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Abstract 

A cultural algorithm was utilized in this study to solve optimal 

design of truss structures problem achieving minimum weight 

objective under stress and deflection constraints. The algorithm is 

inspired by principles of human social evolution. It simulates the 

social interaction between the peoples and their beliefs in a belief 

space. Cultural Algorithm (CA) utilizes the belief space and popu-

lation space which affects each other based on acceptance and 

influence functions. The belief space of CA consists of different 

knowledge components. In this paper, only situational and norma-

tive knowledge components are used within the belief space. The 

performance of the method is demonstrated through four bench-

mark design examples. Comparison of the obtained results with 

those of some previous studies demonstrates the efficiency of this 

algorithm. 
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1 INTRODUCTION 

In recent decades, various optimization techniques have been applied to optimal design of truss 

structure with stress and deflection constraints. The optimum design of truss structures are usually 

categorized into three different optimization problems: size, layout and topology optimizations. In 

the first category, only the cross sectional areas of the members are considered to minimize the 

weight of the structure, while the nodal coordinates of the truss are also taken as design variables in 

the layout optimization of truss structures. In the third category, the number of members of the 

structure and the connectivity of them are optimized. This paper focuses on the first category of 

truss optimum design problem, in which only sizing variables are considered as design variables. 

Over the last years, the studies on meta-heuristic search methods such as Particle Swarm Opti-

mization (PSO) (Eberhart and Kennedy, 1995), Ant Colony Optimization (ACO) (Dorigo, 1992), 

Harmony Search (HS) (Geem et al., 2001), Simulated Annealing (SA) (Kirkpatrick et al., 1983) and 

Big Bang-Big Crunch (BB-BC) (Erol and Eksin, 2006) have shown that these methods can be effi-
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ciently used to solve engineering optimization problems characterized by non-convexity, discontinui-

ty and non-differentiability. Most of these stochastic search methods are simulation of the specific 

phenomenon in the nature such as social behavior of bird flocking or fish schooling, evolution theo-

ries of the universe and annealing processes in materials. 

Researchers have been applied various meta-heuristic optimization algorithms to the optimal de-

sign of truss structures. For example, Camp (2007) employed original BB-BC to size optimization of 

truss structures with continues and discrete design variables. Lamberti (2008) suggested a heuristic 

algorithm based on SA. Hasancebi et al. (2009) evaluated the performance of different algorithms in 

optimal design of pin jointed structures. 

As extensions of meta-heuristic algorithms, hybrid algorithms have been developed to improve 

the performance of original meta-heuristic algorithms. The main aim of developing hybrid algo-

rithms is to provide an adequate balance between the exploration and exploitation mechanisms. 

The exploration mechanism is related to the ability of algorithm to the performing efficient search 

in solution space of the optimization problem, while the exploitation mechanism is related to the 

ability of finding better solutions in the vicinity of the current solutions. Such hybrids have been 

successfully applied to optimal design of truss structures. For instance, Li et al. (2007) introduced a 

heuristic particle swarm optimizer (HPSO) for size optimization of truss structures. Kaveh and 

Talatahari (2009a) proposed particle swarm optimizer, ant colony strategy and harmony search 

scheme. This method is based on the particle swarm optimizer with passive congregation (PSOPC), 

ant colony optimization and harmony search scheme. Degertekin (2012) presented an efficient har-

mony search algorithm (EHS) and self-adaptive harmony search algorithm (SAHS) for sizing opti-

mization of truss structures. In another work, Degertekin and Hayalioglu (2013) used teaching-

learning-based optimization (TLBO) method for sizing truss structures which is a new meta-

heuristic search method. TLBO simulates the social interaction between the learners and teacher. 

Kaveh and Talatahari (2009b, 2010a) proposed a hybrid big bang-big crunch (HBB-BC) by combin-

ing BB-BC algorithm and with Sub Optimization Mechanism (SOM) for size optimization of space 

trusses and ribbed domes. In this method, SOM is an auxiliary tool which works as a search-space 

updating mechanism.  

In some cases, researchers utilized novel optimization algorithms. For example, Kaveh and 

Talatahari (2010b,c,d, 2012) utilized Charged System Search (CSS) to optimal design of frame, gril-

lage and skeletal structures and Imperialist Competitive Algorithm (ICA)) for size optimization of 

skeletal structures. And recently, Kaveh and Khayatazad (2013) employed Ray Optimizer (RO) to 

size and shape optimization of truss structures. Sonmez (2011) used Artificial Bee Colony (ABC) 

algorithm to sizing of truss structures. 

In this study, a specific version of Cultural Algorithms (CAs) is utilized to size optimization of 

truss structures. CA is a population based random search method which simulates the social evolu-

tion process. Compared with other meta-heuristic methods, CA uses a belief space beside the popu-

lation space. The belief space is divided into distinct categories. In this paper, only two categories, 

called Normative knowledge, and Situational knowledge are used within the belief space. The algo-

rithm is an iterative process in which new populations are obtained using influence function based 

on knowledge components of belief space. Four truss design examples are utilized with stress and 
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deflection constraints and results are compared with different methods in order to show the efficacy 

of present approach. 

 The remainder of this paper is organized as: mathematical description of the optimum design 

problem is first reviewed in Section 2. Then, Section 3 presents a brief review of the CA. In Section 

4, the effectiveness of CA is verified by four design examples. Finally, conclusions are presented in 

Section 5. 

 
2 OPTIMUM DESIGN PROBLEM 

The main aim of optimal design of a truss structure is to minimize the weight of the structure while 

satisfying some constraints on stresses and deflections. In this class of optimization problems, cross 

sectional areas are taken as design variables. The optimal design of a truss structure can be formu-

lated as: 
 

Find: A=[ A1,A2,…,And ] 
 

 

 

 

 

 

(1) 

To minimize: W({A})= 

 

Subjected to: 

  
       

                             
 

                               
 

                              

 

Where A is the vector containing the design variables; m is the number of members making up the 

structure; W(.) is the weight of the structure; γi is the material density of member i; Ai is the cross-

sectional area of the member i which is between Amin and Amax; Li is the length of the member i; nd 

is the number of design variables; n is the number of nodes;   
  and   

  are the allowable tension and 

compressive stresses for member i, respectively; δi is the displacement of node i and  δmin and   δmax 

are corresponding lower and upper limits. 

Optimal design of truss structure should satisfy the above mentioned constraints. In this study, 

the constraints are handled by using a simple penalty function method. Thus, a fitness function 

must be given to evaluate the quality of a solution candidate. For each solution candidates, follow-

ing cost function is defined: 

 

                          (2) 

                          (3) 

 

Where fpenalty, is the penalty function represented by solution A, q is the number of constraints and 

  is the penalty factor which is related to the violation of constraints. In order to obtain the values 
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of   , the stresses and nodal displacements of the structure are compared to the corresponding up-

per or lower bounds as follow. 

 

 
       

  
      

  
                                          

           
  

                                         
       

 

  

 

(4) 

 

As it can be seen from Eq. (4), if the constraints are not violated, the value of the penalty function 

will be zero. In Eq. (3), the values of parameters ε1 and ε2 are selected considering the exploration 

and the exploitation rate of the search space. In this study ε1 is taken as unity, and ε2 starts from 2 

and gradually increases. The value of ε2 for tth iteration is calculated as follow: 

 
  

      
             (5) 

 

3 CULTURAL ALGORITHM 

CA is a stochastic optimization technique originally developed by Reynolds (1991, 1999) inspired by 

theories of cultural evolution in sociology and archaeology. In fact, each society has a population 

and the individuals are the members of this population. The individuals of a society have cultural 

experiences that acquired by the previous generations. Culture can be seen as a set of ideological 

phenomena shared by a population (Peter et al., 2004), which consists of the beliefs, art and other 

things that acquired and transformed to the current generation by the previous generations. Soci-

ologists believe that that the most of those forms of culture might be symbolically encoded and 

shared among the individuals of the society as a inheritance mechanism, and this mechanism may 

enhance the adaptability of the societies as well as accelerate the evolution speed of the society by 

making use of the domain knowledge obtained from generation to generation and spreading those 

useful information among all the individuals of the society (Youlin et al., 2011). Based on the 

described mechanism, the CA simulates the social interactions between the individuals of the popu-

lation to develop a new optimization method. This algorithm uses the domain knowledge extracted 

during the optimization in order to bias the search process. As illustrated in Figure 1, CA utilizes 

two population and belief spaces which influence each other based on influence and acceptance 

functions. The population space consists of possible solution candidates to the optimization problem 

and the belief space records the cultural information about the behaviors and experiences of elites in 

the population space. 

 
3.1 Belief Space 

As mentioned before, the belief space consists of different knowledge components. The types of 

knowledge components depend mainly on the optimization problem being solved. Generally, the 

belief space consists of the following two knowledge components (Reynolds and Chung, 1997): 
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1. A Situational knowledge component, which is includes the best experience or solution gained by 

whole individuals in population space. This knowledge component is like global best in particle 

swarm optimization. 

2. A Normative knowledge component, which is record the behaviors and experiences of accepted 

individuals from the population space and provide a set of intervals, one for each dimension of 

the problem. These intervals specify the ranges of search space which is good to search, and 

eliminate undesirable parts. 

 

In addition, another three knowledge components can be added, such as domain knowledge, histori-

cal knowledge and topographical knowledge components (Reynolds and Saleem, 2000; Peng et al., 

2003). But in this paper, only two knowledge components (Situational and Normative) are used in 

the belief space. Thus, the belief space expressed as the tuple: 

 

Figure 1: Illustration of components of the Cultural algorithm. 

 

B(t) = (S(t) , N(t)) (6) 

Where S(t) and N(t) is the Situational and Normative knowledge components, respectively, and can 

be expressed as: 

S(t) = {A*(t) } 

N(t) = {X1,…,Xn } 

(7) 

(8) 

 For each dimension following information is stored: 

 

Xj={Ij(t),Lj(t),Uj(t)}   , j=1,2,...,nd (9) 
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 Where, {A*(t)} is the vector of Situational design variables and nd is the number of design varia-

bles. Ij(t) denotes the interval    
         

        for design variable j, which is assigned   
       

and   
       for all design variables at the beginning time t=0. Lj (t) and Uj (t) represents the 

scores for the lower and upper bounds of design variable j. Lj (t) and Uj (t) initialized to   . 

 

3.2 Acceptance Function 

The acceptance function determines the number of solution candidates from the population space to 

adjust knowledge components of belief space. For this purpose there are two static and dynamic 

methods. In static method, the number of individuals that accepted to shape beliefs is fixed during 

the time, while in the dynamic methods changes with respect to time. In this paper, static method 

is employed to accept individuals to shape beliefs. Thus, the top %N of individuals based on fitness 

values is accepted to adjust the belief space. 

 
3.3 Adjusting the Belief Space 

The knowledge components of belief space are adjusted by selected individuals as follows: 

3.3.1 Situational Knowledge 

 
                                                

                                                                     
              k=1,2,…,na (10) 

Where W(.) is the weight of the structure,        is the vector of kth accepted individual and na is 

the number of accepted individuals to adjust the belief space. 

 

3.3.2 Normative Knowledge 

 

  
           

  
                        

       
                             

  
                                                                                            

  

 

  
          

  
                        

       
                           

  
                                                                                          

  

 

         
                        

       
                             

                                                                                  
  

 

          
                     

       
                            

                                                                                               
  

 

(11) 

 

 

(12) 

 

 

 

(13) 

 

 

(14) 

Where   
     is the jth variable of the kth accepted individual to adjust belief space. 
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3.4 Influence Function 

The positions of individuals in the population space are updated by influence function. Reynolds 

and Chung (1997) proposed four influence function to update positions. In this paper, only following 

influence function is used: 

 

         =  

                                         
    

                                        
    

                                                 

          i=1,2,..,ni  , j=1,2,..,nd 

 

(15)   

 

Where          is the new solution at time t for individual i and variable j, N(0,1) is a normally 

distributed random variable with a mean of 0 and a standard deviation of  1, ni is the number of 

individuals used in population space, nd is the number of design variables and σij is the strategy 

parameter for individual i and design variable j which is calculated as follow: 

          
         

        (16) 

Where β is the user defined parameter. Finally, the optimal design of truss structures with CA can 

be summarized as following steps: 

Step 1: Initialization 

In this step, the initial population space is randomly generated between the lower and upper bounds 

for each design variable. 

 

Step 2: Create and initialize the belief space. 

The initial belief space created and initialized as explained in Section 3.1. 

 

Step 3: Evaluation 

Evaluation of each individual in population space and selecting the top %N of individuals based on 

the fitness values for adjust the belief space.  

 

Step 4: Adjust Beliefs 

In this step, the knowledge components of belief space are adjusted by accepted individuals as de-

scribed in Section 3.3. 

 

Step5: Influence population 

In this step, the positions of individuals are updated by influence function as explained in Section 

3.4. 

Step 6: Finish or redoing 

Steps 3, 4 and 5 repeated until a terminating criterion is fulfilled. 
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4 DESIGN EXAMPLES 

In this section, four design examples have been conducted to assess the performance of the CA ap-

proach for the optimal design of truss structures with stress and deflection constraints: 10-bar pla-

nar truss, 25-bar spatial truss, 72-bar spatial truss and 120-bar dome truss. The performance of 

present algorithm is compared with some simple and improved algorithms from literature. 

 

 

Figure 2: Scheme of the 10-bar planar truss. 

In the all design examples, the population sizes of the algorithm are taken as 10, the number of 

accepted individuals to adjust belief space is 4 and the value of β parameter is chosen as uniformly 

random number between 0 and 1. Due to stochastic nature of algorithm, the algorithm carries out 

independently for 10 times for each design example. Each run stops when the maximum structural 

analyses are reached. The maximum number of the structural analyses for each design example is 

different and it is depends on the dimension of the optimization problem. Therefore, the maximum 

structural analyses are set to 24,000 for example 1 and 20,000 for examples 2 and 3. For the last 

example, 12,000 structural analyses are considered.  

The CA algorithm and direct stiffness method for analysis of truss structures have been imple-

mented in MATLAB program and run in Dell Vostro 1520 with Intel CoreDuo2 2.66 GHz processor 

and 4 GB RAM memory. 

 
4.1 A 10-bar Planar Truss 

The 10-bar planar truss shown in Figure 2 is the first design example. The Young’s modulus and 

material density of truss members are 104 ksi and 0.1 lb/in3 , respectively. The members are sub-

jected to the stress limits of ±25 ksi. The maximum nodal displacements in X and Y directions are 

limited to ±2 in for all free nodes. The minimum allowable cross sectional area of each member is 
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taken as 0.1 in2. In this design example, the loading condition is considered as: P1=150 kips and 

P2=50 kips.  

In Table 1, the results obtained by the CA are compared with those reported in the literature 

like PSO, PSOPC, HPSO, ABC-AP, EHS, SAHS and TLBO. From Table 1, it can be concluded 

that CA gives lightest design as compared to the results obtained by PSO, EHS, SAHS and TLBO, 

but heavier design than PSOPC, HPSO and ABC-AP methods. However, it is clear from Table 1 

that the CA required significantly less structural analyses than PSOPC, HPSO and ABC-AP meth-

ods. In addition, TLBO obtained 4678.31 lb after 14,875 structural analyses, while CA found the 

same weight after 10,510 structural analyses. 

In addition, the convergence behaviors of the best solution and the average of 10 independent 

runs are shown in Figure 3. 

 

 

Table 1: Optimized designs for the 10-bar planar truss. 

Design      

variables 

(in
2
)    

Li et al. (2007) 

  

Sonmez 

(2011) 
Degertekin (2012) 

Degertekin       

and                     

Hayalioglu 

(2013)   

This 

study 

    PSO PSOPC HPSO ABC-AP EHS SAHS TLBO 

 

CA 

A1 

 

22.935 23.473 23.353 23.4692 23.589 23.525 23.524 

 

23.1610 

A2 

 

0.102 0.101 0.100 0.1005 0.100 0.100 0.100 

 

0.1000 

A3 

 

25.355 25.287 25.502 25.2393 25.422 25.429 25.441 

 

25.9465 

A4 

 

14.373 14.413 14.250 14.3540 14.488 14.488 14.479 

 

14.4840 

A5 

 

0.100 0.100 0.100 0.1001 0.100 0.100 0.100 

 

0.1000 

A6 

 

1.990 1.969 1.972 1.9701 1.975 1.992 1.995 

 

1.9699 

A7 

 

12.346 12.362 12.363 12.4128 12.362 12.352 12.334 

 

12.2929 

A8 

 

12.923 12.694 12.984 12.8925 12.682 12.698 12.689 

 

12.9209 

A9 

 

20.678 20.323 20.356 20.3343 20.322 20.341 20.354 

 

20.0708 

A10 

 

0.100 0.103 0.101 0.1000 0.100 0.100 0.100 

 

0.1000 

           
Weight 

(lb) 
4679.47 4677.70 4677.3 4677.077 4679.02 4678.84 4678.31 

 
4678.01 

Average 

weight (lb) 
N/A N/A N/A N/A 4681.61 4680.08 4680.12 

 
4681.5 

Standard     

deviation 

(lb) 

N/A N/A N/A N/A 2.51 1.89 1.016 
 

3.86 

No. of     

analyses 
150,000 150,000 125,000 500×10

3 
11,402 7267 14,857   17,600 
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Figure 3: Convergence diagrams for the 10-bar planar truss. 

 

 

4.2 A 25-bar Spatial Truss Structure 

The second design example deals with the size optimization of a twenty-five-bar spatial truss 

structure shown in Figure 4. The Young’s modulus and material density of truss members are  

104ksi and 0.1 lb/in3, respectively. Twenty five members are categorized into eight groups, as 

follows: (1) A1, (2) A2 – A5, (3) A6 – A9, (4) A10 – A11, (5) A12 – A13, (6) A14 – A17, (7) A18 – A21, 

and    (8) A22 – A25. 

The spatial truss structure is subjected to the multiply loading condition as shown in Table 2. 

The maximum nodal displacements in all directions are limited to ±0.35 in for all free nodes. The 

allowable tension stresses are the same for the all design groups, but the allowable compressive 

stresses depend to the length of the members and it is different for each design group as shown in 

Table 3. The range of cross sectional areas varies from 0.01 in2 to 3.4 in2. 

The optimization results obtained by the CA are presented in Table 4 and are compared with 

those of the PSO, PSOPC, HPSO, BB-BC, EHS, SAHS and TLBO approaches. From Table 4, it 

is evident that CA yields lighter structural weight than other methods. The best result of the CA 

approach is 545.05, while it is 545.19, 545.38, 545.15, 545.49, 545.12 and 545.09 lb for the HPSO, 

BB-BC, EHS, SAHS and TLBO algorithm, respectively. In addition, it is observed that TLBO 

found minimum weight of 545.09 lb after 15,318 structural analyses while CA obtained the same 

weight after 7000 structural analyses. Also the convergence behaviors of the best solution and the 

average of 10 independent runs are presented in Figure 5.   
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Figure 4: Scheme of the 25-bar spatial truss structure. 

 

 

Node Condition 1 
  

Condition 2 
 

 
Px Py Pz 

 
Px Py Pz 

1 0.0 20.0 -5.0 
 

1.0 10.0 -5.0 

2 0.0 -20.0 -5.0 
 

0.0 10.0 -5.0 

3 0.0 0.0 0.0 
 

0.5 0.0 0.0 

6 0.0 0.0 0.0 
 

0.5 0.0 0.0 

Note: loads are in kips. 
 

Table 2: Loading conditions for the 25-bar spatial truss. 
 

 

 

Table 3: Allowable stress values for the 25-bar spatial truss. 

Element group Allowable compressive stress (ksi) Allowable tension stress (ksi) 

1 35.092 40.0 

2 11.590 40.0 

3 17.305 40.0 

4 35.092 40.0 

5 35.092 40.0 

6 6.759 40.0 

7 6.959 40.0 

8 11.082 40.0 
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Table 4: Optimized designs for the 25-bar spatial truss. 

Design       

variables (in
2
) 

Li et al. 

(2007) 

 

Camp (2007) 
Degertekin 

(2012) 

Degertekin 

and     

Hayalioglu  

(2013) 

This 

study 

  PSO PSOPC HPSO BB-BC EHS SAHS TLBO CA 

1      A1  9.863 0.010 0.010 0.010 0.010 0.010 0.0100 0.010000 

2      A2 – A5 1.798 1.979 1.970 2.092 1.995 2.074 2.0712 2.020640 

3      A6 – A9 3.654 3.011 3.016 2.964 2.980 2.961 2.9570 3.017330 

4      A10 – A11 0.100 0.100 0.010 0.010 0.010 0.010 0.0100 0.010000 

5      A12 – A13 0.100 0.100 0.010 0.010 0.010 0.010 0.0100 0.010000 

6      A14 – A17 0.596 0.657 0.694 0.689 0.696 0.691 0.6891 0.693830 

7      A18 – A21 1.659 1.678 1.681 1.601 1.679 1.617 1.6209 1.634220 

8      A22 – A25 2.612 2.693 2.643 2.686 2.652 2.674 2.6768 2.652770 

         Weight (lb) 627.08 545.27 545.19 545.38 545.49 545.12 545.09 545.05 

Average     

weight (lb) 
N/A N/A N/A 545.78 546.52 545.94 545.41 545.93 

Standard      

deviation (lb) 
N/A N/A N/A 0.491 1.05 0.91 0.42 1.55 

No. of  analyses 150,000 150,000 125,000 20,566 10,391 9051 15,318 9380 

 
4.3 A 72-bar Spatial Truss Structure 

A 72-bar spatial truss shown in Figure 6 is the third design example. The Young’s modulus and 

material density of truss members are 0.1 lb/in3 and 104 ksi, respectively. The 72 members of this 

spatial truss are divided into 16 groups using symmetry, as follows: 
 

 
 

Figure 5: Convergence diagrams for the 25-bar spatial truss. 
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Figure 6: Scheme of the 72-bar spatial truss: (a) top and side view, 

(b) element and node numbering pattern for first story. 
 

 
 

Node Condition 1     Condition 2   

 
 Px  Py  Pz 

 
 Px  Py  Pz 

17 5.0 5.0 -5.0 
 

0.0 0.0 -5.0 

18 0.0 0.0 0.0 
 

0.0 0.0 -5.0 

19 0.0 0.0 0.0 
 

0.0 0.0 -5.0 

20 0.0 0.0 0.0   0.0 0.0 -5.0 

 

Note: loads are in kips. 
 

Table 5: Loading conditions for the 72-bar spatial truss. 
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Table 6: Optimized designs for the 72-bar spatial truss.   

Design                    

Variables (in
2
) 

Camp  

(2007) 

Kaveh and   

Talatahari 

(2009
b
) 

Kaveh and    

Khayatazad 

(2013) 

Degertekin 

(2012) 

Degertekin 

and      

Hayalioglu 

(2013) 

 
This study 

 

 
BB-BC HBB-BC RO EHS SAHS TLBO 

 
CA 

1     A1 – A4 1.8577 1.9042 1.83649 1.967 1.860 1.90640 
 

1.860930 

2     A5 – A12 0.5059 0.5162 0.502096 0.510 0.521 0.50612 
 

0.509300 

3     A13 – A16 0.1000 0.1000 0.100007 0.100 0.100 0.10000 
 

0.100000 

4     A17 – A18 0.1000 0.1000 0.10039 0.100 0.100 0.10000 
 

0.100000 

5     A19 – A22 1.2476 1.2582 1.252233 1.293 1.271 1.26170 
 

1.262910 

6     A20 – A30 0.5269 0.5035 0.503347 0.511 0.509 0.51110 
 

0.503970 

7     A31 – A34 0.1000 0.1000 0.100176 0.100 0.100 0.10000 
 

0.100000 

8     A35 – A36 0.1012 0.1000 0.100151 0.100 0.100 0.10000 
 

0.100000 

9     A37 – A40 0.5209 0.5178 0.572989 0.499 0.485 0.53170 
 

0.523160 

10    A41 – A48 0.5172 0.5214 0.549872 0.501 0.501 0.51591 
 

0.525220 

11    A49 – A52 0.1004 0.1000 0.100445 0.100 0.100 0.10000 
 

0.100010 

12    A53 – A54 0.1005 0.1007 0.100102 0.100 0.100 0.10000 
 

0.102540 

13    A55 – A58 0.1565 0.1566 0.157583 0.160 0.168 0.15620 
 

0.155962 

14    A59 – A62 0.5507 0.5421 0.52222 0.522 0.584 0.54927 
 

0.553490 

15    A63 – A70 0.3922 0.4132 0.435582 0.478 0.433 0.40966 
 

0.420260 

16    A71 – A72 0.5922 0.5756 0.597158 0.591 0.520 0.56976 
 

0.561500 

          Best weight 

(lb) 
379.85 379.66 380.458 381.03 380.62 379.63 

 
379.69 

Average weight 

(lb) 
382.08 381.85 382.5538 383.51 382.42 380.20 

 
380.86 

Standard de-

viation (lb) 
1.912 1.201 1.2211 1.92 1.38 0.41 

 
1.8507 

No. of analyses 19,621 13,200 19,084 15,044 13,742 19,778 
 

18,460 
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Figure 7: Convergence diagrams for the 72-bar spatial truss. 

(1)A1 – A4, (2) A5 – A12, (3) A13 – A16, (4) A17 – A18, (5) A19 – A22, (6) A20 – A30, (7) A31 – A34, 

(8) A35 – A36, (9) A37 – A40, (10) A41 – A48, (11) A49 – A52, (12) A53 – A54, (13) A55 – A58, (14) 

A59 – A62, (15) A63 – A70, (16) A71 – A72. 

 

The spatial truss structure is subjected to the loading conditions given in Table 5. The maximum 

nodal displacements in all directions are limited to ±0.25 in for all free nodes. The minimum and 

maximum cross sectional areas for each member are 0.1 in2 and 4 in2, respectively. 

The optimization results obtained by the CA are presented in Table 6 and are compared with 

those of the BB-BC, HBB-BC, RO, EHS, SAHS and TLBO approaches. From Table 6, it can be 

concluded that CA gives lightest design as compared to the results obtained by BB-BC, RO, EHS, 

SAHS and TLBO, but slightly heavier design than HBB-BC and TLBO methods.  Moreover, the 

convergence diagrams of the best solution and the average of 10 independent runs are presented in 

Figure 7. 

 
4.4 A 120-bar Dome Truss 

The fourth design example is the size optimization of a 120-bar dome truss shown in Figure 8. Ta-

ble 7 presents the nodal coordinates of this structure. The members of the structure are divided into 

7 groups using symmetry as shown in Figure 8.  The modulus of elasticity is 30,450 ksi, and the 

material density is 0.288 lb/in3. The yield stress of steel is taken as 58.0 ksi. The dome is subjected 

to the vertical loading at all free nodes. These loads are taken as −13.49 kips at node 1, −6.744 kips 

at nodes 2 through 14, and −2.248 kips at the rest of the nodes. The minimum cross sectional area 

of all members is 0.775 in2 and the maximum cross sectional area is taken as 20.0 in2. The stress 

and displacement constraints are considered as: 
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Figure 8: Scheme of the 120-bar dome truss. 

 

(1) Stress constraint    (according to the AISC ASD (1989) code): 

 
  

                     

  
                               

  (17) 
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Where   
  is calculated according to the slenderness ratio: 

 

 
 
 

 
     

  
 

   
 
      

 

 
 

   

  
 

  
 

   
                   

     

    
                                                               

  (18) 

 

 

  Coordinate (in)     Coordinate (in) 

Node X Y Z 
 

Node X Y Z 

1 0.000 0.000 275.590 
 

26 -492.120 0.000 118.110 

2 273.260 0.000 196.850 
 

27 -475.350 -127.370 118.110 

3 236.650 136.630 196.850 
 

28 -426.190 -246.060 118.110 

4 136.630 236.650 196.850 
 

29 -347.980 -347.980 118.110 

5 0.000 273.260 196.850 
 

30 -246.060 -426.190 118.110 

6 -136.630 236.650 196.850 
 

31 -127.370 -475.350 118.110 

7 -236.650 136.630 196.850 
 

32 0.000 -492.120 118.110 

8 -273.260 0.000 196.850 
 

33 127.370 -475.350 118.110 

9 -236.650 -136.630 196.850 
 

34 246.060 -426.190 118.110 

10 -136.630 -236.650 196.850 
 

35 347.981 -347.980 118.110 

11 0.000 -273.260 196.850 
 

36 426.188 -246.060 118.110 

12 136.630 -236.650 196.850 
 

37 475.351 -127.370 118.110 

13 236.650 -136.630 196.850 
 

38 625.590 0.000 0.000 

14 492.120 0.000 118.110 
 

39 541.777 312.795 0.000 

15 475.351 127.370 118.110 
 

40 312.795 541.777 0.000 

16 426.188 246.060 118.110 
 

41 0.000 625.590 0.000 

17 347.981 347.981 118.110 
 

42 -312.800 541.777 0.000 

18 246.060 426.188 118.110 
 

43 -541.780 312.795 0.000 

19 127.370 475.351 118.110 
 

44 -625.590 0.000 0.000 

20 0.000 492.120 118.110 
 

45 -541.780 -312.800 0.000 

21 -127.370 475.351 118.110 
 

46 -312.800 -541.780 0.000 

22 -246.060 426.188 118.110 
 

47 0.000 -625.590 0.000 

23 -347.980 347.981 118.110 
 

48 312.795 -541.780 0.000 

24 -426.190 246.060 118.110 
 

49 541.777 -312.800 0.000 

25 -475.350 127.370 118.110 
     

 

Table 7: The nodal coordinates of the 120-bar dome truss. 
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Where E = the modulus of elasticity;   = the yield stress of steel;   = the slenderness ratio (  ) 

dividing the elastic and inelastic buckling regions               ;   = the slenderness ratio 

          ); k = the effective length factor;   = the member length; and    = the radius of gyra-

tion. In addition, the radius of gyration (  ) can be expressed in terms of cross-sectional areas as 

       (Saka, 1990), in which α and β are the constants depending on the types of selected sec-

tions for the truss members. In this example, similar to the previous works, the pipe section 

(a=0.4993 and b=0.6777) is selected. 

 

(2) The maximum nodal displacements are limited to 0.1969 in for all free nodes. 

In this example, four cases of constraints are considered as follows: 

Case (1): with stress constraints and without any limitations of nodal displacement. 

Case (2): with stress constraints and displacement limitations of ±0.1969 in imposed on all nodes in      

x- and y-directions. 

Case (3): displacement limitation of ±0.1969 in only in z-direction and without stress constraints. 

Case (4): all constraints explained in cases 1, 2 and 3 are considered together. 

 
 

Design variables (in
2
) 

 

Kaveh and 

Talatahari 

(2009
a
) 

Kaveh and       

Khayatazad 

(2013) 
 

This study 

  
PSO PSOPC RO 

 
CA 

1 
 

3.147 3.235 3.128 
 

3.122897 

2 
 

6.376 3.37 3.357 
 

3.353849 

3 
 

5.957 4.116 4.114 
 

4.111981 

4 
 

4.806 2.784 2.783 
 

2.782138 

5 
 

0.775 0.777 0.775 
 

0.775000 

6 
 

13,798 3.343 3.302 
 

3.300503 

7 
 

2.452 2.454 2.453 
 

2.445793 

       

Weight (lb) 
 

32432.9 19618.7 19476.193 
 

19454.49 

No. of analyses N/A 125,000 19,950 
 

4270 

 

Table 8: Optimized designs for 120-bar dome truss (Case 1). 
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Design variables (in
2
) 

 

Kaveh and Talatahari 

(2009
a
) 

Kaveh and        

Khayatazad (2013) 
  

This 

study 

  
PSO PSOPC RO   CA 

1 

 

15.978 3.083 3.084  
3.0831690 

2 

 

9.599 3.639 3.360 
 

3.3526138 

3 

 

7.467 4.095 4.093 
 

4.0927515 

4 

 

2.790 2.765 2.762 
 

2.7612602 

5 

 

4.324 1.776 1.593 
 

1.5922992 

6 

 

3.294 3.779 3.294 
 

3.2927453 

7 

 

2.479 2.438 2.434 
 

2.4335890 

 
 

     
Weight (lb) 

 

41052.7 20681.7 20071.90 

 

20064.69 

No. of analyses N/A 125,000 19,950   7600 

 

Table 9: Optimized designs for 120-bar dome truss (Case 2). 

 

 

Table 10: Optimized designs for 120-bar dome truss (Case 3). 

 Design variables (in
2
) 

Kaveh and Talatahari 

(2009 
a
) 

Kaveh and Khayatazad 

(2013)  
This study 

 
PSO PSOPC RO 

 
CA 

1 1.773 2.098 2.044 
 

1.97582 

2 17.635 16.444 15.665 
 

15.47210 

3 7.406 5.613 5.848 
 

5.58273 

4 2.153 2.312 2.29 
 

2.20966 

5 15.232 8.793 9.001 
 

9.46333 

6 19.544 3.629 3.673 
 

3.75880 

7 0.8 1.954 1.971 
 

1.97027 

      
Weight (lb) 38273.83 31776.2 31733.2 

 
31680.60 

No. of analyses N/A 125,000 19,850   11,930 
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Table 11: Optimized designs for 120-bar dome truss (Case 4). 

 

 

The optimal cross sectional areas obtained by the CA and the other optimization methods recently 

published in literature are reported in Table 8, Table 9, Table 10 and Table 11 for all cases. In Cas-

es 1, 2 and 3, it is quite evident that CA gives the lightest designs than other techniques in the 

literature based on Table 8, Table 9 and Table 10. For case 4, from Table 11, it can be concluded 

that CA gives the lightest design as compared to the results obtained by PSOPC, PSACO, HBB-

BC, ICA and RO, but slightly heavier design than CSS method. 

For all cases, Figures 9-12 compare the existing values (the member’s stresses corresponding to 

the best solution) and allowable values for stress and displacement constraints. Based on these fig-

ures, it can be concluded that the stress and displacement constraints of the structure are not vio-

lated and the presented optimum designs are completely feasible. In addition, it can be seen that 

the axial stresses in the most of the members of the structure are very close to the allowable values, 

which show the optimality of the presented designs. 

 

 

 Design variables 

(in
2
) 

Kaveh and Talatahari (2009
a,b

) 
Kaveh and        

Talatahari (2010
c
) 

Kaveh and 

Khayatazad 

(2013) 

  
This 

study 

  
PSOPC PSACO HBB-BC ICA CSS RO 

 
CA 

1 

 

3.040 3.026 3.037 3.02750 3.027 3.030 
 

3.02591 

2 

 

13.149 15.222 14.431 14.45960 14.606 14.806 
 

14.7652 

3 

 

5.646 4.904 5.130 5.24460 5.044 5.440 
 

5.08463 

4 

 

3.143 3.123 3.134 3.14130 3.139 3.124 
 

3.13569 

5 

 

8.759 8.341 8.591 8.45410 8.543 8.021 
 

8.43852 

6 

 

3.758 3.418 3.377 3.35670 3.367 3.614 
 

3.35678 

7 

 

2.502 2.498 2.500 2.49447 2.497 2.487 
 

2.49627 

 

 

        

Weight (lb) 

 

33481.2 33263.9 33287.9 33256.2 33251.9 33317.8 
 

33253.95 

No. of analyses 150,000 32,600 10,000 6000 7000 19,800   5800 
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Finally the convergence characteristics of the CA are shown in Figure 13 for all cases. 

 

 

Figure 9: Comparison of existing and allowable stresses (four Cases). 
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Figure 10: Comparison of existing and allowable displacements in x direction (four Cases). 
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Figure 11: Comparison of existing and allowable displacements in y direction (four Cases). 
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Figure 12: Comparison of existing and allowable displacements in z direction (four Cases). 
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Figure 13: Convergence diagrams of the best results for the 120-bar dome truss (four Cases). 

 

5 CONCLUSIONS 

This work addresses application of Cultural Algorithm (CA) to optimal design of truss structures 

under stress and deflection constraints. CA is a population based meta-heuristic algorithm which 

uses the belief space beside the population space. The belief space of the CA has different 

knowledge components. In this paper, only two normative and situational knowledge components 

are used in the belief space. In belief space, the behaviors and experiences of elite individuals are 

recorded and then used to bias the search process of the algorithm. The performance of the CA is 

evaluated using a set of four well-known truss design examples. The numerical results show the 

efficiency and capabilities of the CA in finding the optimal designs for truss structures. The compar-

isons of the results obtained by the CA and other optimization methods show that the CA obtains 

relatively light structural weights with less structural analyses. Moreover, the same parameters are 

used for the all design examples and the separate sensitivity analyses of internal parameters are not 

required for the each design example. Furthermore, the feasibility of the obtained optimum designs 

are investigated in the last design example and it is shown that the stress and displacement con-

straints are not violated at the optimum designs. In order to enhance the exploration and exploita-

tion mechanisms and provide more stable results with smaller standard deviations, future works 

should be focus on presenting of hybrid versions of this algorithm with other optimization tech-

niques to increase the efficiency. 
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