.405 41.162 49.381 58.286 60.140 60.345 60.366 

 3 87.417 89.085 98.289 111.35 114.55 114.92 114.96 

100000 1 12.509 13.911 19.044 23.076 23.786 23.862 23.870 

 2 39.687 41.508 50.106 59.538 61.507 61.727 61.747 

 3 88.852 90.715 101.15 116.25 119.96 120.38 120.39 
 

Note: Values in parentheses are reported from reference (Wang and Wang, 2013) for Euler–Bernoulli beam without foundation. 
 

Table 5: Variations of the frequency parameter of free vibration of Euler–Bernoulli beam with general 

boundary conditions partially supported on Winkler foundation 
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1st mode shape 2nd mode shape 

  

3rd mode shape 4th mode shape 
 

Figure 4: The mode shapes of the fixed-free Timoshenko beam on uniform  

Winkler foundation and without axial load. 
 
 

5 CONCLUSIONS 

This paper presents the free vibration of elastically restrained Timoshenko beam on a partially 
Winkler foundation using dynamic green function. An accurate and direct modeling technique is 
stated for modeling beam structures with various boundary conditions. This technique is based on 
the Green function. The method of Green functions is more efficient and simplistic when compared 
with other methods (e.g. series method) due to the Green function yielding precise solutions in 
closed forms. In addition, the boundary conditions are embedded in the Green functions by the 
Green function method. The effect of different boundary condition, the elastic coefficient of Winkler 
foundation, as well as, other parameters are determined. Finally, some numerical examples are 
shown to illustrate the efficiency and simplicity of the new formulation based on the Green func-
tion. 
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Appendix  

The coefficient matrix [A¡,¢] in Eq. (32) is given for general boundary conditions by: 
 

 

�s,s = 	³´Ï²s�ÃVÐV²VÑs,<   �s,) = ÒÓÏNO    �s,z = 	³VÏ²s�ÃVÐV²VÑ),<  �s,| = ÒÓÏNO   

 

�),s = �ss�ÃVÐV²V ÒÔÏ	NO Ñz,< �),) = Ñs,< − `)_)    �),z = �ss�ÃVÐV²V ÒÔÏ	NO Ñ|,< �),| = Ñ),< − `)_)  
 �z,� = 	³´Ô²s�ÃVÐV²VÑs,; ª«¨�_ws;>� − ÒÓÔNO 	¨#©�_ws;>�  �z,sL = − 	³´Ô²s�ÃVÐV²VÑs,; ¨#©�_ws;>� − ÒÓÔNO 	ª«¨�_ws;>�  
 

�z,ss = 	³VÔ²s�ÃVÐV²VÑ),; ª«¨ℎ�_w);>� − ÒÓÔNO 		¨#©ℎ�_w);>� �z,s) = 	³VÔ²s�ÃVÐV²VÑ),; ¨#©ℎ�_w);>� − ÒÓÔNO 	ª«¨ℎ�_w);>�  
 �|,� = �Ñs,; − `)_)
	¨#©�_ws>� − ÒÔÔNO Õ·,Ôs�ÃVÐV²V ª«¨�_ws;>�  
 

�|,sL = �Ñs,; − `)_)
 ª«¨�_ws;>� −	ÒÔÔNO 	 Õ·,Ôs�ÃVÐV²V ¨#©�_ws;>�  
 

�|,ss = �Ñ),; − `)_)
 ¨#©ℎ�_w);>� + ÒÔÔNO Õ¸,Ôs�ÃVÐV²V ª«¨ℎ�_w);>�  
 

�|,s) = �Ñ),; − `)_)
 ª«¨ℎ�_w);>� + ÒÔÔNO Õ¸,ÔÃVÐV²V�s ¨#©ℎ�_w);>�  
 ��,s = ¨#©�_ws<�<>�  ��,) = ª«¨�_ws<�<>�  ��,z = ¨#©ℎ�_w)<�<>�   ��,| = ª«¨ℎ�_w)<�<>�  
 

��,� = −¨#©�_ws��<>� ��,� = −ª«¨�_ws��<>�  ��,� = −¨#©ℎ�_w)��<>�   ��,� = −ª«¨ℎ�_w)��<>�  
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 ��,s = Ñz,< 	��,)   ��,) = Ñz,<	��,�   ��,z = Ñ|,<	��,|  ��,| = Ñ|,<	��,z  
 

��,� = Ñz,� 	��,�   ��,� = Ñz,� 	��,s   ��,� = Ñ|,� 	��,�  ��,� = Ñ|,� 	��,�  
 ��,s = �),)	��,s   ��,) = �),)	��,)   ��,z = �),|	��,z    ��,| = �),|��,|  
 

��,� = �Ñs,� − `)_)
	��,� ��,� = �Ñs,� − `)_)
��,�  ��,� = �Ñ),� − `)_)
��,�   ��,� = �Ñ),� − `)_)
��,�  
 ��,s = 	ws<_Ñs,<��,)   ��,) = 	ws<_Ñs,<��,�   ��,z = 	w)<_Ñ),<��,|  ��,| = 	w)<_Ñ),<��,z  
 

��,� = 	ws�_Ñs,���,�   ��,� = 	ws�_Ñs,���,s   ��,� = w)�_Ñ),���,�  ��,� = 	w)�_Ñ),���,�  
 ��,� = ¨#©���< + ���_ws�>
   ��,� = ª«¨���< + ���_ws�>
   ��,� = ¨#©ℎ���< + ���_w)�>
  
 

��,� = ª«¨ℎ���< + ���_w)�>
   ��,� = −¨#©���< + ���_ws;>
  ��,sL = −ª«¨���< + ���_ws;>
  
 

��,ss = −¨#©ℎ���< + ���_w);>
   ��,s) = −ª«¨ℎ���< + ���_w);>
    

 �sL,� = Ñz,���,�   �sL,� = Ñz,� 	��,�   �sL,� = Ñ|,���,�  �sL,� = Ñ|,���,�  
 

�sL,� = Ñz,;��,sL   �sL,sL = Ñz,;	��,�   �sL,ss = Ñ|,;��,s)  �sL,s) = Ñ|,;��,ss  
 �ss,� = �Ñs,� − `)_)
��,�  �ss,� = �Ñs,� − `)_)
��,�  �ss,� = �Ñ),� − `)_)
��,�   �ss,� = �Ñ),� − `)_)
��,�  
 

�ss,� = �Ñs,; − `)_)
��,� �ss,sL = �Ñs,; − `)_)
��,sL  �ss,ss = �Ñ),; − `)_)
��,ss   �ss,s) = �Ñ),; − `)_)
��,s)  
 �s),� = 	ws�_Ñs,���,�  �s),� = 	ws�_Ñs,���,�  �s),� = 	w)�_Ñ),���,� �s),� = w)�_Ñ),���,�  
 

�s),� = 	ws;_Ñs,;��,sL  �s),sL = 	ws;_Ñs,;��,�  �s),ss = w);_Ñ),;��,s) �s),s) = 	w);_Ñ),;��,ss  
 

where: 

 Ñs,Ö = S�`) + a) − �1 + a)b�wsÖ)
_) − a)dÖW		 	 Ñ),Ö = S�`) + a) + �1 + a)b�w)Ö)
_) − a)dÖW		
	Ñz,Ö = _wsÖ�a)_)�a) − wsÖ)
 − a|�dÖ + bwsÖ)_)
 + 1�		 Ñ|,Ö = _w)Ö�1 + a)_)�a) + w)Ö)� − a|�dÖ − bw)Ö)_)��	 
 


