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Abstract

Natural frequencies are important dynamic characteristics of a
structure where they are required for the forced vibration analysis
and solution of resonant response. Therefore, the exact solution to
free vibration of elastically restrained Timoshenko beam on an
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boundary conditions. The applied method is based on the Green
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merical examples are shown to present the efficiency and simplici-
ty of the Green Function in the new formulation.
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1 INTRODUCTION

Free vibration analysis has an important role in the structural design of buildings. In fact, the free
vibration behavior of structures influences their response to earthquake and wind. Numerous studies
are devoted to obtaining the free vibration analysis of civil engineering constructions both in the
past and recent years (Carrera and Pagani, 2014). On the other hand, structures resting on founda-
tion are an important class of problems in civil engineering. Therefore, numerous researches are
presented pertaining to reports involving the calculation and analysis approach for beams and
plates on foundation. These various types of foundation models include such as Winkler, Pasternak,
Hetenyi, Kerr, Vlasov and Viscoelastic that are applied in the analysis of structures on elastic foun-
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dations (Mahrenholtz, 2010; Wang et al., 2005). The Winkler foundation model is frequently used
in the analysis of structures on elastic foundation problems.

The natural vibrations of a Timoshenko beam on Pasternak foundation is studied by Wang and
Stephens (Wang and Stephens, 1977). Moreover, the appropriate frequency equations are derived
for different end restraints. Wang and Gagnon present the dynamic analysis of the continuous Ti-
moshenko beams on Winkler-Pasternak foundations (Wang and Gagnon, 1978). The free and forced
vibrations of a three span continuous beam resting on a Winkler-Pasternak foundation are studied
by means of the general dynamic slope-deflection equations. In addition, the natural response of an
Euler-Bernoulli beam supported by an elastic foundation is investigated by Doyle and Pavlovic
(Doyle and Pavlovic, 1982). Ultimately, this paper considers the vibration problem of Euler-
Bernoulli beam partially supported by a Winkler foundation. Abbas utilized the free vibration of
the Timoshenko beam using the unique finite element model (Abbas, 1984). All the geometric and
natural boundary conditions of Timoshenko beam with elastically supported ends can satisfy by the
proposed method. Natural frequencies and normal modes of a spinning Timoshenko beam for the six
classical boundary conditions are analytically solved by Zu and Han (Zu and Han, 1992). The
backward and forward precession normal modes have become identical for beam with simply-
supported boundary conditions. The vibration of uniform Euler-Bernoulli beam on a two-parameter
elastic foundation with initial stress is investigated by Naidu and Rao (Naidu and Rao, 1995). Fur-
thermore, the finite element formulation is applied to obtain the vibration parameter of simply sup-
ported and clamped beams.

Thambiratnam and Zhuge presented the free vibration analysis of beams supported on elastic
foundations by a simple finite element method (Thambiratnam and Zhuge, 1996). An accurate solu-
tion of Timoshenko beam resting on two-parameter elastic foundation is exhibited by Wang et al.
(Wang et al., 1998). In this study, the Green function is presented for bending, buckling, and vibra-
tion problems of Euler—Bernoulli and Timoshenko beams. Li applies a simple approach for the free
vibration analysis of Euler-Bernoulli beam with general boundary conditions (Li, 2000). The dis-
placement of the beam is determined as the linear combination of a Fourier series and an auxiliary
polynomial function. Ying et al. investigated the precise solutions for free vibration and bending of
functionally graded beams on a Winkler—Pasternak elastic foundation (Ying et al., 2008). The beam
is considered as orthotropic at any point, while material properties varying exponentially along the
thickness direction. In addition, the differential transform method is applied to the vibration of an
Euler-Bernoulli and Timoshenko beam on an elastic soil by Balkaya et al. (Balkaya et al., 2009). In
this method, precise solutions are obtained without the requirement for serious calculations.

Motaghian et al. studied the free vibration of Euler-Bernoulli beam on Winkler foundation
(Motaghian et al., 2011). A mathematical approach is used to find the precise analytical solution of
the free vibration of Euler-Bernoulli beam with mixed boundary conditions. The double Fourier
transform is employed for the free vibration analysis of the semi-rigid connected Reddy-Bickford
beam with variable cross-section on elastic soil and under axial load by Yesilce and Catal (Yesilce
and Catal, 2011). Bayat et al. presented the analytical study on the vibration frequencies of tapered
beams (Bayat et al., 2011). The Max-Min Approach and Homotopy Perturbation Method are em-
ployed in order to solve the governing equations of tapered beams. Thus the nonlinear vibration of
the clamped-clamped Euler-Bernoulli beam subjected to the axial loads is investigated by Barari et
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al (Barari et al., 2011). Xing and Wang explained a general model for the free vibration of the Eu-
ler-Bernoulli beam restrained with two rotational and two transversal elastic springs under a con-
stant axially load (Xing and Wang, 2013). In this paper, an analytical approach is used to find the
frequency equations and the shape functions. Ratazzi et al. considers free vibrations of Euler-
Bernoulli beam system structures with elastic boundary conditions and an internal elastic hinge
(Ratazzi et al., 2013). The beam system is clamped at one end and elastically restrained at the oth-
er. Furthermore, the free vibration of the Euler-Bernoulli beam with variable cross-section on elastic
foundation and under axial load is considered by Mirzabeigy (Mirzabeigy, 2014). Bazehhour et al.
utilized a new analytical solution for the free vibration of the rotating Timoshenko shaft with vari-
ous boundary conditions (Bazehhour et al., 2014). The effect of the axial load on the natural fre-
quencies is investigated as the rotational speed increases. At the same time, the numerical method
for solution of the free vibration of Timoshenko beams with arbitrary boundary conditions is pre-
sented by Proki¢ et al. (Proki¢ et al., 2014). Basically, the numerical method is based on numerical
integration rather than the numerical differentiation. Yayli et al. (Yayli et al., 2014) investigated
the analytical method for free vibration of the elastically restrained Euler-Bernoulli beam on elastic
foundation. The Fourier sine series with the Stoke’s transformation is used to obtain the free vibra-
tion response of the beam on elastic foundation.

In previous studies regarding free vibration of the beam rested on a foundation, the Euler—
Bernoulli and Timoshenko beams on uniform foundation are analyzed. On the other hand, only the
solution taken from few previous researchers can be generalized to general boundary conditions for
FEuler—Bernoulli beam on uniform foundation. In this study, an accurate solution in closed forms is
presented for free vibration behavior of elastically restrained Timoshenko beam on an arbitrary
variable Winkler foundation and under axial load. The Green Function method is utilized to evalu-
ate the free vibration of the Timoshenko beam. Furthermore, the free vibration expression for the
Timoshenko beam is written in a general form. Hence, the computation becomes more efficient.
Also, through the application of the Green function method, the boundary conditions are embedded
in the Green functions of the corresponding beams. Therefore, the objective of this paper is:

e To present a very simple and practical analytical-numerical technique for determining the
free vibration of Timoshenko beams, with elastically restrained boundary conditions, rested on a
partial Winkler foundation and under axial load.

e To state precise solutions in closed forms using the Green function for free vibration of the
Timoshenko beam with and without the partial Winkler foundation along with the axial load.

This article is organized as follows. Section 2 outlines the basic equations of the Timoshenko beam
resting on the uniform elastic foundation. Then, in section 3, the Green function and the natural
frequency equation of the elastically restrained Timoshenko beam on an arbitrary variable Winkler
foundation and under axial load are explained. Section 4 presents some numerical examples to illus-
trate the efficiency of the Green Function in the new formulation. Finally, in section 5, the conclu-
sions are drawn, briefly.

2 MODELLING OF TIMOSHENKO BEAM ON WINKLER FOUNDATION
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In this paper, it is supposed that a Timoshenko beam on elastic foundation where it is partially
restrained against translation and rotation at its ends. The model of elastic foundation is assumed
as Winkler foundation, as shown in Figure 1. K, Ktr, Kgr, and Kggr are the transverse and rota-
tional elastic coefficients at the supports at the left and right boundary ends, respectively. Thus, the
coupled system of differential equations for the vibration of the uniform Timoshenko beam can be
given by:

KGA(Q_X - W,xx) + pAw, — Nw,, + Kyw = q(x,t) (1)

E16, +KkGA(w,—0)—pl8,; =0 (2)

where w(x,t) is the transverse deflection of the mid-surface of the beam, 8(x,t) represents the anti-
clockwise angle of rotation of the normal to the mid-surface, q(x,t) is the external load force on the
beam. In addition, I, A, E, G, N, k and p are, the second moment of area, the cross-sectional area
of the beam, the Young’s modulus of elasticity, the shear modulus, the axial load, the sectional
shear coefficient, and the beam material density, respectively. It is assumed that each function
w(x,t), 8(x,t) and q(x,t) can be presented as a product of a function dependent on the coordinate x
and a function dependent on the time t (with the same time function):

w(x, t) = W(x) exp(iwt) (3)
0(x,t) = 0(x) exp(iwt) (4)
q(x,t) = Q(x) exp(iwt) (5)

where W(x), O(x) and Q(x) are the beam deflection amplitude, the amplitude angle of rotation of
the normal to the mid-surface in point x of the Timoshenko beam and the external load on the
beam, respectively. In addition,  is the circular frequency of the Timoshenko beam. Substituting
Eqgs. (3), (4) and (5) into Egs. (1) and (2), result in:

K ¢ l * q(x.1) Koz
@__ N, N, __,© E
KRL KRR
K1 Kwe Kyr
a L | -
l ol »nda t
BLxL PexL PrxL ”

Figure 1: Timoshenko beam with general boundary conditions resting on Winkler foundation.
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(=KGA = Wy + (Kyy = pA0HIW + xGAO, = Q1) (6)
EI©,, + (plo* —xGA)O + «xGAW, =0 (1)

For a linear elastic, isotropic, homogeneous and uniform Timoshenko beam, these two equations can
be combined after several transformations. The vibration equations for Timoshenko beam can be
expressed in a form dependent only on the functions of the displacement w(x, t):

N, , El ) plw?
E1<1+m)wxxxx+ pIa) —m(KW—pAw)+Nx m—l Wxx

(K — pao?) (22 -1 )w = = EL g - (22~ 1) o)

w T PEOIN\SGa = "6z 0=~ Qx

El(1+N")® oz —EL k) — pawory + 8 (P2 1)) e
«GA xxxx pLaw «GA w — PAW *\ %GA xx

2

plw
— (Ky — pAw?) (KGA - 1>® = Qx(x)

For tension Ny > 0 , as well as, for compression, one is required to apply Ny < 0. It is to be noticed
that when Ny and Ky are equal to zero, the expression given by Egs. (8) and (9) does reduce to the
differential equations of the motion which are obtained by Ghannadiasl and Mofid (Ghannadiasl
and Mofid, 2014). In this paper, the initial conditions and the general boundary conditions associat-
ed with the Timoshenko beam theory are given below:

vt @ X = O : M(O, t) = KRL 0(0, t) Q(O, t) = _KTL W(O, t)
Vvt@x=L : M(Lt)=—Kgg 6(L,t) Q(L,t) = Krg w(L,t)
Vx : pl o, 50|§0 =0 pAW, 5W|§0 =0

where M and Q are the bending moment (M = EI8,) and the shear force (Q = —kAG(wy — 8)),
respectively (Wang, 1995).

3 GREEN FUNCTION FOR TIMOSHENKO BEAM

The Green function is utilized to find the solution for Eqgs. (8) and (9). Therefore in this case, if
G(x,u) was the Green function for the submitted problem, the solution of Eq. (8) can be exhibited
in the form of:

KGA — plw?

W) = Flaca+ Ny

L
f QW) G(x,u)du (10)
0
where G(x,u), the Green function for the Timoshenko beam must satisfy the boundary conditions.
Hence, the Green function, G(x,u), is the solution of the differential equation:
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EI plw? plw? 2
plw? — == (K — pAw?) + N, (22 — 1- Ky — pAw?)
G avex + KGA . x(}CGA )G,xx + ( KGA) — G =8(x—1u) (11)
EI(1+-%) EI(1+-%)
KGA KGA

where 8§(x — u) is the Dirac delta function which is defined as:

+o  ifx=u
o(x—u) =
0 if x +#u

By applying the relationships between the individual physical quantities, Eqs. (10) and (11) can be
written as the following:

1— $p2r2aq? [t
w == G(x,u)d

(x) E1(1+ya2)f0 Q(w) G(x,u)du (12)

2( 42 2.2 2 2

(@ -m -y (1 - ¢*r*a®) (1 — ¢7)
(Cpw— (TM + Q" |G, + Tty G=26(x—u) (13)

2

where ¢ is the parameter proportional to the natural frequency (¢p? = - pA), o, the parameter

El
proportional to the rigidity of the beam («? = %), r, the radius of gyration of the beam cross sec-

Nx

EI
portional to the elastic coefficient of Winkler foundation (T] = };—"Iv) The free vibration equation of

tion (r? = %), Y, the parameter proportional to the axial load (y = ), and 7 is the parameter pro-

uniform Timoshenko beam on Winkler foundation and under axial load can be obtained in the form
of:

G,xxxx + 2 ¢2p16,xx + ¢2sz = 0 (14)

where:
1( 5 1 a?(n—¢pH)+y
P, _; P AR

d)z 1 +yot2

_ 1 (-¢**®)G-¢")
pz N d)z 1+yo?
The general solution of Eq. (14) can be stated as:
G(x) = C; sin(¢pA,x) + C, cos(¢pA,x) + C; sinh(¢pA,x) + C, cosh(PpA,x) (15)

where x € [0,L], A; and A, are calculated as:
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p
AZ = _pl + plz - (17)

Cq, ..., C4 are the integration constants that are evaluated such that the Green function satisfies two
boundary conditions at each end of the beam depending on the type of end support and the conti-
nuity conditions of displacement, slope and moment along with the shear force.

In this paper, the Timoshenko beam divides into three segments with the different elastic coeffi-
cient of Winkler foundation. It can be possible to write the differential equation of the free vibration
of each segment. Therefore, the general solution for the first segment can be stated as:

GL(x) =Cy sin(¢/11Lx) +Cyy cos(¢/11Lx) +Cy sinh(¢12Lx) + Cyy cosh(¢/12Lx) (18)

where x € [0,B.L], Ay, and A, are calculated as:

’ p

/11L = plL + plLZ - ﬁ (19)
’ p

/12L = _plL + ple - ﬁ (20)

_ l(rz _ LM)
Pi =35 ¢ 1y

where

(1-¢%r20®) (n,~¢%)

1
pZL T2 1+yo?

¢

where 7y, is equal to % For the middle section, the general solution of free vibration takes the

form of the following equation:

Gc(x) =Cqc sin(d)llcx) + Cy cos(d)llcx) + Cs¢ sinh(qﬁ)tzcx) + Cyc Cosh(dﬁzcx) (21)

where x € (Br.L, L(BL + Bc)], Aic and A, are calculated as:

p,

/116' = plC + /pl(:Z - ﬁ (22)
p

AZC = | 7Py + ’plcz - ﬁ (23)
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where in p;c and p,c, Nc is equal to ? Similarly, it is possible to develop the general solution of

free vibration for the last section of the Timoshenko beam:
GR(x) = Cyp sin(¢/11Rx) + Cyp cos(¢11Rx) + C3p sinh(¢/12Rx) + Cyc cosh(¢/12Rx) (24)

where x € (L(BL, + Bc), L], Mg and A,g are calculated as:

’ p
AlR = le + leZ - ﬁ (25)

p
/12R = _le + leZ - ﬁ (26)
where in p;g and pyr, TMg is equal to SWR . Ci. — C41 , Cic — Cy¢c and Cyg — Cyg are the constant

unknowns of the three above-mentioned solutlons. In order to find these unknowns, it is required to
develop twelve equations. Moreover, in which are explicitly obtained using two boundary conditions
at each end of the beam depending on the type of end support and the continuity conditions of
displacement, slope and moment along with the shear force in the vicinities of the different segment

connections. The boundary conditions are given below:

(9207 + @) = 2 0,)6,,0) + (1 + € 1)61,00(0)) + 26, (0) = 0 (27a)
(1 +0271)6,,.(0) + (xz(¢ _ WL)GL(O) Kry (¢ a* o' +1) GLi(OZ)J;aZ(Ha ¥)Gxx (0) — 0 (27b)
¢°r
iz (6707 + o)) = @ 1,)60, () + (14 6 PG (D)) = 22 630) = 0 (27¢)
(1 + (12 V)GR,xx(L) + (12 (¢ nR)GR(L) + Krr Krr (¢ o —a 77R+1) Gfxi;)ﬂl (1+6? Y)GRxx (L) -0 (27d)
Also, the continuity conditions are defined as:

GL(ﬁLL) = GC(:BLL) (283.)

M, (B,L) =Mc(B,L) (28¢)

0,(5,1) = ¢c(8,1) (284)
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and
Ge(B,L+ BcL) = Gr(B,L+ BL) (20a)
0c(B,L + B,L) = 0p(B,L + B.L) (20D)
Mc(B,L + B.L) = Mg(B,L + B,L) (20¢)
Q. (B,L+B.L) =, (B,L+8.L) (29d)

By applying the relationships between the individual physical quantities and the Green function,
the continuity conditions can be rewritten as follows:

(((152(14 —otn, + 1)GL,x(.8LL) - (¢p%a* —a*ne + DGCr"(ﬁLL))

(30a)
+ az(l + o? Y) (GL,xxx(ﬁLL) - GC,xxx(BLL)) =0

1+ ) (GLax(BL) — Gexn(BLL)) + (30b)

(12((4’2 = n)GL(BLL) — (4’2 - Uc)Gc(ﬂLL)) =0
(@2G2 +02) = o 0)GLa(BL) — ($2(% + 02) = o N)Gen(BLL) ) 00
C

+(1+ o? V) (GL,xxx(BLL) - GC,xxx(ﬁLL)) =0
and
((@2a® —a* ne + DG (Bl + Bel) — (92 — a* ng + DGry(BLL + BeL)) 1)
a
+ az(l + a? }/) (Gc,xxx(ﬁLL + .BCL) - GR,xxx(.BLL + ﬁCL)) =0
(1 + @ y) (Gexr (Bl + Bel) = Grax(BL + BcL)) (31b)
+ az((d)z —nc)Ge(BLL + BeL) — (9% —nr)Gr(BLL + ﬁcL)) =0

(@2G? +02) = o ) Gene (BuL + BeL) — ($2(r% + ) = 0 )G (BLL + L)) 510
C

+ (1 + a? }/) (Gc,xxx(ﬁLL + .BCL) - GR,xxx(.BLL + ﬁCL)) =0
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Finally, the matrix equation is given as:

0 0 0 0 Ags Age Agy Ags Ase Asio Az Asiz [[Cir
0 0 0 0 AlO,S A10,6 A10,7 A10,8 A10,9 A10,10 A10,11 A10,12 CZR
0 0 0 0 A11,5 A11,6 A11,7 A11,8 A11,9 A11,10 A11,11 A11,12 C3R
0 0 0 0 A12,5 A12,6 A12,7 A12,8 A12,9 A12,10 A12,11 A12,12— 'C4R'

Ay A, Ay Ay, O 0 0 0 0 0 0 0 17C1 10
Ayy Ay, Ays Ayy 0 0 0 0 0 0 0 0 ||cy, 0
0 0 0 0 0 0 0 0  Asg Asie Az Asp ||Cy, 0
0 0 0 0 0 0 0 0 Ao Asio Asnn Ass||Cy, 0
Asi Aspz Asz Asa Ass  Ase Asy Asg 0 0 0 0 Cic 0
A61 A62 A63 A64 A65 A6,6 A67 A68 0 0 0 0 CZC — O
Ay Arz Arz Ay Ars Ajg Ay, Ag 00 0 0 |{Csc| T 0 (32)
Ag1 Ag, Agz Ags Ags A8,6 Ag; Agg 0 0 0 0 Cac 0
0
0
0
LA

where the coefficient matrix [Ai,j] is cited in the Appendix. The nontrivial solution to Eq. (32) is
obtained from the condition where the main matrix determinant is equal to zero. Furthermore, the
Green function for free vibration of the Timoshenko beam that is obtained by the above procedure
has a general form. By moving close to the spring constants of the rotational and translational re-
straint to extreme values (zero and/or infinity), the suitable Green function can be attained for the
desired combinations of end boundary conditions (i.e. simply supported, clamped and free boundary
conditions). For example, the natural frequency equation for a general Timoshenko beam with elas-
tic end restraints (Kgrgr = Kgi, = Kg and Ktg = K1, = Kp) resting on a uniform Winkler elastic foun-
dation (Kywy, = Kwe = Kwr) and under axial load is given by:

sin(¢pA,L) (24, cosh(pA,L) + A, sinh(¢pA,L))
+ 2 cos(¢pA,L) (B; (A3 cosh(dpA,L) — A, sinh(pA,L)) (33)

+ B3(As cosh(PpA,L) + Ag sinh(pA,L))) + A, =0

where
Kg Kr Ke)” Ke (Kr)*
Al = 7 B1Be(B2By — ByBs) + | B2 By(Bs — By) + B3 (B By — B, Bs) (E) +Bs E(E) (Be = Ba)
KT 2 KR 2 KR KT KR 2
Ay = B3 (1) | By =B + (5] (B2 = B3) |+ 28,85k (o BiBs + By ) + (B = (1) B3

Kg\* Kz K
- B2 (Bg + (E—f;) 352) - 2=2_LB BB,

Kg Kr
Az = B;s EE(Bz; — 2Bg) — B;B,Bg
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Kg Kr [ (Kr\*
A4 = EBZB‘}BS +E<<E) BSZ + Bg - B4_B6

A—KTB(B 2B,) KRKTB)
S_E(Z 6 4_Eﬁ 5

2

K Ky Ky
B.Bs + () (B = Bo)

_ p2 2R AT
Ag —B2B4+E1 7

Ke K K K
A7=2(B1B4+ R TBg)(BZBé+ K TBS)

BBl FIEI
2

Bi = Toragage BT 00)
o1,

Be = T ragrge B ¥ 7700
2

B3 = m (1 + azB4)

B, = a*(-n+¢*) — (1 +a’y)¢*Ai

P4,
1— r2a2¢2
3

Bs = a*(—n + ¢*) + (1 + a®y) 9?25

B5 = (1 + a2B6)

Although the frequency Eq. (33) is complicated and long, it can be simulated by all the boundary
conditions that are appeared in previous studies and practical situations, which have not been pos-
sible to describe before. After finding the natural frequencies, the mode shape corresponding to each
natural frequency can be generated. Three of the constant unknowns in the shape function (Eq.
(15)) can be solved by three equations of boundary conditions at each end of the beam. The coeffi-
cients in mode shape function for a uniform Timoshenko beam on a uniform Winkler elastic founda-
tion with classical end conditions are listed in Table 1. Here, C,, C; and C, are solved by the three
equations of Eq. (27). On the other hand, C; is assumed to be non-zero in order to demonstrate
vibration amplitude.

4 NUMERICAL RESULTS

In this section, to validate the presented Green Function, the results of different examples, which
are solved by the new formulations, are presented. First, the high computational efficiency of the
method is shown and then it is examined for feedback with general boundary conditions.
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End boundary

*

C C C c
conditions ! 2 : )
i AL
Pined-pinned 1 0 - :llnnh(g, )le L)) 0
) D3 . ) D3 .
Fixed-fixed 1 _ Sm((MlL)_D_i sinh(91) - % Sln(¢/11L)_D_iSlnh(¢/12L)
cos(¢pA1L)—cosh(pA,L) 4 cos(¢pA1L)—cosh(¢pA,L)
Fixed-ninned 1 _sin(¢A1l) _ cosh(¢,L) sin(pasL) sin(@A,1)
ixed-pinne cos(pA,L) sinh(¢A;L) cos(¢pA,L) cos(¢pA1L)
D203 Ginh(ga,L)-Dy sin(pAsL D D2D3 §inh(ga,L)-Dy sin(pasL
Fixed-free 1 g“ COS::(::) Lz)_)D z::(l;i ;)) _D_j ][))4 C::l[L(z)Z;]—)D éj:[ll«(;;] :
2 2 1 1 2 1
D AL
Pinned- fixed 1 0 _D_i;ossh((q;;z;) 0
. cos(PpAyL)+ /11112:21532 cosh(¢A,L) Dy D, Cos(A,L) + A?};‘:gz cosh(pA,L)
Free - fixed 1 - DiDs . " De "D sin(dML) + 22 ginh(dpA,L
sin(pA,L)+ DaDs sinh(¢pA,L) (dr L) + DDy (d2,L)

*

D3 = Al(ale + 1)
Dg = A,(D, + 12¢%)

D; = ¢*(a® - 1,") —a’n
D4, = /12(6!2D2 + 1)

D, = ¢*(a® +2,°) — a®n
Ds = 4,(D; +r?¢?)

Table 1: The coefficients in mode shape function for Timoshenko beams on a uniform

Winkler elastic foundation and without axial load for classical boundary conditions.

4.1 The Timoshenko Beam on the Uniform Winkler Foundation Under Constant Axial Load

In order to illustrate the accuracy of the presented method in this paper, a uniform Timoshenko
beam on the uniform Winkler elastic foundation and under constant axial load with two different
boundary conditions, i.e. simply supported—simply supported (S-S) and clamped—simply supported
(C-S), are considered (Figure 2). The beam is supposed with the following characteristics:

2
Z—Z =0.01 r =

simply supported beam

a. Simply supported beam b. Clamped
Figure 2: Timoshenko beams on the uniform Winkler foundation and under constant axial load
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R
T 2(1+v)

v=0.25 k=2/3 G

2 ElI
L2

KWL=KWC=KWR=KW Nx=—0.67'[

Table 2 compares the frequency parameters of free vibration of the simply supported—simply sup-
ported and clamped-simply supported Timoshenko beam resting on the uniform Winkler founda-
tion and under axial load using the Green Function method along with the differential quadrature
element method (Malekzadeh et al., 2003). It is seen that the results are fairly close and the maxi-
mum difference is 0.057%. It is informed from Table 2 that the first mode of the Timoshenko beam
on the uniform Winkler elastic foundation and under constant axial load is more sensitive to the
elastic coefficient of Winkler foundation. At the same time, it can also be seen that the maximum
difference of the first, the second and the third frequency parameter for the simply supported beam
with and without the uniform Winkler foundation (Ky = 0.8 m* %) are approximately 167.44%,
9.39% and 2.94%, respectively. On the other hand, the maximum difference of the first, second and
third frequency parameter for the clamped—simply supported beam with and without the uniform
Winkler foundation (Ky = 0.8 m* %) are approximately 54.80%, 8.05% and 2.82%, respectively.

Simply supported Clamped — simply supported

(5]
2 s Malekzadeh et al Malekzadeh et al
83 = Present stud ' Present stud '
= r((e;e; ° 1)1 Y (Malekzadeh et rt(e;e; § 1)1 Y (Malekzadeh et
Iror ITor
¢ al., 2003) ¢ al., 2003)
1 3.46648 (0.101) 3.47 7.32425 (0.058) 7.32
0 2 19.2209 (0.005) 19.22 20.9311 (0.005) 20.93
3 35.0792 (0.002) 35.08 35.7458 (0.012) 35.75
1 5.52398 . 8.50792 .
0.2 71:4% 2 19.6879 - 21.3650 .
3 35.3404 - 36.0005 -
1 7.00019 - 9.54555 -
0.4 7r4% 2 20.1439 . 21.7900 .
3 35.5996 . 36.2532 -
1 8.21469 (0.057) 8.21 10.4806 (0.008) 10.48
4 EL
0.6 - 20.5896 (0.002) 20.59 22.2068 (0.014) 22.91
3 35.8568 (0.009) 35.86 36.5041 (0.011) 36.50
1 9.27091 - 11.3384 -
0.8t % 21.0257 - 22.6157 -
3 36.1122 - 36.7532 .

Table 2: The frequency parameters (¢) of free vibration of Timoshenko beams on the uniform

Winkler elastic foundation and under constant axial load
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4.2 The Influence of the Axial Load and the Elastic Foundation on the Frequency of Timoshenko Beam

As an interesting application of the present method, the influence of the elastic coefficient of Win-
kler foundation and the axial load on free vibration characteristics of simply supported Timoshenko
beam is evaluated. The beam characteristics are as follows:

v=03 k=0.85

_ 4
Z=0.05 b=
Variation of the first frequency parameter (¢) of free vibration of Timoshenko beam is shown in
Table 3. In addition, it is evident from the obtained values of the frequency parameter that the
natural frequencies will increase when the values of Ky, and Ny increase. The influence of axial load
would be more significant when the stiffness of the Winkler foundation is coming close to zero.
However, the effect of the axial load would be less significant when the value of the stiffness of the

. L . El
Winkler foundation is coming close to n* o

4.3 The Influence of the Spring Supports on the Frequency of the Timoshenko Beam
Resting on the Partial Winkler Foundation

For verification of the efficacy of the present method, the influence of the spring supporting the
behavior is evaluated based on free vibration characteristics of Timoshenko beam partially support-
ed on a Winkler foundation (Figure 3). For this purpose, a Timoshenko beam is assumed with gen-
eral boundary conditions, Kt and Kgr. The stiffness of the rotational and the translational restraint
are taken as having the same values at both of the supports. The beam characteristics are as fol-

lows:
Kwe = %5 K. = Kwg =0 =B, =Py =L/3

we =T 7 wL = Bwgr = BL—BC—BR— /
Ny=0 v=0.30 k=0.85

Kr
KT KT
Kwe
P L/3 _ L/3 Ul L/3 -

Figure 3: Timoshenko beam with general boundary conditions partially supported on Winkler foundation.
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215 Ky (m# %
\NE/
= 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
-1.0 0.000 1.687 3.519 4.682 5.609 6.403 7.108 7.750 8.343 8.896 9.417
-0.9 1.687 3.519 4.682 5.609 6.403 7.108 7.750 8.343 8.896 9.417 9.910
-0.8 3.519 4.682 5.609 6.403 7.108 7.750 8.343 8.896 9.417 9.910 10.380
-0.7 4.682 5.609 6.403 7.108 7.750 8.343 8.896 9.417 9.910 10.380 10.830
-0.6 5.609 6.403 7.108 7.750 8.343 8.896 9.417 9.910 10.380  10.830  11.262
-0.5 6.403 7.108 7.750 8.343 8.896 9.417 9.910 10.380  10.830  11.262  11.677
-0.4 7.108 7.750 8.343 8.896 9.417 9.910 10.380 10.830 11.262 11.677 12.079
-0.3 7.750 8.343 8.896 9.417 9.910 10.380 10.830 11.262 11.677  12.079 12.467
-0.2 8.343 8.896 9.417 9.910 10.380 10.830 11.262 11.677 12.079 12.467 12.844
-0.1 8.896 9.417 9.910 10.380 10.830 11.262 11.677 12.079 12.467 12.844 13.210
0 9.417 9.910 10.380  10.830  11.262  11.677  12.079 12467 12844 13.210 13.566
0.1 9.910 10.380 10.830 11.262 11.677 12.079 12.467 12.844 13.210 13.566 13.913
0.2 10.380 10.830 11.262 11.677  12.079 12.467 12.844 13.210 13.566 13.913 14.252
0.3 10.830 11.262 11.677 12.079 12.467 12.844 13.210 13.566 13.913 14.252 14.583
0.4 11.262 11.677  12.079 12.467 12.844 13.210 13.566 13.913 14.252 14.583 14.906
0.5 11.677 12.079 12.467 12.844 13.210 13.566 13.913 14.252 14.583 14.906 15.223
0.6 12.079 12.467 12.844 13.210 13.566 13.913 14.252 14.583 14.906 15.223 15.533
0.7 12.467 12.844 13.210 13.566 13.913 14.252 14.583 14.906 15.223 15.533 15.837
0.8 12.844  13.210 13.566  13.913  14.252  14.583  14.906  15.223  15.533  15.837 16.135
0.9 13.210 13,566  13.913  14.252  14.583  14.906  15.223  15.533  15.837 16.135 16.428
1.0 13.566  13.913  14.252  14.583  14.906  15.223  15.533  15.837 16.135 16.428 16.715
Table 3: Variations of the first modal frequency parameter of free vibration of Timoshenko
beam on uniform Winkler elastic foundation and under axial load

~ =001 b= |2

L El

K =Kmr=Kr Kre = Kgr =Kr

The frequency parameter (¢) of free vibration of Timoshenko beam with and without partially sup-

ported on Winkler foundation is demonstrated in Table 4. It is observed that the beam on founda-

tion can be considered as fixed-fixed at both ends when the values of Kt/EI and Kg/EI are greater
than 100000.
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Kr/El Mode Kr/E1

0 1 10 100 1000 10000 100000

0 1 1.772 4.486 5.491 5.510 5.512 5.512 5.512

(0) (0) (0) (0) (0) (0) (0)

2 5.381 5.425 7.625 8.578 8.695 8.707 8.708
(0) (4.0682) (7.3142) (8.2742) (8.3914) (8.4033) (8.4045)

3 17.746 19.610 24.181 26.036 26.276 26.301 26.303
(16.819) (18.794) (23.332) (25.193) (25.434) (25.459) (25.461)

1 1 2.919 5.016 5.699 5.712 5.713 5.714 5.714
(1.3990)  (1.4022)  (1.4070)  (1.4085)  (1.4087)  (1.4087)  (1.4087)

2 5.622 5.653 5.699 8.799 8.911 8.922 8.923
(2.3003)  (4.6405)  (7.5030)  (85013)  (8.6127)  (8.6241)  (8.6253)

3 17.884 19.801 24.262 26.102 26.341 26.365 26.367
(16984)  (18.934)  (23423)  (25.267)  (25.506)  (25.530)  (25.533)

10 1 7.168 7.172 7.178 7.180 7.181 7.181 7.181
(40329)  (4.1188)  (4.2550)  (4.2068)  (4.3018)  (4.3023)  (4.3024)

2 7.40535 8.275 9.933 10.527 10.602 10.610 10.611
(7.1547)  (8.0262)  (9.6741)  (10.263)  (10.337)  (10.345)  (10.346)

3 19.147 20.895 24.999 26.699 26.920 26.942 26.945
(18450)  (20.179)  (24.240)  (25.926)  (26.145)  (26.168)  (26.170)

100 1 10.262 10.753 11.851 12.304 12.363 12.369 12.370
(7.4030)  (8.0912)  (9.5749)  (10.173)  (10.252)  (10.260)  (10.261)

2 18.669 18.673 18.680 18.683 18.683 18.683 18.683
(18442)  (18.444)  (18449)  (18451)  (18451)  (18451)  (18451)

3 29.049 29.664 31.181 31.843 31.931 31.940 31.941
(28802)  (29.373)  (30.783)  (31.402)  (31.484)  (31.493)  (31.493)

1000 1 11.110 11.940 14.146 15.333 15.497 15.514 15.516
(8.2925)  (9.3196)  (11.939)  (13.224)  (13.405)  (13.424)  (13.426)

2 25.008 25.437 26.607 27.194 27.276 27.285 27.286
(24.685)  (25.117)  (26.295)  (26.887)  (26.971)  (26.979)  (26.980)

3 42.730 42.809 43.003 43.092 43.104 43.106 43.106
(42414)  (42.505)  (42728)  (42.830)  (42.844)  (42.845)  (42.845)

10000 1 11.204 12.077 14.487 15.748 15.930 15.949 15.951
(8.3033)  (04637)  (12.247)  (13.643)  (13.842)  (13.863)  (13.865)

2 25.718 26.282 27.886 28.728 28.848 28.860 28.862
(25.385)  (25.948)  (27.556)  (28.401)  (28.522)  (28.534)  (28.536)

3 44.557 44.821 45.521 45.859 45.906 45.911 45.912
(44.218)  (44.499)  (45.245)  (45.605)  (45.655)  (45.660)  (45.660)

100000 1 11.213 12.090 14.518 15.791 15.974 15.993 15.995
(84035)  (9.4784)  (12.278)  (13.687)  (13.887)  (13.908)  (13.910)

2 25.788 26.365 28.017 28.888 29.012 29.025 29.027
(25.454)  (26.031)  (27.685)  (28.550)  (28.684)  (28.607)  (28.699)

3 44.723 45.011 45.780 46.154 46.206 46.211 46.212
(44382)  (44.687)  (45.504)  (45.900)  (45.955)  (45.961)  (45.961)

Note: Values in parentheses are the frequency parameter for Timoshenko beam without foundation.

Table 4: Variations of the frequency parameter of free vibration of Timoshenko beam

with general boundary conditions partially supported on Winkler foundation.
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From Table 4, it illustrates that in the Timoshenko beam with % = 100000 and % = 100000, the

first, second and third frequency parameter for beam on partial Winkler foundation are 15.995,
29.027 and 46.212, respectively. Also, the first, second and third frequency parameter for Timoshen-
ko beam without the Winkler foundation are 13.910, 28.699 and 45.961, respectively. In comparison
with the Timoshenko beam with % = 100000 and % = 100000, the maximum difference of the

first, second and third frequency parameter for the beam with % = 100000 and % = 0 with and

without the partial Winkler foundation are approximately 33.43%, 1.31% and 0.77%, respectively.
Also, the Euler-Bernoulli beam model can be obtained from the Timoshenko beam model by setting
r? to zero (that is, if the rotational effect is ignored) and a? to zero (that is, if the shear effect is
ignored) (Mei and Mace, 2005). Therefore, the non-dimensional frequency parameter (¢p) of free
vibration of Euler-Bernoulli beam with and without resting on the partial Winkler foundation is
demonstrated in Table 5. In comparison with the Timoshenko beam with % = 100000 and

% = 100000, the maximum difference of the first, second and third frequency parameter for the

Euler-Bernoulli beam with % = 100000 and % = 100000 with and without the partial Winkler

foundation are approximately 2.21%, 0.37% and 0.07%, respectively. Table 5 clearly shows that the
values of the first frequency parameters are almost the same when the stiffness of the rotational
springs is larger than 100.

4.4 The Mode Shapes of the Fixed-free Timoshenko Beam on Winkler Foundation

The influence of the elastic coefficient of uniform Winkler foundation on the mode shapes of fixed-
free Timoshenko beam is evaluated. Thus the beam is considered with the following characteristics:

v=0.3 k=0.85

LZIO m r2 = L
300

o = 2L o Ny, =0

K

Kwi = Kwe = Kwr =K

The first four mode shapes of the fixed-free Timoshenko beam on uniform Winkler foundation and
without axial load are shown in Figure 4. It is observed that there are no slight differences between
the results for K=5EI and K=0 along with the maximum difference being less than 39% for the
maximum magnitude of the 3" mode shape.
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Kn/EI
Kt/EI Mode
0 1 10 100 1000 10000 100000
0 1 1.8925 4.8213 5.5948 5.6135 5.6157 5.6159 5.6160
(0) (0) (0) (0) (0)

2 5.4882 5.5314 8.6295 9.9583 10.129 10.147 10.149

(0) (4.3031)  (8.3363)  (9.6778)  (9.8499)
3 23.229 26.261 34.733 39.318 39.989 40.059 40.066

(22.373)  (25.490)  (34.097)  (38.724)  (39.400)

1 1 3.0980 5.3712 5.7872 5.8005 5.8021 5.8023 5.8024
(1.4025)  (1.4058)  (1.4106)  (1.4122)  (1.4122)

2 5.7125 5.7424 8.8899 10.161 10.326 10.343 10.344
(2.4466)  (4.9877)  (8.6046)  (9.8859)  (10.051)

3 23.390 26.395 34.807 39.369 40.037 40.108 40.114
(22.552)  (25.635)  (34.176)  (38.778)  (39.451)

10 1 7.2186 7.2230 7.2301 7.2324 7.2327 7.2328 7.2328
(4.1304)  (4.2190)  (4.3608)  (4.4047)  (4.4100)

2 7.9041 8.8466 10.937 11.821 11.940 11.952 11.953
(7.6541)  (8.6041)  (10.699)  (11.580)  (11.698)

3 24.842 27.598 35.486 39.837 40.478 40.545 40.551
(24.141)  (26.933)  (34.892)  (39.269)  (39.912)

100 1 10.941 11.582 13.167 13.895 13.994 14.005 14.006
(82757)  (9.1789)  (11.298)  (12.234)  (12.361)

2 21.905 21.907 21.913 21.917 21.917 21.917 21.917
(21.751)  (21.753)  (21.757)  (2L.760)  (21.760)

3 37.187 38.308 42123 44.601 44.989 45.031 45.035
(36.920)  (38.017)  (41.764)  (44.268)  (44.590)

1000 1 12.324 13.620 18.139 21.450 22.015 22.075 22.081
(9.6787)  (11.251)  (16.344)  (19.887)  (20.482)

2 36.667 37.852 42.798 47.229 48.055 48.145 48.154
(36.446)  (37.367)  (42.604)  (47.051)  (47.879)
3 73.540 73.852 75.238 76.581 76.842 76.870 76.873
(73.369)  (73.687)  (75.096)  (76.460)  (76.724)
10000 1 12.492 13.884 18.959 22.921 23.617 23.692 23.699
2 39.405 41.162 49.381 58.286 60.140 60.345 60.366
3 87.417 89.085 98.289 111.35 114.55 114.92 114.96
100000 1 12.509 13.911 19.044 23.076 23.786 23.862 23.870
2 39.687 41.508 50.106 59.538 61.507 61.727 61.747
3 88.852 90.715 101.15 116.25 119.96 120.38 120.39

Note: Values in parentheses are reported from reference (Wang and Wang, 2013) for Euler—Bernoulli beam without foundation.
Table 5: Variations of the frequency parameter of free vibration of Euler—Bernoulli beam with general

boundary conditions partially supported on Winkler foundation
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Figure 4: The mode shapes of the fixed-free Timoshenko beam on uniform

Winkler foundation and without axial load.

5 CONCLUSIONS

This paper presents the free vibration of elastically restrained Timoshenko beam on a partially
Winkler foundation using dynamic green function. An accurate and direct modeling technique is
stated for modeling beam structures with various boundary conditions. This technique is based on
the Green function. The method of Green functions is more efficient and simplistic when compared
with other methods (e.g. series method) due to the Green function yielding precise solutions in
closed forms. In addition, the boundary conditions are embedded in the Green functions by the
Green function method. The effect of different boundary condition, the elastic coefficient of Winkler
foundation, as well as, other parameters are determined. Finally, some numerical examples are
shown to illustrate the efficiency and simplicity of the new formulation based on the Green func-

tion.

Latin American Journal of Solids and Structures 12 (2015) 2417-2438



2436 A. Ghannadiasl and M. Mofid / An Analytical Solution for Free Vibration of Elastically Restrained Timoshenko Beam

References

Abbas, B., (1984). Vibrations of Timoshenko beams with elastically restrained ends. Journal of Sound and Vibration
97: 541-548.

Balkaya, M., Kaya, M.O., Saglamer, A., (2009). Analysis of the vibration of an elastic beam supported on elastic soil
using the differential transform method. Archive of Applied Mechanics 79: 135-146.

Barari, A., Kaliji, H., Ghadimi, M., Domairry, G., (2011). Non-linear vibration of Euler-Bernoulli beams. Latin
American Journal of Solids and Structures 8: 139-148.

Bayat, M., Pakar, 1., Bayat, M., (2011). Analytical study on the vibration frequencies of tapered beams. Latin Amer-
ican Journal of Solids and Structures 8: 149-162.

Bazehhour, B.G., Mousavi, S.M., Farshidianfar, A., (2014). Free vibration of high-speed rotating Timoshenko shaft
with various boundary conditions: effect of centrifugally induced axial force. Archive of Applied Mechanics: 1-10.

Carrera, E., Pagani, A., (2014). Free vibration analysis of civil engineering structures by component-wise models.
Journal of Sound and Vibration.

Doyle, P.F., Pavlovic, M.N.; (1982). Vibration of beams on partial elastic foundations. Earthquake Engineering &
Structural Dynamics 10: 663-674.

Ghannadiasl, A., Mofid, M., (2014). Dynamic Green Function for Response of Timoshenko Beam with Arbitrary
Boundary Conditions. Mechanics Based Design of Structures and Machines 42: 97-110.

Li, W.L., (2000). Free vibrations of beams with general boundary conditions. Journal of Sound and Vibration 237:
709-725.

Mahrenholtz, O.H., (2010). Beam on viscoelastic foundation: an extension of Winkler’s model. Archive of Applied
Mechanics 80: 93-102.

Malekzadeh, P.,; Karami, G., Farid, M., (2003). DQEM for free vibration analysis of Timoshenko beams on elastic
foundations. Computational mechanics 31: 219-228.

Mei, C., Mace, B., (2005). Wave reflection and transmission in Timoshenko beams and wave analysis of Timoshenko
beam structures. Journal of vibration and acoustics 127: 382-394.

Mirzabeigy, A., (2014). Semi-analytical approach for free vibration analysis of variable cross-section beams resting on
elastic foundation and under axial force. International Journal of Engineering-Transactions C: Aspects 27: 385-394.

Motaghian, S., Mofid, M., Alanjari, P., (2011). Exact solution to free vibration of beams partially supported by an
elastic foundation. Scientia Iranica 18: 861-866.

Naidu, N., Rao, G., (1995). Vibrations of initially stressed uniform beams on a two-parameter elastic foundation.
Computers & structures 57: 941-943.

Prokié¢, A., BeSevi¢, M., Luki¢, D., (2014). A numerical method for free vibration analysis of beams. Latin American
Journal of Solids and Structures 11: 1432-1444.

Ratazzi, A.R., Bambill, D.V., Rossit, C.A., (2013). Free Vibrations of Beam System Structures with Elastic Bounda-
ry Conditions and an Internal Elastic Hinge. Chinese Journal of Engineering 2013.

Thambiratnam, D., Zhuge, Y., (1996). Free vibration analysis of beams on elastic foundation. Computers & struc-
tures 60: 971-980.

Wang, C., (1995). Timoshenko beam-bending solutions in terms of Euler-Bernoulli solutions. Journal of Engineering
Mechanics 121: 763-765.

Wang, C., Lam, K., He, X., (1998). Exact Solutions for Timoshenko Beams on Elastic Foundations Using Green's
Functions*. Journal of Structural Mechanics 26: 101-113.

Wang, C.Y., Wang, C., 2013. Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates.
CRC Press.

Latin American Journal of Solids and Structures 12 (2015) 2417-2438



A. Ghannadiasl and M. Mofid / An Analytical Solution for Free Vibration of Elastically Restrained Timoshenko Beam 2437

Wang, T., Stephens, J., (1977). Natural frequencies of Timoshenko beams on Pasternak foundations. Journal of
Sound and Vibration 51: 149-155.

Wang, T.M., Gagnon, L.W., (1978). Vibrations of continuous Timoshenko beams on Winkler-Pasternak foundations.
Journal of Sound and Vibration 59: 211-220.

Wang, Y., Tham, L., Cheung, Y., (2005). Beams and plates on elastic foundations: a review. Progress in Structural
Engineering and Materials 7: 174-182.

Xing, J.-Z., Wang, Y.-G., (2013). Free vibrations of a beam with elastic end restraints subject to a constant axial
load. Archive of Applied Mechanics 83: 241-252.

Yayli, M.O., Aras, M., Aksoy, S., (2014). An Efficient Analytical Method for Vibration Analysis of a Beam on Elas-
tic Foundation with Elastically Restrained Ends. Shock and Vibration 2014.

Yesilce, Y., Catal, H.H., (2011). Solution of free vibration equations of semi-rigid connected Reddy-Bickford beams
resting on elastic soil using the differential transform method. Archive of Applied Mechanics 81: 199-213.

Ying, J., Lii, C., Chen, W., (2008). Two-dimensional elasticity solutions for functionally graded beams resting on
elastic foundations. Composite Structures 84: 209-219.

Zu, J.W.-Z., Han, R.P., (1992). Natural frequencies and normal modes of a spinning Timoshenko beam with general
boundary conditions. Journal of Applied Mechanics 59: S197-S204.

Appendix

The coefficient matrix [Ajj] in Eq. (32) is given for general boundary conditions by:

Ay = %Dl,L Ay, = % Az = %DZL Ay = %

Arq = ﬁlﬁu Dy, Ayp =Dy =127 Apz = ﬁlﬁu Dy, Azy =Dy, —12¢?
Az = - r2a2¢2 — 272 D1r €0s(PARL) — m sin(¢pA,pL) Az10 = . i;22¢2 Dy g sin(@Apl) — m cos(¢AsgL)
Az = ,rz 2¢2 —2 2Dk cosh(¢pAzrL) — ﬁ sinh(¢AxL) Asz12 = ,rz 2¢2 2 Dar sinh(¢Apl) ——* COSh(d)AZRL)
Ago = (Dyg — T2¢2) sin(pA,L) — %1_:;3;(#2 cos(¢pA1zL)

Ag10 = (Dl,R - 7’2¢2) cos(pAgL) — % 1_:)23;(#2 sin(¢pAgL)

Agiy = (Dyp = 72¢) sinh(Popl) + " =2 cosh(pAzel)

g1z = (Dyp = 72¢?) cosh(PAzpl) + 2 24— sinh(pAznL)

As1 = Sin(d’luﬁl,l’) As, = CUS(¢A1L/§LL) Ass = Sinh(d’luﬁl,l’) Asy = COSh(d)/‘{ZLﬁLL)
Ass = —sin(¢pA;cfLL) Ase = — C05(¢/11cﬁLL) Asy = _Sinh(d’lzcﬁLL) Asg = _COSh(d)/‘{ZCﬁLL)
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Ay = D31 A5, Az =Ds) Ass Ag3 =Dyp Asy Aga =Dyp As3
Ags = D3¢ Asg Age = D3 A5y Ag;7 =Dy Asg Agg = Dyc As7
Ay =455 A5, Az =43, A5, Az =HA54As3 Az4 = Az445,

Az = (DI,C - T2¢2) Ass

A8,1 = /11L¢D1,LA5,2

Aa,s = /11C¢D1,CA5,6

Ags = Sin((,BL + ﬁc)qﬁml‘)

Agg = COSh((,BL + ,Bc)qﬁzcl‘)

Ag11 = — Sinh((ﬁl, + ﬁc)d)AZRL)

Ajos = D3cAgg

A109 = D3rAg 10

A5 = (D1,c - TZ¢Z)A9,5

Aq10 = (D1,R - TZ¢Z)A9,9

A12,5 = A—lC(bDl,CA'B,G

A12,9 = /11R¢D1,RA9,10

where:

Az = (D1,c - TZ¢2)A5,6

As,z = A1L¢D1,LA5,5

Aa,s = A—lC(bDl,CAS,l

Agg = COS((ﬁL + ,Bc)¢/11cL)

Ago = _Sin((ﬁL + ﬁc)‘blml‘)

A106 = D3¢ Agg

Ajo10 = D3 Ags

A1 = (D1,c - 7'2¢2)A9,6

At100 = (Dl,R - T2¢2)A9,10

A12,6 = /11C¢D1,CA9,9

A1z,10 = A—lR¢D1,RA9,5

Dy = ((Tz +a*-(1+ azy)lliz)‘Pz - 0‘2771‘)

Dy; = ¢pAy(a@?d?(a? — Ay,°) — a*(m + vA"9?) + 1)
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Azp = (Dz,c - TZ¢2)A5,7

A8,3 = /12L¢D2,LA5,4

A8,7 = Azc‘sz,cAs,a

Ag1z = _COSh((ﬁL + ﬁc)d)AZRL)

A1o7 = DycAog

Aj011 = DarAoia

Apy = (Dz,c - 7'2¢2)A9,7

A = (DZ,R - TZ¢2)A9,11

A12,7 = AZC¢DZ,CA9,8

A12,11 = AZR¢D2,RA9,12

Az = (Dz,c - T2¢2)A5,8

A8,4 = AZL¢DZ,LA5,3

As,a = Azc¢Dz,cAs,7

Ag7 = Sinh((ﬁL + BC)¢/12()L)

Ag10=— COS((ﬁL + ﬁc)qﬁlml‘)

A1og = DycAgy

A1912 = DyrAoan

Apg = (Dz,c - TZ¢Z)A9,8

A2 = (DZ,R - 7'2(1172)149,12

A12,8 = Azc¢Dz,cA9,7

A1z,12 = AZR¢D2,RA9,11

D,; = ((rz +a?+(1+ azy)lzl-z)qﬁz - azni)

Dy = dpAyi(1+ a?¢?(a? + Ay>) — a*(m; — yAz°9?))



