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Abstract 
This paper is dedicated to the analyses of the effect of uncertain 
parameters on the dynamic behavior of a flexible rotor containing 
two rigid discs and supported by two fluid film bearings. A 
stochastic method has been extensively used to model uncertain 
parameters, i.e., the so-called Monte Carlo simulation. However, in 
the present contribution, the inherent uncertainties of the 
bearings' parameters (i.e. the oil viscosity as a function of the oil 
temperature, and the radial clearance) are modeled by using a 
fuzzy dynamic analysis. This alternative methodology seems to be 
more appropriated when the stochastic process that models the 
uncertainties is unknown. The analysis procedure is confined to 
the time domain, being generated by the envelopes of the rotor 
orbits and the unbalance responses obtained from a run-down 
operating condition. The hydrodynamic supporting forces are 
determined by considering a nonlinear model, which is based on 
the solution of the dimensionless Reynolds' equation for cylindrical 
and short journal bearings. This numerical study illustrates the 
versatility and convenience of the mentioned fuzzy approach for 
uncertainty analysis. The results from the stochastic analysis are 
also presented for comparison purposes. 
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Rotating machine; uncertainty analysis; fluid film bearings; fuzzy 
analysis. 
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1 INTRODUCTION 

The computational simulation of rotating machines is an indispensable resource for engineers. It 
allows a comprehensive understanding about the dynamic behavior of the system, considering the 
amount of variables involved in the problem (Meggiolaro, 1996). Thereby, a mathematical model 
capable of representing satisfactorily the dynamic behavior of a rotating machine is obtained by 
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taking into account various subsystems, as follows: first, the subsystems that are defined by their 
geometry, as the shaft, drives and couplings; later, the gyroscopic effect; finally, the subsystems that 
are frequency and/or state dependent, such as the hydrodynamic bearings. The bearings are one of 
the most critical subsystems of the rotor system, influencing significantly the performance, life, and 
reliability of the machine. According to Vance et al. (2010), many problems in rotating systems can 
be attributed to the design and application of the bearings. Thus, understanding the physical 
phenomena that involve the bearings is essential to improve the dynamic performance of the 
system.  
 The hydrodynamic bearings represent an important component of rotating machinery due to 
their large use in the industry (Riul, 1988). In this case, the load is supported by a thin film of 
lubricant that separates the shaft from the bearing (i.e., there is no direct contact between metal 
parts). Thus, this subsystem can theoretically offer infinite life, considering that the rotor operates 
under safe dynamic conditions and with clean lubricant (Vance et al., 2010). It is worth mentioning 
that due to the oil film, the damping effect on hydrodynamic bearings is more pronounced than in 
rolling bearings, which is beneficial in machines that go through critical speeds during startup and 
stop down procedures. In this context, the analysis of uncertainties either in the geometry (e.g., 
radial clearance, due to the machining processes or damage) or in the operating conditions (e.g., oil 
temperature) that affect the performance of the hydrodynamic bearings is an important design 
issue. 
 Uncertainty analysis of flexible rotors has been studied by applying stochastic approaches based 
on the stochastic finite element method (Ghanem and Spanos, 1991). Didier et al. (2011) quantified 
the uncertainties effects in the response of flexible rotors based on the Polynomial Chaos theory. 
Koroishi et al. (2012) represented the uncertainties in the rotor parameters by using Gaussian 
homogeneous stochastic fields discretized by Karhunen-Loève expansion; the dynamic response of 
the system with random parameters was characterized through Hypercube Latin sampling and 
Monte Carlo simulation. Lara-Molina et al. (2014) used the fuzzy stochastic finite element method 
to quantify the effects of high order random parameters on the response of a rotating machine. 
 In agreement with the fuzzy approach, the present work proposes the application of a 
straightforward approach to simulate the dynamic response of a flexible rotor with random 
parameters by performing a fuzzy dynamic analysis. For this purpose, the fuzzy uncertain 
parameters are mapped onto the model with the aid of the so-called α-level optimization (Möller 
and Beer, 2004). Additionally, the Differential Evolution algorithm is used to solve the optimization 
problem in the fuzzy analysis (Price et al., 2005). For comparison purposes, the Monte Carlo 
simulation combined with Latin Hypercube sampling is used to generate the envelope of responses 
of the stochastic rotor system. The choice of this stochastic solver is justified by the fact that Monte 
Carlo simulation has been successfully used as a reference stochastic solver to evaluate the 
variability of the dynamic responses (Sampaio and Cataldo, 2010). Two uncertainty scenarios are 
analyzed: (a) the first case is dedicated to the influence of uncertainties on the oil viscosity of both 
bearings of the rotating system (i.e., oil temperature); (b) the second case is associated to the 
introduction of uncertainties in the radial clearance of the bearings. As the uncertainties are 
analyzed only in the bearings' parameters, the Monte Carlo simulation is directly applied to the 
deterministic finite element model of the rotor (Koroishi et al., 2012).  
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2 ROTOR MODELING 

Equation (1) presents the matrix differential equation that model the dynamic behavior of a flexible 
rotor supported by fluid film bearings (Lalanne and Ferraris, 1998). 
 
 g st u hM q D D q K K q W F F                 



    (1) 

 
where M  is the mass matrix, D  is the damping matrix (i.e., proportional damping), gD  represents 
the gyroscopic effect, K  is the stiffness matrix, and stK  is the stiffness matrix resulting from the 
transient motion. All these matrices are related to the rotating parts of the system, such as 
couplings, discs, and the shaft. The vector q  contains the generalized displacements, and   is the 
shaft rotation speed. W  stands for the weight of the rotating parts, uF  represents the unbalance 
forces, and hF  is the vector of the shaft supporting forces produced by the hydrodynamic bearings. 
The shaft is modeled by using Timoshenko's beam elements (finite element model) with two nodes 
and four degrees of freedom per node (i.e., two displacements and two rotations). 
 
3 HYDRODYNAMIC BEARING MODEL REVIEW 

In this work, the hydrodynamic supporting forces are determined by following the approach 
proposed by Capone (1986). This nonlinear model is based on the solution of the dimensionless 
Reynolds' equation for cylindrical and short journal bearings (Figure 1), as expressed by Equation 
(2).   
 

 
2
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h h
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   (2) 

 
where  ,h hp p y  is the pressure distribution on the bearing (Equation (3); h  is the oil 
viscosity), y  is the longitudinal coordinate of the shaft center EO

 
(on the bearing location),   is 

the cylindrical coordinate, R  is the shaft radius, hL  is the length of the bearing, and hh  is the oil 
film thickness ( 1 cos sinhh x z    ); x x C  and z z C  are the coordinates of EO  along 
the X  and Z  directions, respectively;  x x C 

  and  z z C 

 , where C  is the radial 
clearance of the bearing. The overbar denotes dimensionless quantities. The bearing surface is 
assumed to be stationary. 
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 The simplifications applied to Reynolds' equation allow its direct integration, leading to the 
analytical form for the pressure field (Equation (4)); ( , 0.5) 0hp   

 
are defined as the boundary 

conditions. 
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 The hydrodynamic forces hF
 
are determined by the integration of Equation (4) over the bearing 

supporting area. 
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where h  is the attitude angle defined by the Equation (6). 
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 To find the analytical expression for the hydrodynamic forces, the solution of the integral hG , 
Equation (7), is used to solve the Equation (5) as shown below.  
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 (a) XZ-plane. (b) YZ-plane. 

Figure 1: Cylindrical hydrodynamic bearing. 
 
Therefore, the hydrodynamic force vector hF  is given by: 
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where hV  and hS
 
are defined as: 
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4 FUZZY ANALYSIS 

According to Lara-Molina et al. (2015), the random parameters of rotating machines can be 
modeled by using fuzzy theory as an alternative approach to the stochastic methods. By using the 
fuzzy theory, it is possible to describe incomplete and inaccurate information. The theory of fuzzy 
sets was initially formulated by Zadeh (1965) to characterize vague aspects of information. 
Thereafter, it was developed a different approach for fuzzy sets that can be compared with the 
theory of possibilities to deal with the uncertainty of information (Zadeh, 1978). Both theories are 
connected, so that the uncertainties are modeled by means of the theory of fuzzy sets for the cases 
in which the stochastic process that describes the random variables is unknown (Moens and Hanss, 
2011; Waltz and Hanss, 2013). The basic concepts of the fuzzy variables are revisited next. 
 
4.1 Fuzzy variables 

Let FX  be an universal classical set of objects whose generic elements are denoted by x . The 
subset ( )FA A X  is defined by the classical membership function : {0, 1}A FX  , shown in 
Figure 2. Furthermore, a fuzzy set A  is defined by means of the membership function 

: [0, 1]A FX  , being [0, 1]  a continuous interval. The membership function indicates the degree 
of compatibility between the element x

 
and the fuzzy set A . The closer is the value of ( )A x

 
to 1, 

the more x
 
belongs toA . 

 

  
(a) Fuzzy set. (b) The  - levels. 

Figure 2: Fuzzy set and  - level representation. 

 
Thus, the fuzzy set is completely defined by: 
 
   , ( )A FA x x x X    (11) 
 
where 0 1A  .  . 
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 For computational purposes, the fuzzy set A  can be represented by means of subsets that are 
denominated  - levels. These subsets, which correspond to real and continuous intervals, are 
defined by kA  (Figure 2), thus: 
 
  , (x)k F A kA x X       (12) 
 
 The  - level subsets of A  have the property: 
 
 , 0, 1k i i kA A             (13) 

 
with i k  . If the fuzzy set is convex for the one-dimensional case, each  - level subset kA  
corresponds to the interval [ , ]k l k rx x   , shown in Equation (14). 
 

 
min ( )

max ( )

k l F A k

k r F A k

x x X x

x x X x





 

 

    

    
  (14) 

 
4.2 Dynamic models with fuzzy parameters 

In this work, the dynamic model describes the behavior of the rotor by means of a set of differential 
equations. The relationship between the inputs x  and outputs z

 
of a specific dynamic model fM

 
is 

characterized by f , which represents the set of differential equations of the model in Equation (15). 
 
 : ( ) ( )fM f z x   (15) 
 
 Therefore, the function f  maps the inputs x  onto the outputs ( )z . Thus, ( )x z , where   
is the independent variable of the dynamic response that may represent time, frequency or spatial 
coordinates. Considering the inputs of the model as fuzzy variables x  or fuzzy functions ( )x , the 
dynamic response of the system corresponds to the resulting fuzzy functions ( )z . These fuzzy 
functions result from the mapping, thus ( )x z  . 
 
4.3 Fuzzy dynamic analysis 

The fuzzy dynamic analysis is an appropriate method to map a fuzzy input vector x  onto the 
output ( )z  of a numerical model by using the deterministic model given by Equation (15). In 
structural analysis, the combination of uncertainties modeled as fuzzy variables with the 
deterministic model based on the finite element method is denominated fuzzy finite element 
method. The fuzzy dynamic analysis includes two stages, as shown in Figure 3. 
 In the first stage, for computational purposes, the input vector that corresponds to the fuzzy 
parameter is discretized by means of the  - level representation, presented in the Equation (12) 
and Figure 2. Thus, each element of the fuzzy parameters vector 1( ,..., )nx xx    is considered as an 
interval ,i k i k l i k rX x x  

    
, where 0,1k     . Consequently, the sub-space kX  is defined so that 

1( ,..., )k k n k  X X X , where n
k X  . 
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Figure 3: The  - level optimization. 

 
The second stage is related to solving an optimization problem. This optimization problem consists 
in finding the maximum or minimum value of the output, at each value of  , for the mapping 
model : ( ) ( )fM f z x . Thus: 
 

 
min ( )

max ( )
k

k

kl

kr

z f

z f
















x X

x X

x

x
  (16) 

 
where k lz  

and k rz  
correspond to the upper and lower bounds of the interval ,k k l k rz z z  

    
 in 

the  - level k . The set of discretized intervals [ , ]k l k rz z   for (0,1]k   composes the whole fuzzy 
resulting variable z . 
 The fuzzy analysis of a transient time-domain system demands the solution of a large number of 
optimization problems regarding all  - level of interest for each considered time step. In this paper, 
each upper and lower bounds of the system analysis at a given time instant is obtained from the 
Differential Evolution optimization algorithm (Price et al., 2005). The output value of the transient 
analysis at the evaluated time-step constitutes the objective function. The inputs to this function 
are the uncertain parameters described previously as fuzzy or fuzzy random variables. 
 
5 NUMERICAL RESULTS  

The proposed uncertainty analysis was applied to a horizontal rotating machine modeled by using 
16 Timoshenko beam elements, which is shown in Figure 4. The finite element model is composed 
by a flexible steel shaft with 780 mm length and 12 mm diameter (E 2.07x1011 Pa,    

37800 kg/m , and   0.3), two rigid discs 1D  (node #8) and 2D
 
(node #11), both of steel with 

100 mm diameter and 20 mm thickness ( = 7800 kg/m3), and two cylindrical hydrodynamic 
bearings ( 1B  and 2B , located at the nodes #4 and #14, respectively), each one with 25 mm 
diameter, 10 mm length, and radial clearance C 50 m (i.e., the deterministic radial clearance). 
The hypothesis of short sleeve bearing is justified from the bearings dimensions. In this application, 
the oil viscosity is equal to 0.04 Pa.s (i.e., the deterministic oil viscosity, ISO VG 68 at 45oC). The 
rotating parts take into account a proportional damping ( pD K ) with the coefficient  = 2x10-4. 
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The effects of the coupling between the electric motor and the shaft are disregarded. Displacement 
responses are collected at the bearings and discs locations along the horizontal and vertical 
directions (X  and Z , respectively). An unbalance of 100 g.mm at 0o was applied to each disc of 
the rotor. Figure 5a illustrates the displacement obtained in the horizontal direction of the bearing 

1B
 
in a linear run-down condition (3200 to 100 rev/min in 30 sec). Figure 5b shows the 

hydrodynamic force developed on the vertical direction of the bearing 1B  considering the same 
operational condition. It is possible to observe that the first critical speed of the rotating machine is, 
approximately, 1500 rev/min. The solution of the equations was obtained by using the trapezoidal 
rule integration scheme, which was coupled with the Newton-Raphson iterative method for 
nonlinear equations, as described in Appendix A. 

 

 
Figure 4: FE model of the rotor (····· bearing;   ̶ ̶ ̶ ̶ ̶ ̶  disc). 

 

 
(a) Horizontal displacement obtained at the bearing 1B . 

 
(b) Vertical force developed at the bearing 1B . 

Figure 5: Rotor performing a linear run-down condition. 

#4 
#8 #11 

#14 
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As mentioned, two uncertainty scenarios are considered in the present work. The first scenario is 
dedicated to analyze the influence of uncertainties only in the oil temperature of both bearings, by 
changing the oil viscosity h . The second one takes into account only uncertainties in the radial 
clearances of 1B  and 2B . In both scenarios, the measured orbits of the rotor operating at 1000 
rev/min are analyzed. 
 Concerning the application of the fuzzy analysis, the uncertain parameters were modeled by 
using fuzzy triangular numbers. Thus,  
 

 1 / 1 / 1
100 100

s sp p
a a

       
   (17) 

 
where a  represents the nominal value of the parameter and sp  stands for the maximum percentage 
of amplitude in k = 0. In this work sp = 5, corresponding to the two uncertainty scenarios (i.e., 5 
% of variation around the nominal value).  
 In order to solve the optimization problem associated to the described fuzzy analysis, the 
following parameters were used for the Differential Evolution algorithm: 10 individuals in the initial 
population, 100 generations, crossover probability rate of 0.5, perturbation rate of 0.8, and the 
strategy for the mutation mechanism was DE/rand/1/bin (Lobato et al., 2010). The instantaneous 
radius of the orbit obtained on the bearing 1B  (deterministic radius 

1BR ) was considered as being 
the objective function of the minimization and maximization problems (see Equation (16)) 
associated to the fuzzy analysis. 
 

  
1

1/22 2
BR X Z    (18) 

 
 Considering the Monte Carlo simulation, the first step was to determine the number of sampling 

sn  to be used in the stochastic modeling. For this purpose, a sensitivity analysis has been 
performed based on the instantaneous radius 

1BR  obtained from Equation (18). The convergence 
analysis was performed according to the following expression: 
 

 1 1

1

s

B j B

n j
B

R R
C

R


   (19) 

 
where 

1BR  is the instantaneous radius of the orbit determined from different values of sn  (i.e., the 
stochastic radius) and 1,2,..., sj n . It is worth mentioning that both uncertainty scenarios were 
taken into account simultaneously for this evaluation (i.e., 5 % of variation in the oil viscosity and 
in the radial clearance). Additionally, the uncertain random parameters were modeled by using 
Gaussian random variables. Figure 6 show the convergence evaluation of the sn  value used in the 
stochastic analysis. Note that the convergence was achieved for sn = 200. 
 Figure 7 shows the orbits obtained in two measurement planes, located at bearing 1B  and disc 

1D , considering both fuzzy and stochastic analyses, for the first uncertainty scenario (i.e., 
uncertainty on the oil viscosity). Note that the disc responses (Figures 7c and 7d) were affected by 
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Figure 6: Convergence evaluation of the number of sampling ( * lower limit; △ upper limit). 

 

  
(a) Fuzzy analysis: bearing 1B . (b) Stochastic analysis: bearing 1B . 

  
(c) Fuzzy analysis: disc 1D . (d) Stochastic analysis: disc 1D . 

Figure 7: Envelope of the orbits considering the uncertainty on the oil viscosity 
(˗˗˗˗ nominal; ···· lower limit /   0; ˗·˗·˗ upper limit /   0). 

 
minor variations, while the uncertainty parameter changed significantly the orbits at the bearings 
(Figures 7a and 7b). The center of the orbits moved downward according to the decreasing 
viscosity. This is an expected result, since the hydrodynamic force hF  (Equation (8)) is proportional 
to the oil viscosity (the force decreases with the decreasing viscosity). Additionally, it can be seen 
that both uncertainty analyses provided similar results (by comparing Figures 7a with 7b and 7c 
with 7d). The results obtained from the other two measurement planes were similar.  
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 Figure 8 shows the orbits obtained in the two measurement planes depicted in Figure 7, 
considering both fuzzy and stochastic analyses, but now for the second uncertainty scenario (i.e., 
uncertainty on the radial clearance). As observed in Figure 7, the responses of the disc (Figures 8c 
and 8d) were affected by minor variations as compared with the orbits at the bearings (Figures 8a 
and 8b). In this case, the center of the orbits moved downward according to the increasing radial 
clearance. Equation (8) shows that hF  is proportional to the inverse of the square of the radial 
clearances (the force decreases with the increasing radial clearance). Both uncertainty analyses 
provided similar results. However, some irregularities can be observed in the responses obtained at 
the bearings, for the case in which the fuzzy approach was applied (see Figure 8a). One attributes 
such abnormal behavior to the optimization process that needs to be carried out for the 
determination of each displacement point of the orbits. Additionally, it can be seen that 
uncertainties in the radial clearances (Figure 8) were able to modify significantly the rotor 
responses. Note that smaller changes are observed in the results obtained from the uncertainties 
introduced in the oil viscosity (Figure 7). Simultaneous uncertainty has also been considered for 
both oil viscosity and radial clearance. In this case, the results were similar to those shown in 
Figure 8. It is worth mentioning that all shown results are specific for rotating machines supported 
by fluid film bearings. Koroishi et al. (2012) show that for a rotating machine supported by ball 
bearings the orbits remains concentric if uncertainties are considered for the stiffness and damping 
coefficients of the bearings. 
 

  
(a) Fuzzy analysis: bearing 1B . (b) Stochastic analysis: bearing 1B . 

  
(c) Fuzzy analysis: disc 1D . (d) Stochastic analysis: disc 1D . 

Figure 8: Envelope of the orbits considering the uncertainty on the radial clearance 
(˗˗˗˗ nominal; ···· lower limit /   0; ˗·˗·˗ upper limit /   0). 
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Figure 9 show the responses obtained along the Z  direction on the same two measurement planes 
considered earlier, for the rotor operating under a linear run-down condition (3200 to 100 rev/min 
in 30 sec). The first uncertainty scenario is evaluated for both fuzzy and stochastic analyses. The 
instantaneous radius of the orbit obtained at the bearing 1B  was considered as being the objective 
function for the minimization and maximization problems associated to the fuzzy analysis (see 
Equation (18)). Considering the Monte Carlo simulation, it has been considered sn = 200, according 
to the convergence evaluation shown in Figure 6. Note that the disc responses (Figures 9c and 9d) 
are affected by minor variations. Additionally, it can be seen that both uncertainty analyses again 
provide similar results (by comparing Figures 9a with 9b, and 9c with 9d). The results obtained 
from the other two measurement planes are similar, and thus they were not included in this 
contribution.  
 

  
(a) Fuzzy analysis: bearing 1B . (b) Stochastic analysis: bearing 1B . 

  
(c) Fuzzy analysis: disc 1D . (d) Stochastic analysis: disc 1D . 

Figure 9: Envelope of the run-down responses considering the uncertainty on the oil viscosity 
(˗˗˗˗ nominal; ···· lower limit /   0; ···· upper limit /   0). 

 
Figure 10 also shows the responses obtained along the Z  direction for the same two measurement 
planes, located at bearing 1B  and disc 1D , with the rotor operating under a linear run-down 

Latin American Journal of Solids and Structures 12 (2015) 1487-1504 
 



     A.A. Cavalini Jr. et al. / Uncertainty analysis of a flexible rotor supported by fluid film bearings          1499 

condition (3200 to 100 rev/min in 30 sec). However, in this case the second uncertainty scenario 
(i.e., uncertainty on the radial clearance) is evaluated for both fuzzy and stochastic analyses. As 
observed in Figure 9, the responses of the disc (Figures 10c and 10d) were affected by minor 
variations as compared with the responses of the bearings (Figures 10a and 10b). 

 

  
(a) Fuzzy analysis: bearing 1B . (b) Stochastic analysis: bearing 1B . 

  
(c) Fuzzy analysis: disc 1D . (d) Stochastic analysis: disc 1D . 

Figure 10: Envelope of the run-down responses considering uncertainty in the radial clearance 
(˗˗˗˗ nominal; ···· lower limit /   0; ···· upper limit /   0). 

 
Again, both uncertainty analyses provided similar results. From Figures 10a and 10b, it can be seen 
that the lower limit (i.e., the red points) is associated with the largest radial clearance. Remember 
that the center of the orbits moved downward according to the increasing radial clearance (see 
Figure 8). Clearly, the green points are associated with the smallest radial clearances. A similar 
analysis can be done considering the Figure 9. Additionally, note that the uncertainties in the radial 
clearances (Figure 10) were able to modify significantly the run-down rotor responses. Smaller 
changes are observed in the results obtained from the uncertainties introduced in the oil viscosity 
(Figure 9).  
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6 CONCLUSIONS 

In this paper two uncertainty approaches were used to evaluate the dynamic responses of a flexible 
rotor supported by oil film bearings, namely fuzzy and stochastic analyses. Two uncertainty 
scenarios were analyzed: uncertainties in the oil viscosity and uncertainties in the radial clearance 
(all applied simultaneously to both bearings). The numerical applications show that both 
uncertainty approaches led to similar results. However, the fuzzy analysis seems to be more 
adequate when the stochastic process that models the uncertain parameters of the bearings is not 
well defined. Finally, the proposed strategy demonstrates the relevance of introducing uncertainties 
in the design variables from the design perspective of rotating machinery. Moreover, the stochastic 
approach requires the estimation of the probability density function of the uncertain parameters. 
Further studies will encompass an experimental verification. 
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APPENDIX A 

Numerical integration of the equations of motion. 

Section 3 shows that the hydrodynamic bearing force is nonlinear in the bearing degrees of freedom 
x  and z  (see Equations (6) to (10)). Thus, direct numerical integration of Equation (1) is not 
possible, as it consists of a nonlinear, second-order differential system of equations. Hence, to obtain 
the time responses, the Newton-Raphson method is considered in conjunction with the Newmark-
type, trapezoidal rule integration algorithm. One considers the solution to be known for time t , 
and, from the dynamic equilibrium equations, one wants to compute the solution for time t t  . 
First, one writes: 
 
    t t t t g t t t t st t t u ht t t t

M q D D q K K q W F F      
                 



    (A1) 

 
where the right-subscript indicates the discrete-time evaluation of the quantity.  
 One writes,  
 
       , h h t t t tt t t t

F F q q  
    (A2) 

 
which render the system nonlinear, as stated above. 
 It is assumed an approximate solution set for Equation (A1), as shown by Equation (A3). 
 
       1 1 1

 ,  , 
n n n

t t t t t tq q q
  

      (A3) 

 
where n  is the Newton-Raphson iteration-related index.  
 Firstly, Equation (A1) is written in the form of a residual (Equation (A4)) by moving R.H.S. 
quantities to its L.H.S.. 
 
       1 1 1

 ,  , 0
n n n

t t t t t tR q q q
  

       (A4) 

 
 Then, this result is expanded in the form of a Taylor series, as follows: 
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      
      

 
 

 
 

 
 

1 1 1
 ,  , 

 ,  , . . .

n n n
t t t t t t

n n n
n n n n k n

t t t t t t t t t t t t
t t t t t t

R q q q

R R R
R q q q q q q H OT

q q q

  
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     
  



  
      
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 

   

 

  (A5) 

 
in which . . .H OT  stands for Higher Order Terms. Additionally, 
 
      1

var var var
n n n

t t t t t t


       (A6) 
 
where  var , ,q q q   .  
 Disregarding the Higher Order Terms, and considering the trapezoidal rule integration algorithm 
relations: 
 

 
     

   

21
2

1
2

n n
t t t t

n n
t t t t

q t q

q t q

 

 

   

   



 

  (A7) 

 
the following iterative equation is established: 
 

            ,  , 
n n n n n

t t t t t t t t t tT q R q q q           (A8) 

where 

 

   
 

 
   

 
 

 
 

21 1
2 2

21 1
2 2

n n n
n

t t
t t t t t t
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h h

t t st t t g
t t t t

R R R
T t t

q q q

F F
t K K t D D M

q q


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 
 

  
    
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                                       

 





  (A9) 

 
 The solution  1n

t tq


  is obtained from first solving Equation (A8), and then using Equation (A6).  
 Other unknown variables are calculated from Equation (A7). The procedure is repeated until 
convergence criteria are met, such as obtained by Equation (A10) and/or Equation (A11). Results 
presented along the paper were obtained by considering 610NR  . 
 

       1 1 1
 ,  , 

n n n
t t t t t t NRR q q q   
       (A10) 

  n
t t NRq     (A11) 

 
  The difficult part in evaluating the coefficients matrix (Equation (A9)) lies in calculating the 
derivatives of the hydrodynamic bearing force vector hF  with respect to the degree of freedom vector 
and its time-derivative. These expressions correspond to the linear stiffness and damping coefficients of a 
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hydrodynamic bearing. Such terms have been previously obtained by Meggiolaro (1996), and are 
written as follows: 
 

 

3

2

3

2

1 2

4

1 2

4
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XX h h

ZX

XZ h h
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

 

  (A12) 

 
where 2u z x   , 2v x z   ,  1/22 2n u v  , and 2 21m x z   . The vector H  is defined 
by Equation (A13). 
 

 
3 sen 2 cos

3 cos 2 sen
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          
  (A13) 

 
 For the proper use of Equation (A12) in evaluating Equation (A9), the following derivatives are 
necessary: 
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                    
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  (A18) 

 
where cos sinh hp z x    and cos sinh hq x z   . 
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