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Abstract 
In this study, the dynamic interaction between a 120 mm smooth-
bore tank barrel modeled as an Euler-Bernoulli cantilever beam and 
an accelerating projectile during firing is presented. The interaction 
was modelled using a new FEM approach that took into account the 
projectile’s inertia, Coriolis, and centripetal forces and the horizontal 
and inclined positions of the barrel. The mass, exit velocity and 
acceleration effects of the projectile on the dynamics of the barrel 
were investigated. The effects of the projectile’s inertia, and Coriolis 
and centripetal forces were evaluated as well. Furthermore, the tip 
displacements at different firing angles were determined by transfer-
ring the mass, stiffness and damping matrices of the barrel with the 
addition of the instantaneous property matrices of the projectile 
from a local coordinate to the global Cartesian coordinate with the 
aid of transformation matrices. Finally, the barrel vibrations caused 
by the successive firings were evaluated under different firing scenar-
ios. To demonstrate the validity of the current study, comparisons 
were made with the results of previous studies and a good agreement 
was achieved. By using the method recommended in this study, it is 
possible to determine the accurate dynamic behavior of any barrel 
with sufficient sensitivity, without any costly or time-consuming 
tests being necessary. 
 
Keywords 
Barrel vibrations; accelerating projectile; successive firing; finite 
element modelling; cantilevered beam. 
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1 INTRODUCTION 

Structural systems that are subjected to a moving mass motion are an important problem for de-
fence systems, robotic, high speed transportation, high speed precision machining and machine de-
sign and have been studied by several researchers. For example, (Wu et al., 2001; Esen, 2011; 
Kahya, 2012; Sharbati and Szyszkowski, 2011; Esen, 2013) have studied the modelling and of con-
stant velocity moving mass and structure interactions. An analytical solution of moving load motion 
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for Timoshenko beams can be found in Lee (1996a). The effect of a variable velocity load on struc-
tures is also significant, and some researchers (Lee, 1996b; Michaltsos, 2002; Wang, 2009; Dyniewicz 
and Bajer, 2012) have studied the dynamic behaviour of beams under accelerated masses. Inertia 
effects of the moving mass continue to be a point of interest for bridge dynamics, railroad design 
and other high-velocity delicate motion processes and some others (Michaltsos et al., 1996; 
Michaltsos and Kounadis, 2001; Dehestani et al., 2009) have studied the inertial effects of moving 
masses. The importance of computerized solution of moving mass problems has increased via the 
usage of computers, and the study (Bulut and Kelesoglu, 2010) has compared numerical methods 
for response of beams, and another one (Nikkhoo et al., 2007) has studied the modal control of 
beams under the effect of a travelling mass. Wu (2005) studied vertical and horizontal displacement 
of an inclined simply supported beam under moving loads for effect of moving-load speed, moving 
mass, Coriolis force, centrifugal force, inclined angle of the beam. Omolofe (2013) has presented a 
procedure involving spectral Galerkin and integral transformation methods for the problem of the 
dynamic deflections of beam structure resting on bi-parametric elastic subgrade and subjected to 
travelling loads. Oni and Awodola (2010) have investigated the dynamic response under a concen-
trated moving mass of an elastically supported non-prismatic Bernoulli-Euler beam resting on an 
elastic foundation with stiffness variation based on the Generalized Galerkin’s Method and the 
Struble’s asymptotic technique.  Awodola (2014) has analytically studied the flexural motions of 
elastically supported rectangular plates carrying moving masses and resting on variable Winkler 
elastic foundations, based on separation of variables. 
 The moving mass and its interaction with a barrel is also an important problem for defence in-
dustries in order to provide an accurate shooting for Cannons, and the study Tawfik (2008) is valu-
able for the effects of an unbalanced mass of a projectile on the vibration of a barrel. In another 
study Balla (2011) has studied the eight degree of freedom model of a weapon system with its body, 
and analysed the vibration of its barrel. For the comparison of the results between modelling and 
actual test data Alexander (2008) has modelled and analysed projectile and barrel dynamics and 
presented correlation between analysis and test data of 155 mm cannon. Researchers (Littlefield et 
al. 1997; 2002) have studied the dynamics of barrels and proposed a muzzle-brake for reducing the 
tip deflection of a 120 mm cannon barrel. It is reported that working as a passive vibration absorb-
er, the muzzle-brake can reduce the absolute deflection of the barrel at the rate of 48 %. For reduc-
ing the magnitudes of the dynamic deflections of the barrel of the 35 mm anti-craft gun, (Esen et 
al., 2012; Koç and Esen, 2013) has designed and optimized a passive vibration absorber that can be 
mounted at the end of the barrel. As any moving load and structure interaction problem can be 
found in a lot of application field, (Fryba, 1999; Wilson, 2002; Clough and Penzien, 2003; Esen et 
al., 2012; Esen and Koç, 2013) can be considered valuable references for analytical and FEM solu-
tions and analysis of dynamic systems affected by a moving mass. The studies given in existing 
literature are generally for simply supported beams and used for simplified cases of applications. In 
addition, experimental studies are limited in this field since they need lots of firing of costly ammu-
nition, a secured firing zone, and measuring devices etc. However, for the design of passive or active 
vibration absorbers to control and reduce the vibrations of a barrel in gun systems in order to pro-
vide better shooting accuracy, it is necessary to predict the non-linear behaviour of a barrel. Be-
sides, the determination of the non-linear dynamic behaviour of a barrel is very hard, since there 
are too many parameters such as projectile velocity, projectile mass, non-linear geometry of the 
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barrel, damping etc.; and studies in this area are limited, and those in this field are only for simple 
cases. For this reason, a more accurate and easy method is necessary in order to define the nonline-
ar behaviour of a vibrating system such as gun barrels including horizontal and inclined positions. 
  This study presents a new solution method that combines the classical FEM and an equivalent 
mass element that represents the moving mass with all effects and can also be used for the determi-
nation and analyses of the nonlinear vibrations of systems by using an algorithm that contains a 
step-by-step time integration method (Wilson, 2002). The proposed method was validated by being 
adapted to a simply-supported beam under a moving load, which had been studied widely in litera-
ture. Including the non-uniform shape of a barrel, the inclination angle of the barrel from the 
ground level, the variable velocity of a projectile, the effect of successive firing and assuming any 
damping in the system, an accurate solution of the interaction of the barrel and projectile can be 
approximated by adopting the FEM and using a step by step numerical integration method as ex-
plained in following sections. 
 
2 THEORY 

In order to model the interaction between a barrel and a projectile, the researchers first investigated 
the system shown in Figure 1 consisting of an accelerating projectile with a mass pm , and of a 
schematic barrel modelled as an Euler-Bernoulli cantilever beam capable of firing at an angle   
with the ground. In this model, the projectile moves within the barrel from the left side of the beam 
towards its end on the right at a variable speed of ( )mv t , and a time-dependent acceleration of 

( )ma t . On this same model, x  and z  are the local x  and local z  directions, respectively, on the 
new coordinate system of the barrel beam that is defined such that the beam can fire at a certain 
angle from the ground. The displacement at the local x  and local z directions were xu  and zu  re-
spectively. In addition, the global directions of the barrel system were , x z , respectively; while the 
displacements on these directions were , x zu u , respectively.  
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 Figure 1: Physical model of a tank with its barrel under the effect of an accelerating projectile. 
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The relationships between the displacements on the local and global coordinate systems of the bar-
rel were defined as follows: 
 
 cos sin  , x x zu u u     (1.a) 

 u sin cosz x zu u     (1.b) 

 
cos sin

u sin cos
x x

z z

u u

u
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                            
  (1.c) 

 
 Based on the assumption that 0   , the motion equation of the barrel due to the effect of the 
projectile located at the time-dependent point px  within the barrel beam is provided by equation 
(2) Fryba (1999): 
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                       
  (2) 

 
 Within the expression of equation (2), E represents the elasticity modules; J  represents the 
inertia moment of the cross-sectional area;  m x  represents the mass of the barrel’s unit length; x 
represents the central coordinate of the barrel system on the global coordinate plane; t  represents 
time;  ,w x t  represents the vertical deviation of the barrel on the global coordinate; ω represents 
the frequency of the barrel; pm  represents the mass of the projectile;  ,p x t  represents the force 
applied to the unit length of the barrel by the projectile (as a moving mass); and  2 2d , dpw x t t  
represents the acceleration of the barrel towards z  on the global coordinate system. 
 The initial and boundary conditions of the barrel beam are: 
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  (3.b) 

 
 For the motion equation (2) shown above, an approximate analytical solution can be obtained 
through simplifications that ignore the effect of inertia and damping. In such a case, the moving 
mass system will be reduced to a moving load problem; such problems have been extensively stud-
ied in the literature by numerous researchers. However, taking into account the accelerating motion 
of the projectile within the barrel makes it more difficult to analytically resolve the moving mass 
problem. The numbers of analytical studies on the subject that take acceleration into account are 
relatively limited. The current study utilizes a method that models the accelerating mass as a mov-
ing finite element. Using this method, it is possible to instantaneously determine the transverse and 
longitudinal vibrations of the barrel on the global and local coordinate planes without having to 
ignore the inertia, Coriolis and damping effects of the accelerating projectile. 
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2.1 Modelling the interaction of the accelerating projectile and the barrel using an equivalent mass element 

FEM model of the barrel with an accelerating projectile is shown in Figures 2 and 3, which is used 
to determine the mass, damping and stiffness matrices of the equivalent mass element. Figures 2 
and 3 also show the division of the barrel into finite elements and the kth finite element in which the 
projectile is located at time t. The beam element k, which interacts with the projectile, has three 
equivalent nodal forces and displacements at each nodal point. The time-dependent position of the 
projectile within the barrel is expressed by  px t , while the local position of element k is  mx t . 
The barrel has n elements and  1n   nodal points. 
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Figure 2: FEM discretion of the inclined barrel model.   
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Figure 3: The inclined beam element on which the projectile pm  applies at time t . 

 
Since the projectile moves through the deformed barrel while the barrel is vibrating, the vertical 
force between the projectile and the barrel can be determined by using the following equation 
Cifuentes (1989): 
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 In this equation ( , )zf x t , represents the contact force (vertical force) between the barrel and the 
projectile accelerating at point x  on the axis, while t  represents time. ( )px x    and g  are the 
Dirac-delta function and the gravitational acceleration, respectively. In addition to this, 0x  and 0v  
are the initial position and initial speed of the projectile at time 0t  , respectively. On the other 
hand, ma  is the average acceleration associated with the motion of the accelerating projectile within 
the barrel. In case the inertia effect of the projectile is considered, the acceleration 2 2d ( , ) / dz pw x t t is 
computed from the total differential of the second order of the function ( , )z pw x t  with respect to 
time t , with variable contact point px  (Fryba, 1999; Esen, 2011): 
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  (6) 

 
 According to equation (5.a-5.c), the acceleration for accelerating or decelerating motions is de-
scribed by the following equation (6): 
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  Equation (7) can be written as follows: 
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 In this expression, “ ′ ” and “ . ” represent the spatial and time derivatives of the displacement 
function, respectively. In addition to this, ( , )z zw w x t represents the vertical displacement (z ) on 
the local coordinate plane of the barrel at coordinate x  and time t , and when 0   . In such a 
case, equation (4) becomes: 
 
 2

0 0( , ) ( 2 ( ) ( ) ) ( )z p z z m z m m z pf x t m w w v a t w v a t a w g x x             (9) 
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where the expressions p zm w , 2

0( )p m zm v a t w  + m za w   and 02 ( )p m zm v a t w    represent the inertial 
force, the centripetal force and the Coriolis force, respectively. In addition to this, mg  represents 
the gravitational force of the projectile. 
 The horizontal force between the projectile and the barrel while the barrel is vibrating in the 
longitudinal direction is determined by Wu (2005): 

 
 

2

2

d ( , )
( , ) ( )

d

x p
x p p

w x t
f x t m x x

t
    (10) 

 
 In other words, equation (10) becomes: 
 
 ( , ) ( )x p x pf x t m w x x    (11) 
 
 Under the effect of the displacement of the accelerating projectile, the equivalent nodal forces of 
the kth barrel element can be expressed as follows: 
 
     ( 1,  4)k i i p xf N m w i    (12.a) 

 2
 0 0( 2 ( ) ( ) )     ( 2,  3,  5,  6)k i i p z z m z m m zf N m w w v a t w v a t a w g i             (12.b) 

 
where iN  ( i  1,…,6) is the hermite shape function of the beam element, as shown below Clough 
and Penzien (2003):  
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  (13) 

  
 The length of the element is l and  mx t  is the variable distance between the accelerating pro-
jectile and the left end of the kth element at time t  as shown in Figure 3. The relationships between 
the shape functions and the transverse and longitudinal deflection functions and the nodal dis-
placements of the kth element at position  mx t  at time t  are as follows Clough and Penzien 
(2003): 

 
 1 1 4 4( , )  x k kw x t N u N u    (14.a) 

 2 2 3 3 5 5 6 6( , )    z k k k kw x t N u N u N u N u      (14.b) 
 
where   ( 1,..., 6)k iu i   are the nodal displacements of the kth beam element under the effect of the 
accelerating projectile.  
 When one generates the time and spatial derivatives of the deflection functions in Eqs. (14a and 
14.b), and then places them into equations (11) and (12), after some mathematical operations the 
resulting expressions can be converted into a matrix expression and the following equation is ob-
tained: 
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 For all the unknown elements of the expression k   : 
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, 0( ) ,   ( )i j i j m i j mk v t N N a N N v t v a t       (16.d) 
 
 In case the nodal points on the barrel beam need to be moved to a new local coordinate plane 
that has an angle   with the horizontal plane of the barrel, the displacements of the nodal points 
on the local coordinate system must be transferred to the global coordinate system by using the 
equations below, where  ( 1,..., 6)iu i   are the displacements of the barrel element’s nodal points on 
the newly defined local x y coordinate system, while  ( 1,..., 6)iu i   are the displacements on the 
global  x y  coordinate plane Przemieniecki (1985): 
 
    T
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    T
u T u   


   (17.b) 

    T
u T u   


   (17.c) 
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 In this expression, 
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 Within the expression in equation (19), θ represents the angle between the barrel and the 
ground, while T    is the transformation matrix between the global axes set and the local axis set. 
Similarly, the force matrices are transformed into the local coordinate system by using the equation 
below Wu (2005):  
 
    T

f T f      (20.a) 

    1 2 3 4 5 6 1 2 3 4 5 6,     
T T

f f f f f f f f f f f f f f             (20.b) 

 
 ,f  ,u u  and  ,u  are respectively taken from equations (20.a) and (17.a-17.c) and used in 

equation (15), and the barrel’s displacement equation (21) on the local coordinate system is ex-
pressed by using the equations 1 T

T T
       , -1

T T I        . The interaction between the barrel and 
accelerating projectile for the global coordinate system can be obtained as follows: 

         f m u c u k u            
     (21) 

where 

 T
m T m T          (22.a) 

 T
c T c T          (22.b) 

 T
k T K T          (22.c) 

 
2.2 The time dependent motion equation of the barrel and projectile system 

The motion equation for the system with multiple degrees of freedom including the barrel and ac-
celerating projectile is expressed as follows: 
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        ( ) ( ) ( ) ( ) ( ) ( ) ( )M t z t C t z t K t z t F t            

    (23) 

 
 Where , , M C K            are respectively the instantaneous mass, damping, and stiffness matrices 
of the entire system’s in global coordinate plane. Furthermore,      ( ) , ( ) ,  ve ( )z t z t z t   are, re-
spectively, the acceleration, velocity, and displacement vectors of the barrel nodal points on the 
global coordinate axis. An important point to consider here is that the ( ) , ( ) , ( )M t C t K t            global 
matrices are time-dependent, and that they consist of the constant mass and stiffness matrices of 
the inclined barrel beam, along with the time-dependent characteristic matrices of the projectile. 
For this reason, these global matrices are also called instantaneous matrices.  

 
2.3 The mass and stiffness matrices of the barrel and projectile system on the global coordinate plane 

The elemental mass and stiffness matrices eK  and eM  of the each beam elements of the barrel can 
be obtained using the classical FEM that are widely explained in literature, i.e. (Bathe, 1996). Then 
they are transferred to the local coordinate using the transformation matrix in Eq. (19), and assem-
bling them the overall local mass and stiffness matrices M and K are obtained. When there is an 
accelerating projectile the mass and stiffness matrices of the projectile m    and k    are summed 
with the mass and stiffness matrices M and K by taking into account the inertial and centripetal 
effects.  For the global coordinate system the transformation matrix is used inversely as given in 
Eq. (17). Thus, for the global coordinates the instantaneous stiffness and mass matrices 

( ) , ( )M t K t        of the entire system are expressed as follows: 
 

 x x

x x

( )

( )

n n n n

n n n n

M t M

K t K

      

      
  (24) 

 
 Except for the kth element; 
 

 , ,k

, ,k

      ( , 1,....., 6)

    ( , 1,....., 6)

e
i j ki j ij

e
i j ki j ij

K K k i j

M M m i j

  

  
  (25) 

 
 In this context, n represents the total degree of freedom consisting of finite elements after impos-
ing the boundary conditions in Eq.  
 
2.4 The damping matrix of the barrel under the effect of the projectile  

The damping matrix is determined using Rayleigh’s damping theory, in which the damping matrix 
C  is proportional to the mass and stiffness matrices. Based on this theory, the following damping 
matrix is obtained.  
 
 C aM bK    (26.a) 
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  (26.b) 

 
 The a and b values within equation (26.a) are obtained by solving the equation (26.b), Clough 
(2003); where i  and j  are the damping ratios of the structural system for two natural frequencies 
of i  and j . The total instantaneous damping matrix of the damped system under the effect of 
the accelerating projectile is given by:  
 
 ( )

nxn nxn
C t C         (27.a) 

 
 Except for the kth element, where 
 
 , ,   ( , 1,....., 6)e

ki kj i j ijC C c i j     (27.b) 

 
2.5 The global force vector of the system under the effect of the accelerating projectile 

Due to the concentration of the projectile’s mass at a particular point, the force between the barrel 
and the projectile is expressed by P , as shown in Figure 4. In the current study, the friction be-
tween the projectile and the barrel was ignored. 
 
  x yP iP jP    (28) 

 

lx  (t)m

f 1

k-1

k+1

x

z

Px

Py

O

(k)

P=m gp

z

x

f 2
(k)

f 3
(k)

f 4
(k)f 5

(k)

f 6
(k)

 
Figure 4: The equivalent nodal forces of inclined barrel beam element which subjected 

to moving projectile load pP m g . 
 
In this context, xP  and yP  are the force components, and are expressed as follows: 
 
 sin ,        - cosx yP mg P mg      (29) 
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 Equation (20) provides the equivalent forces applied by the interaction of projectile with the 
barrel, while equation (29) provides the components of the gravitation force of the projectile mass. 
To represent this force in the finite element analysis, the equivalent nodal force matrix is expressed 
as follows Wu (2005).  
 

  (k) (k) (k) (k) (k) (k)(k)
1 2 3 4 5 6         

T
f f f f f f f    

  (30) 

 (k)        ( 1, 4)i i xf N P i    (31.a) 

 k,     ( 2, 3,5,6)i i yf N P i    (31.b) 

 
where k  represents the number of the barrel element (or the kth element) on which the projectile is 
located at time t, while  ( 1,..., 6)iN i   is the shape function provided in equation (13). In addition, 
the force vector that is given is the force vector for the x y local coordinate plane of the barrel ele-
ment. To determine the nodal force vector for the global coordinate plane  yx  of the barrel, this 
vector must be transformed to the new coordinate system by using the equation shown below: 
 
  (k) (k)T

f T f      (32) 

where 

  (k) (k) (k) (k) (k) (k)(k)
1 2 3 4 5 6         

T
f f f f f f f    

  (33) 

 
 The expression provided by equation (33) is obtained by inserting 1 T

T T
        into the 

  f T f     in equation (20.a). Except for the forces of the two nodal points of the kth element 
on which the projectile with mass pm  is moving, all other forces are equal to zero. Therefore, the 
global force vector provided in equation (23) can be expressed as follows: 
 

   (k) (k) (k) (k) (k) (k)
1 2 3 4 5 6( ) 0 ...           ... 0

T
F t f f f f f f    

  (34) 

 
where (k)  ( 1,...,6)if i   is the equivalent nodal forces of P on the global coordinate plane ( , x y ), 
and is calculated by using the expression in equation (33). 
 
3 VALIDATION OF THE METHOD 

For the solution of the time dependent equation of motion of the whole system one can use a proper 
integration method. In this study, the Newmark  direct integration method Wilson (2002) is used 
along with the time step t  1x10-6 sec.,   0.25 and   0.5 values to obtain the solution of 
equation (23), where   and   are parameters that define the accuracy and stability of the New-
mark procedure. When   0.25 and   0.5, this numerical procedure is unconditionally stable 
Wilson (2002). Since the size of the Δt is another important parameter that defines the accuracy of 
the solution, despite it increases the total solution time taking a small time step size, and, in this 
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paper Δt was chosen at a small size for two reasons that the velocity of the projectile is high and 
the contribution of higher vibration modes could be included.  
 Example: For the comparison with the previous studies, a simple supported isotropic beam-
plate transversed by a F 4.4 N moving load was studied. The dimensional and material specifica-
tions of the beam  are identical with those chosen in Reddy (1984), i.e. xl  10.36 cm; 
yl  0.635 cm , h  0.635 cm, E 206.8 GPa,  10686.9 kg/m3, fT  8.149 s, where fT  is the 
fundamental period. In Table 1, dynamic amplification factors (DAF), which are defined as the 
ratio of the maximum dynamic deflection to the maximum static deflection, are compared with 
several previous numerical, analytical and experimental results available in literature. It is noted 
that T  is the required time for moving load to travel the beam. It is seen that the results obtained 
by the current method (column 3) are very close to the analytical solution Meirovitch (1967), and 
also the results of first order shear deformation theory method (FSDT) (Kadivar and Mohebpour, 
1998). 
 

V (m/s) fT T  1 2 3 4 5 6 7 

15.6 0.125 1.040 1.025 1.055 1.063 1.045 1.042 1.040 
31.2 0.25 1.352 1.121 1.112 1.151 1.350 1.082 1.090 
62.4 0.5 1.265 1.258 1.252 1.281 1.273 1.266 1.183 
93.6 0.75 1.574 1.572 - 1.586 1.572 - 1.194 
124.8 1 1.704 1.701 1.7 1.704 1.704 1.662 1.549 
156 1.25 1.717 1.719 - 1.727 1.716 - 1.527 

187.2 1.5 1.547 - - - - - 1.471 
250 2 1.543 1.548 1.54 1.542 1.542 1.518 1.374 

Table 1: Dynamic amplification factors (DAF) versus velocity. 
(1) Present method. 
(2) Analytical solution from Meirovitch (1967). 
(3) From  (Yoshida and Weaver, 1971). 
(4) From (Kadivar and Mohebpour, 1998). 
(5) From Michaltsos (2002). 
(6) From Taheri (1987). 
(7) From (Mohebpour et al., 2011). 

 

4 NUMERICAL ANALYSIS 

In this study, the dynamic interaction of a 120 mm smoothbore tank barrel with accelerating pro-
jectiles was analysed using the proposed method.  The length of the barrel was considered L  6 m, 
while, its mass and elasticity modules are bM 1280 kg and E 2.11x1011 kg/m2, respectively. In 
addition, the gravity acceleration is g  9.81 m/s2, and the damping matrix ( )C t    of the whole 
system was calculated with equation (27.a-b) by using the damping ratios of 1 2 0.005    
(which correspond to the system’s natural frequencies 1 , 2 ). The barrel consisted of 200 finite 
elements (n) and of 201 nodal points (n+1). Each nodal point had three degrees of freedom; conse-
quently, the dimensions of total global matrices ( )M t   , ( )C t   , ( )K t    was 603x603. When the 
cantilevered boundary conditions ( 1u  0, 2u 0, 3u  0) were applied to the barrel beam, the 
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global matrices of the barrel decreased to the dimensions of 600x600, while the global force vector 
( ( )F t ) decreased to the dimensions of 600x1. The inner pressure in the barrel, as a result of rap-
idly expanding combustion gases of gunpowder, is time-dependent (Alexander, 2008); consequently, 
the acceleration of the projectile motion within the barrel is time-dependent as well. To reduce the 
complexity of calculations in the current study regarding the time-dependent acceleration, an aver-
age acceleration was used for the motion of the projectile within the barrel. In this context, the 
average acceleration ma  of the projectile was calculated by using the equation  2 2m exta v L , 
where extv  is the projectile’s exit velocity from the barrel. 

 
4.1 The effect of the projectile’s exit velocity from the barrel 

To evaluate the effect of the projectile’s exit velocity from the barrel on the barrel vibrations, the 
motion equation (Eq. 23) was calculated for different velocities according to a projectile mass of 

pm  20 kg, an angle of 0    between the barrel and the ground, and a time step of t   
x

-61 10  s . Figures 5a and 5b provide the vertical and longitudinal displacements of the muzzle on the 
global coordinate plane ( , z x ) at different projectile exit velocities ( extv  1000, 1500, 2000, 2500, 
and 3000 m/s). Since an increase in the projectile exit velocity is associated with a shorter exit time 
( extt ), in this study a dimensionless time (also it can be treated as dimensionless position of the 
projectile in the barrel)  px t L  is used. As shown in Figure 5, for exit velocities of 1000, 1500, 
2000, 2500, and 3000 m/s, the average accelerations of the projectile were 1.66x105, 3.75x105, 
6.66x105, 1.040x106 and 1.5x106 m/s2, respectively; while the maximum vertical displacement ( z ) of 
the muzzle (barrel tip) on the global coordinate plane at these velocity values were 0.69, 1.65, 2.98, 
4.9, and 7.4 mm, respectively. These results and observations can be explained by the increase in 
the projectile’s average acceleration that is caused by the increase in the projectile’s exit velocity, 
and the associated increases in the projectile’s Coriolis and centripetal forces on the barrel. Alt-
hough the increase in projectile’s exit velocity appears to have a negative effect on the barrel vibra-
tions and target sensitivity, the increase in velocity is also of critical importance for the weapon’s 
destructive power and target acquisition (Littlefield et al., 2002). For more results of the effect of 
the exit velocity of the projectile, Figure 6 shows the tip deflections of the barrel for a projectile 
mass of 20 kg and the velocities from 100 to 12000 m/s with an increase of 100 m/s. The dynamic 
behavior of the barrel was very affected by exit velocity, and the tip deflection of the barrel shows a 
quadratic growth up to 3000 m/s exit velocity, then it shows a decrease in increment up to a specif-
ic velocity, i.e., 5400 m/s  when it gets the maximum. After the maximum it decreased symmetri-
cally as shown from Figure 6. The reason of this behaviour will be discussed in the next sections; 
where the effects of Coriolis and inertial forces will be given. For more information one can also 
refer to (Oguamanam et al., 1998; Esen, 2011). 

 
4.2 The effect of the Coriolis force on the barrel vibrations 

The effect of the projectile’s Coriolis force on the barrel vibrations was evaluated at exit velocities 
extv  of 1750 and 2200 m/s and at average acceleration values of 2.55x105 and 4.03x105 m/s2, respec-

tively, according to a projectile mass of pm  20 kg, an angle of 0    between the barrel and the  
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Figure 5:  Displacements of the barrel tip for projectile mass pm  20 kg, time step size t  1x10-6 s and barrel 

inclination angle 0    subjected to different exit velocity (a) Vertical ( z ), (b) Horizontal ( x ) displacement. 
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Figure 6: Maximum tip deflections of the barrel  

 
ground, and a time step of t  1x10-6 s. The Coriolis force of the interaction between the barrel  
and projectile is represented by the equivalent damping matrix 

6x6
c   . For this reason, this effect 

will be ignored when the damping matrix 
6x6

c    of the projectile is taken as zero (
6x6

0c    ). 
When the Coriolis Effect is taken into account, the results of the analyses for both the axial (x ) 
and the radial ( z ) vibrations of the barrel on the global coordinate system are given in Figure 7. 
Any increase in the velocity, decreases the tip deflection of the barrel as can be seen from Figure 7. 
This observation is in agreement with the study Wu (2005). Furthermore, in equation (16.b), the 
increase in projectile velocity led to an increase in the value for the  2 pm v t  expression, which in 
turn resulted in a higher Coriolis effect. Another subject here is that Eq. (16.b) has the multiplica-
tions of the shape functions in (13) by their first order spatial derivatives ( i jN N  ) that these terms 
also affect the Coriolis force. 
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Figure 7: Coriolis effect upon barrel tip displacement for time step size t  1x10-6, projectile mass pm  20 kg, 

and barrel inclined angle 0    (a) Vertical ( z ), (b) Horizontal ( x ) displacements. 
 
4.3 The effect of the inertial force on the barrel vibrations 

The effect of the inertial force of the projectile (as represented by a finite element) on the barrel’s 
vibrations was calculated at an exit velocity extv  of 1750 m/s and an average acceleration value of 
2.55x105 m/s2, according to projectile masses of pm  20 and 30 kg, an angle of 0    between the 
barrel and the ground, and a time step of t  1x10-6 s. The inertial force of the interaction of the 
barrel and projectile is represented by the mass matrix 

6x6
m   . Therefore, this effect can be ignored 

by using a mass matrix 
6x6

0m    . The graph in Figure 8 provides the solutions/results obtained 
by first taking into account all of the characteristic matrices of the projectile and barrel interaction 
(

6x6
m   , 

6x6
c   , 

6x6
k   ) for projectile masses 20 and 30 kg, and then by taking into account the 

damping matrix 
6x6

0m    . The results are illustrated for both the axial (x ) and the radial (z ) 
vibrations of the barrel on the global coordinate system. As shown in Figure 8, taking into account 
the inertial effect caused the vertical displacement of the barrel tip to increase considerably, while 
causing the axial displacement to increase slightly. A similar relationship was observed in the stud-
ies (Oguamanam et al., 1998; Wu, 2008; Esen, 2011). 
 
4.4 The effect of the inclination angle of the barrel 

To evaluate the effect of the barrel’s angle   with the ground on the axial (x ) and transverse ( z ) 
vibrations at the muzzle; the motion equation was solved for different barrel angles according to a 
projectile mass of pm  20 kg, a projectile exit velocity of extv  1750 m/s, an average projectile 
acceleration ( ma ) of 2.55x105 m/s2, and a time step of t  1x10-6 s. As shown in Figure 9, an in-
crease in the angle   between the barrel and the ground was associated with a decrease in the 
transverse displacement ( z ) and an increase in the axial displacement (x ) on the global coordinate 
plane. This observation is in agreement with the study in Wu (2005). 
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Figure 8: Inertial force effect upon barrel tip displacement for time step size t  1x10-6, projectile mass pm  20 

and 30 kg, and barrel inclined angle 0    (a) Vertical ( z ), (b) Horizontal ( x ) displacements. 
 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10-3

























 

 

 

°
°
°

 

















 

 

 
 
 

          

 










 

 





0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5
x 10

-5









































 

 

0 °
15 °
30 °

 
Figure 9: (a) Vertical ( z ), (b) Horizontal ( x ) displacements of the barrel tip for projectile mass pm  20 kg, time 

step size t  1x10-6 s and different barrel inclined angle  . 
 
4.5 The effect of the projectile mass on the barrel vibrations 

The effect of the projectile mass on the radial ( z ) and axial (x ) vibrations of the muzzle was eval-
uated for projectile masses ( pm ) of 16, 20, and 24 kg, according to a time step of t  1x10-6 s, an 
projectile exit velocity of extv  1750 m/s, an average acceleration of ( ma ) 2.55x105 m/s2 for the 
projectile, and an angle of 0    between the barrel and the ground. Figure 10 shows the solutions 
obtained based on calculations performed with different projectile mass values. The increase in pro-
jectile mass was associated with an increase in both axial (x ) and radial ( z ) vibrations. This ob-
servation can be explained by the increase in the axial force x p cf m a  and the transverse force 
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y pf m g  that is associated with the increase in projectile mass. A similar relationship was ob-
served in the studies Esen (2011), Michaltsos et al. (1996) and Michaltsos and Kounadis (2001). 
This can be an expected result that any increase in the mass, increases both inertial and gravita-
tional forces. But, unlike the effect of the velocity, the deflection shape of the barrel remains similar 
for each additional mass. One can realize this phenomena when, especially, the axial vibrations of 
the barrel in Figures 7 and 10 are analysed. 
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Figure 10: Vertical ( z ), b) horizontal ( x ) displacements of the barrel tip for time step size t  1x10-6 s and 

barrel inclined angle 0    subjected to different projectile mass pm . 
 
4.6 The forced and free vibrations of the barrel 

To determine the effect of structural damping on ( z ) vibrations of the barrel tip, the equation was 
solved according to a solution period t 0.15 s, a time step of t  3.42x10-5 s, a projectile mass of 

pm  20 kg, a projectile exit velocity of extv  1750 m/s, and an angle of 0    between the barrel 
and the ground. When the projectile has left the barrel  px t L , the mass, stiffness and damping 
matrices (

6x6
m   , 

6x6
c   , 

6x6
k   ) and the force vector  (t)F



 are considered to be equal to zero, 
which allows the barrel to display free vibrations. As shown in Figure 11, the projectile exited the 
barrel in 0.007 s, after which the barrel vibrates freely. As illustrated on the graph, the free vibra-
tion of the barrel had completely dampened 0.15 s after the firing when using the damping ratios of 

1 2 0.005   . 
 
4.7 Serial firing effects 

The axial (x ) and radial ( z ) muzzle vibrations caused by the interaction between the projectile 
and the barrel during a single firing of the weapon are shown in Figures 5-11. In this section, the 
vibrations caused by the serial/repeated firing of the weapon system were considered and evaluated. 
For the effect of none zero initial conditions of the barrel, i.e., a second firing performed before the 
dampening of vibrations from a first firing, the effect of successive firing was modelled and analysed.  
Assuming that, fn  represents the total number of firing within time t, the time period between 
each firing is calculated with  1g ft t n  . Figure 12 shows serial firing model of the 120 mm 
smoothbore barrel. In this model gX  distance between two consecutively fired projectiles is ex-
pressed as follows: 
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Figure 11: Vertical ( z ) displacements of the barrel tip for time step size t  3.42x10-5 s 

and barrel inclined angle 0   . 
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Figure 12: Serial firing model of the barrel. 

 
4.7.1 Situation 1: gt 0.02 s, fn 2  

In this scenario; the effect of residual vibration energy of the barrel from a previous firing on the 
following firing when gt  was 0.02 s between the two firings was calculated according to a time step 
of t  5x10-5 s, an angle of 0    between the barrel and the ground, an exit velocity of the pro-
jectile extv  1750 m/s, an average acceleration value of ma  2.55x105 m/s2 for the projectile, and 
projectile masses of pm  20 and 24 kg. As shown in Figure 13, the maximum vertical tip (muzzle) 
displacements ( z ) that occurred on the global coordinate plane with the 20 and 24 kg projectiles 
were 0.0022 and 0.0026 m, respectively, during the first firing; and 0.0026 and 0.0031 m, respective-
ly, during the second firing. These observations indicated that the muzzle displacement with the 20 
kg projectiles increased by 18% during the second firing in comparison to the first firing, while the 
increase observed during the second firing with the 24 kg projectiles was 19%. The reason for this 
increase is that the second firing is performed before the effect of the first firing has not been damp-
ened yet. 
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Figure 13: Vertical ( z ) displacements of the barrel tip for projectile mass pm  20 kg, time step size t  0.2x10-

4 s, barrel inclined angle 0    and second projectile firing time 2t  0.02 s. 
 
4.7.2 Situation 2: gt 0.02 s, fn 4 

In this scenario, the effect of barrel vibrations caused by four consecutive firings with gt  0.02 was 
calculated according to a time step of t  5x10-5 s, an angle of 0    between the barrel and the 
ground, an exit velocity of the projectile extv  1750 m/s, an average acceleration value of 

ma  2.55x105 m/s2 for the projectile, and projectile masses of pm  20 and 24 kg. As shown in 
Figure 14, the maximum vertical muzzle displacement ( z ) that occurred on the global coordinate 
plane with the 20 and 24 kg projectiles was 0.0022 and 0.0026 m, respectively, during the first fir-
ing; 0.0026 and 0.0031 m, respectively, during the second firing; 0.0025 and 0.003 m, respectively, 
during the third firing; and 0.0023 and 0.0027 m, respectively, during the fourth firing. 
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Figure 14: Vertical ( z ) displacements of the barrel tip for projectile mass pm  20 kg, time step size 

t  0.2x10-4 s, barrel inclined angle 0    and second, third, fourth projectiles 
firing time respectively 2t  0.02 s, 3t  0.04 s, 4t  0.06 s. 
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4.7.3 Situation 3: g extt t , fn 2 

In this scenario, the effect of two firings in which the gt  between the firings was equal to the exit 
time of the projectile during the first firing was calculated according to a time step of t   5x10-5 
s, an angle of 0    between the barrel and the ground, an exit velocity ( extv ) of 1750 m/s, an 
average acceleration value of ma  255,000 m/s2 for the projectile, and projectile masses of pm  20 
and 24 kg. As shown in Figure 15, the maximum vertical muzzle displacement ( z ) that occurred on 
the global coordinate plane with the 20 and 24 kg projectiles was 0.0022 and 0.0026 m, respectively, 
during the first firing; and 0.0032 and 0.0039 m, respectively, during the second firing. These obser-
vations indicated that the muzzle displacement with the 20 kg projectiles increased by 45% during 
the second firing in comparison to the first firing, while the increase observed with the 24 kg projec-
tiles was 50%. 
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Figure 15: Vertical ( z ) displacements of the barrel tip for projectile masses of pm  20 and 24 kg, barrel inclina-

tion angle 0    and second projectile firing time 2t  0.00648 s (when the first projectile leaves the barrel). 

 
5 CONCLUSION  

In this study, the dynamic interaction between a projectile and a barrel was modelled and investi-
gated. This interaction was obtained developing a new method in which the projectile is represented 
as a time dependent equivalent finite element in the finite element model of the whole system. Tak-
ing into account the inertia, Coriolis, and centripetal forces exerted by the projectile onto the bar-
rel, the equivalent finite element is formed using the relations between the deflection function of a 
thin beam and the nodal deflections and forces of the beam element that carries the projectile at 
time t. In addition, when the barrel was moved from the global coordinate plane to a different local 
coordinate plane, the property matrices of the barrel and projectile were carried to the new coordi-
nate system by using a transformation matrix. A dynamic analysis was also performed in case the 
barrel was at an angle from the ground level. It was determined that the increase in the inclination 
angle of the barrel increased the axial vibrations of the barrel, while reducing its radial vibrations. 
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During the study, it was observed that the amplitude of barrel muzzle’s displacement increased in 
parallel to the increase in the projectile mass and velocity. The study also demonstrated the effects 
of the inertial centripetal and Coriolis forces of the projectile on the barrel tip displacements. It was 
observed that the projectile’s inertia force increased the vertical vibrations of the barrel tip, while 
the Coriolis and centripetal forces reduced the tip deflections. Because the Coriolis force is repre-
sented as a damping matrix, and the Centripetal force is represented as the stiffness matrix in the 
finite-element interaction of the projectile and barrel. In addition, three different scenarios were 
evaluated to determine how the serial (or consecutive) firing of the weapon system affected the bar-
rel vibrations. In the first of these scenarios, two consecutive fires were shot with a time period of 
0.02 s between the two firings. In this scenario, it was observed that the maximum tip displacement 
during the second firing was approximately 20% greater than that of the first firing. In addition, 
this increase in displacement was observed to be proportional to the mass of the projectile. In the 
second scenario, four consecutive shots were fired once again at intervals of 0.02 s; the results relat-
ed to these firings are shown in Table 2. As an extreme case, in the third scenario, two shots were 
once again fired with the second firing being performed at the moment the first projectile was exit-
ing the barrel. In this scenario, it was observed that the maximum vertical tip displacement of the 
second firing was 45% greater than the displacement in the first firing. Although this scenario is not 
possible or feasible for present-day conventional weapons, such a scenario was considered to ensure 
scientific consistency in the study. 

 
 Maximum barrel tip deflection at global ( z ) direction (mm) 

First Firing Second Firing Third Firing Fourth Firing 

pm  20 kg 2.2 2.6 2.5 2.3 

pm  24 kg 2.6 3.1 3 2.7 

    Table 2: Maximum tip deflection of the barrel during four serial firing. 
 
Information obtained within the scope of this study will potentially contribute to future studies on 
various subjects, such as the design of optimum barrel geometry, the development of firing control 
algorithms for better firing sensitivity, the design of barrel vibration absorbers, and automatic fir-
ing. 
 Engineering applications in defence industries are generally more important than their other 
usages, thus, the studies in this area are kept confidential, and they need higher research and devel-
opment costs due to the request of the firm tolerances and precise operations. The significance of 
vibrations of structures and their prevention from vibration in terms of correct working and service 
life of equipment is obvious. First of all, during the design the vibration behaviour of the equipment 
should be analysed in order to take the necessary measures to protect the mechanical equipment 
from vibration. Moreover, this proposed method can be used for both in development of a new 
weapon and analysing the dynamic behaviour of an existing barrel in order to control the vibrations 
by an active or passive vibration absorber. Carrying out the analysis of many situations may reduce 
the number of the time-consuming and costly experimental studies needed to practice. Also, this 
study can provide theoretically sufficient data for weapon automation software for compensation 
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tunings by predicting the nonlinear behaviour and defections of the barrel for different types of 
projectile that have different velocity and mass properties. This can be done by adding a pre-control 
algorithm to the automation software of a weapon, and before the firing, the automation system can 
predict the amount of deflections of the barrel and do necessary compensations, and in this way a 
more accurate targeting may be obtained. 
 Support flexibility is another parameter that affects target accuracy. In this study the support 
accepted as fixed in order to examine the dynamic interaction of the accelerating projectile and 
barrel. If one need to study the effect of flexible support on firing accuracy, using the method given 
in this study and including any desired flexible support degree of freedom, in that case the effect of 
flexible support can be obtained with the effect of dynamic interaction of the projectile and the 
barrel. Moreover, the support flexibility that should be studied requires more realistic parameters of 
the tank to be considered. Further, for more accurate parameters of support flexibility, more exper-
imental and theoretical works should be done. Especially, recoiling motion of the barrel, the pitch-
ing motion of the whole tank body, and the properties of ground and pallets, etc., should be precise-
ly determined for an acceptable results of analysis. In that case for flexible supports there should be 
many cases of analysis in order to obtain a complete behaviour of the whole system of tank body 
and barrel assembly. Furthermore, there should be many other cases of pallets and ground interac-
tions. In this study in order to emphasize the effect of the projectile barrel interaction, and not to 
extend the present study to the all cases of firing accuracy, it is considered that the barrel has a 
cantilevered boundary conditions.   
 Furthermore, one can also further extend this method to vibration engineering of some other 
problems such as high-speed precision machining, high-speed rail road design and cable transport 
etc. In this way, important time and cost benefits can be obtained for the suitable design of many 
vibrating engineering systems under the effect of accelerating masses. 
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