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Abstract 

In the work, a two-dimensional problem of a porous material is 

considered within the context of the fractional order generalized 

thermoelasticity theory with one relaxation time. The medium is 

assumed initially quiescent for a thermoelastic half space whose 

surface is traction free and has a constant heat flux. The normal 

mode analysis and eigenvalue approach techniques are used to 

solve the resulting non-dimensional coupled equations. The effect 

of the fractional order of the temperature, displacement compo-

nents, the stress components, changes in volume fraction field and 

temperature distribution have been depicted graphically.  
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1 INTRODUCTION 

Porous materials make their appearance in a wide variety of settings, natural and artificial and in 

diverse technological applications. As a consequence a number of problems arise dealing, among 

others, with statics and strength, fluid flow and heat conduction, and the dynamics of such materi-

als. In connection with the latter, we note that problems of this kind are encountered in the pre-
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diction of behavior of sound-absorbing materials and in the area of exploration geophysics, the 

steadily growing literature bearing witness to the importance of the subject Pecker and Deresiewiez 

(1973). 

 The problem of a fluid-saturated porous material has been studied for many years. A short list 

of papers pertinent to the present study includes Biot(1941, 1956), Gassmann (1951), Biot and Wil-

lis (1957), Biot (1962), Deresiewicz and Skalak (1963), Mandl (1964), Nur and Byerlee (1971), 

Brown and Korringa  (1975), Rice and Cleary (1976), Burridge and Keller (1981), Zimmerman et 

al. (1986,1994), Berryman and Milton (1991), Thompson and Willis (1991)], Pride et al. (1992), 

Berryman and Wang (1995), Tuncay and Corapcioglu (1995), Alexander and Cheng (1991), 

Charlez, P. A., and Heugas, O. (1992), Abousleiman et al. (1998), Ghassemi  and Diek (2002), Tod 

(2003).  

 Eringen (1970) and Nowacki (1966)developed the linear theory of micropolar thermoelasticity 

which are known as micropolar coupled thermoelasticity to include thermal effects. Goodman and 

Cowin (1972) established a continuum theory for granular materials, whose matrix material (or 

skeletal) is elastic and interstices are voids and they introduced the concept of distributed body, 

which represents a continuum model for granular materials (sand, grain, powder, etc) as well as 

porous materials (rock, soil, sponge, pressed powder, cork, etc.). Nunziato and Cowin (1979), devel-

oped the non-linear theory of elastic materials with void, underlying the basic concept that the bulk 

density of the material is written as the product of two fields, the density field of the matrix mate-

rial and the volume fraction field (the ratio of volume occupied by grains to the bulk volume at a 

point of the material) Kumar and Gupta (2010)]. Othman (2007) studied the effect of rotation and 

relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity 

and Othman and Singh (2005) studied the effect of rotation on generalized micropolar 

thermoelasticity for a half-space under five theories. Youssef (2007)constructed theory of generalized 

porothermoelasticity which describe the behavior of thermoelastic porous medium in the context of 

the theory of generalized thermoelasticity with one relaxation time (Lord-Shulman). The energy 

and the entropy equations have been derived also in general co-ordinates. The uniqueness of the 

solution for the complete system of the equations of the theorem has been proved by Kumar et al. 

(2013) and he discussed the plane deformation due to thermal source in fractional order 

thermoelastic media, while Abbas and Kumar (2014) studied the deformation due to thermal source 

in micropolar generalized thermoelastic half- space by finite element method. 

 Recently, a new formula of heat conduction has been considered in the context of the fractional 

integral operator definition by Youssef  (2010). This new consideration generated the fractional 

order generalized thermoelasticity which was cited by Youssef who approved the uniqueness of its 

solutions. 

 Youssef solved one dimensional problem in the context of the fractional order generalized 

thermoelasticity and discussed the effects of the fractional order parameter on all the studied fields 

and with Al-Leheabi i(2010). Youssef  (2012) solved two-dimensional thermal shock problem of 

fractional order generalized thermoelasticity with thermal shock. Povstenko (2005) solved a problem 

of fractional heat conduction equation and associated thermal stress.  The counterparts of our prob-

lem in the contexts of the thermoelasticity theories have been considered by using analytical and 

numerical methods Abbas et al.  (2002, 2008, 2009, 2011, 2012). 
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 In this paper, a two-dimensional problem of a porous material will be considered within the con-

text of the fractional order generalized thermoelasticity theory with one relaxation time. The medi-

um will be assumed initially quiescent for a thermoelastic half space whose surface is traction free 

and has a constant heat flux. The normal mode analysis and eigenvalue approach techniques will be 

used to solve the resulting non-dimensional coupled equations. The effect of the fractional order of 

the temperature, displacement components, the stress and components, changes in volume fraction 

field distribution will be depicted graphically. 

 
2  GOVERNING EQUATIONS  

For homogeneous, linear and thermally elastic medium with voids and temperature dependent me-

chanical properties, the basic equations in the context of the Lord and Shulman (1997) model  and 

Cowin and Nunziato (1983) in absence of body forces and heat source are given by Kumar and Devi 

(2011). 

The equations of motion Kumar and Devi (2011): 
 

 
,

, , , ,= =ɺɺ
ij j i

u i j x y zσ ρ  , (1) 

 

and 

 ( )
2

, 1 0 2,
, , , ,

∂ ∂
− − − + = =

∂ ∂i i
be w mT i j x y z

t t

φ φ
βφ ξ φ ρψ                           (2) 

 

The generalized heat conduction equation Youssef (2010) and Kumar and Devi (2011): 
 

 ( ) ( )
2

1

, 0 2,
, , , ,−  ∂ ∂

= + + + = ∂ ∂ 
i e o oi

K I T c T mT T e i j x y z
t t

α τ ρ φ γ ,  (3) 

 

where the fractional integral operator defined as follows Youssef (2010): 
 

 ( )
( )

( ) ( )1

0

0 1
1

, 1

1 2

−

< < 
 

= − = 
Γ  < ≤ 

∫
t

weak conductivity

I f t t f d normal conductivity

strong conductivity

αα

α
τ τ τ α

α
α

, (4)  

 

and ( )Γ α is the Gamma function. 

The constitutive equations 
 

 ( )2 , , , , = + + − − = ij ij o ije e b T T i j x y zσ µ λ φ γ δ , (5) 

 

The cubical dilatation 
 

 
∂ ∂ ∂

= + +
∂ ∂ ∂
u v w

e
x y z

,                                                                        

 

where ρ  is the mass density, T the temperature change of a material particle, 
o
T the reference uni-

form temperature of the body, 
i
u the displacement vector components, 

ij
e the strain tensor; 

ij
σ  the 
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stress tensor, 
E
c the specific heat at constant strain,γ the thermal elastic coupling tensor in which 

( )3 2 ,= + tγ λ µ α
t

α is the coefficient of linear thermal expansion, K is a material constant thermal 

conductivity, λ , µ  are elastic parameters, 
1 0

, , , , ,b m wβ ξ and ψ  are the material constants due to 

presence of voids and φ  is the change in volume fraction field of voids.  

 
Formulation and solution of the problem 

We consider an isotropic, homogenous and elastic body with voids in two-dimensional fills the re-

gion 0 ,≤ < ∞ − ∞ < < ∞x z  subjected to a time-dependent heat source and traction free on the sur-

face x 0= . The governing equations will be written in the context of Lord and Shulman model 

when the body has no heat sources or anybody forces, and we will use the Cartesian co-ordinates 

( ), ,x y z  and the components of the displacement ( ),0,=iu u w   to write them as follows: 

The equations of motion are in the forms 
 

 
2

2
,

∂ ∂ ∂
+ =

∂ ∂ ∂
xx xz u

x z t

σ σ
ρ   (7) 

 

 
2

2

∂ ∂ ∂
+ =

∂ ∂ ∂
zx zz w

x z t

σ σ
ρ  , (8) 

and 
 

 
2 2 2

1 12 2 2
,

 ∂ ∂ ∂ ∂
+ − − − + = ∂ ∂ ∂ ∂ 

be w mT
x z t t

φ φ φ φ
β ξ φ ρψ                  (9) 

 

The heat conduction equation 
 

 ( )
2 2 2

1

02 2 2
,−    ∂ ∂ ∂ ∂

+ = + + +   ∂ ∂ ∂ ∂   
e o o

T T
I K c T mT T e

x z t t

α τ ρ φ γ  (10) 

 

The heat flux equation in x-direction 
 

 ( ) ( ) ( )1
, ,

, , , , , 0 2− ∂
+ = − < ≤

∂
ɺ

o

T x z t
q x z t q x z t K I

x

ατ α  (11) 

 

The constitutive relations are 
 

 ( )2 ,
∂

= + + − −
∂xx o

u
e b T T

x
σ µ λ φ γ   (12) 

 

 ( )2 ,
∂

= + + − −
∂zz o

w
e b T T

z
σ µ λ φ γ  (13) 

and 
 

 .
∂ ∂ = + ∂ ∂ 

xz

u w

z x
σ µ  (14) 
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The cubical dilatation 

 
∂ ∂

= +
∂ ∂
u w

e
x z

. (15) 

 

For our convenience, the following non-dimensional variables and notations are used: 
 

( ) ( )
2

( , , ) ( , , ), , , , , , , , , , ,
−

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = = = = = =ijo

ij

o o o o o

T Tc c c
x y z x y z u v w u v w t t T q q

c T T T T T K

ση ρ η ρ
η σ φ φ

γ γ γ η
 

 

where 2 2+
=c

λ µ
ρ

,
2

=
c

K
η . 

 

In terms of the non-dimensional quantities defined above, the governing equations will be reduce to 

(dropping the dashed for convenience) 
 

 
2 2 2 2

1 32 2 2
,

∂ ∂ ∂ ∂ ∂ ∂
+ + + − =

∂ ∂ ∂ ∂ ∂ ∂ ∂
u u w T u

b b
x z x z x x t

φ
                             (16) 

 

 
2 2 2 2

1 32 2 2
.

∂ ∂ ∂ ∂ ∂ ∂
+ + + − =

∂ ∂ ∂ ∂ ∂ ∂ ∂
w w u T w

b b
z x z x z z t

φ
                               (17) 

 

 
2 2 2

4 5 6 7 82 2 2
,

∂ ∂ ∂ ∂
+ − − − + =

∂ ∂ ∂ ∂
b e b b b T b

x z t t

φ φ φ φ
φ                                (18) 

 

 ( )
2 2

0 9 102 2
1 ,

∂ ∂ ∂ ∂ + = + + + ∂ ∂ ∂ ∂ 

T T
T b b e

x z t t

α

α τ φ            (19) 

 

 ( )1 2 32 2 1 ,
∂

= + − + −
∂xx

u
b b e b T

x
σ φ   (20) 

 

 ( )1 2 32 2 1 ,
∂

= + − + −
∂zz

w
b b e b T

z
σ φ   (21) 

 

 1 ,
∂ ∂ = + ∂ ∂ 

xz

u w
b

z x
σ   (22) 

 

 ( ) ( ) ( )1
, ,

, , , , , 0 2− ∂
+ = − < ≤

∂
ɺ

o

T x z t
q x z t q x z t I

x

ατ α  (23) 

 

where  
 

1
2

=
+

b
µ

λ µ
,
2 1
1= −b b , 3

2
=

+
b

b
λ µ

,
2

4 2
=
bc

b
βη

,
2

1

5 2
=

c
b

ξ
βη

,
2

1

6 =
wc

b
βη

,
4

7 2
=
m c

b
ρ

βη γ
,

2

8 =
c

b
ρψ

β
, 
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9 = o
mT

b
K

γ
ρ η

, and 
2

10 = o oT
b

K

γ
ρ η

. 

 

3  NORMAL MODE ANALYSIS 

The solution of considered physical variables can be decomposed in terms of normal mode as follow-

ing form  
 

 ( )( ) ( )( ) ( )*, , , , , , , , , , , , ,
+∗ ∗ ∗ ∗ ∗= t ibz

ij iju w T q x z t u w T q x e
ωφ σ φ σ     (24) 

 

where ω  is a complex constant, 1= −i  , b  is the wave numbers in the z-directions. Using equa-

tion (24), equations (16)-(23) become respectively: 
 

 
2

2
,

∗ ∗ ∗ ∗

= + + +
d u dw d dT

Au B C
dx dx dx dx

φ
                                (25) 

 

 
2

2
,

∗ ∗
∗ ∗ ∗= + + +

d w du
Dw E FT G

dx dx
φ    (26) 

 

 
2

2
,

∗ ∗
∗ ∗ ∗= + + +

d du
Hw M NT P

dx dx

φ
φ   (27) 

 

 
2

2
,

∗ ∗
∗ ∗ ∗= + + +

d T du
Qw R ST Z

dx dx
φ   (28) 

 

 ( )
*

*∂
= −

∂
T

Lq x
x

, (29) 

 

where 

 

2 2

1 3, , ,= + = − = −A bb B ib C bω  ( )2 2 3 2

1 1 1 1

1
, , , ,= + = − = = −

ibb ibbib
D b E F G

b b b b
ω

 
 

2 2

4 8 5 6 7 4, , , ,= = + + + = − =H ibb M b b b b N b P bω ω
10 9
, ,= =Q Libb R Lb

2 ,= +S b L
10
,=Z Lb  

 

( ) ( )
[ ]0

1

1
1

∞
− −

= Γ +
=

−
+ ∑

n

n

tt
n

e
t

L ω α ω
τ ω

α
. 

 

Equations (25)-(28) can be written in a vector-matrix differential equation as follows  

 

 ,=

�
�dV

WV
dx

  (30) 
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where  
 

 
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 
=  

 

�
T

du dw d dT
V u w T

dx dx dx dx

φ
φ  , (31) 

and  

 

 

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
.

0 0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 =  
 
 
 
 
  

W
A B C

D E F G

H M N P

Q R S Z

  (32) 

 

 

4  SOLUTION OF THE VECTOR-MATRIX DIFFERENTIAL EQUATION  

Let us now proceed to solve equation (30) by the eigenvalue approach proposed by Das et al. 

(2009). The characteristic equation of the matrix W takes the form 

 

 8 6 4 2

1 2 3 4 0,− + − + =F F F Fλ λ λ λ                              (33) 

where 

 

1
,+ + += + + +A D BG M CP S ZF  

 

( )
( ) ( ) ( )

2
E E

,

− + + − − − − − + +

+ + + + + − +

=

− + + + +

CG H BGM B P FQ GQ NR PR BGS

MS CPS A D M S BF M CN Z D M CP S Z

F
 

 

( )
( )

( )( )

3 E E

E E

E E e

,

− + + + + − − − −

− + + − − + + +

+ + − − + − + +

− + + +

=

+ −

GMQ NQ CGNQ PQ GHR DNR BGNR DPR

A H DM FQ NR HS CGHS DMS BGMS

A D M S CDPS B PS HZ DMZ CDNZ B NZ

F CPQ HR BPR CHZ M Q BZ

F

 
 

4 E E .− + + − −= +AFMQ A NQ AFHR ADNR A HS ADMSF  

 

The roots of the characteristic equation (33) which are also the eigenvalues of matrix W in the form 
 

 1 2 3 4, , ,= ± ± ± ±λ λ λ λ λ .  (34) 
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The eigenvector 
 

 [ ]1 2 3 4 5 6 7 8, , , , , , ,=
� T
X x x x x x x x x , (35) 

 

which are corresponding to eigenvalue λ  can be calculated as 
 

 
( )( ) ( )( )

( )( )( ) ( )( )

2 2

2 2

1

4 2

E

,

− + − + − +

− + − − + − + − +

= FR S NQ H S

FQ D S NR M

x

MS S

λ λ

λ λ λ λ
                    (36) 

 

 ( )
( )( )

( ) ( )

4

2

2

2

2 2
,

E

 − + − + +
 −
 + − + − +

=



G NR
x

MS M S
S

F PR Z MZ P PS NZ

λ λ
λ λ

λ λ
          (37) 

 

 ( )
( )( ) ( )( )( )

( )( )

2 2 2

2

2
3

,

 + − + − − − − +
 −
  + − + 

=
G NQ H S P FQ D S

S
FH D N Z

x
λ λ λ

λ λ
λ

        (38) 

 

 ( )
( ) ( )

( )( )

2

2

2
4

2

E
,

 − + + − −
 −
 − + − 

=
G Q MQ HR PQ HZ

S
D PR Z

x
Z M

λ
λ λ

λ λ
                         (39) 

 

 5 1 6 2 7 3 8 4, , , .= = = =x x x x x x x xλ λ λ λ                            (40) 

 

From equations (36)-(40) we can easily calculate the eigenvector
�

j
X , corresponding to eigenvalue 

, 1,2,3,4,5,6,7,8.=
j
jλ   

For further reference, we shall use the following notations: 
 

 1 2 3 4

1 2 3 4

1 2 3 4

5 6 7 8

, , , ,

, , , .

=− =− =− =−

= = = =

       = = = =       

       = = = =       

� � � � � � � �

� � � � � � � �

X X X X X X X X

X X X X X X X X

λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

            (41) 

 

The solution of equation (30) can be given by: 
 

 31 2 4

8

1 1 2 2 3 3 4 4

1

,
−− − −

=

= = + + +∑
� � � � � �

i x xx x x

j j

j

V A X e A X e A X e A X e A X e
λ λλ λ λ              (42) 

 

where the terms containing exponentials of growing nature in the space variable x have been dis-

carded due to the regularity condition of the solution at infinity, 
1 2 3
, ,A A A  and 

4
A are constants to 

be determined from the boundary condition of the problem. Thus, the field variables can be written 

for 0, 0, ,≥ > − ∞ ≤ ≤ ∞x t z as: 

 ( )
4

5

1

( , , ) ,
−+

=

= ∑ j xt ibz j

j

j

u x z t e A x e
λω

  (43) 
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 ( )
4

6

1

( , , ) ,
−+

=

= ∑ j xt ibz j

j

j

w x z t e A x e
λω

  (44) 

 

 ( )
4

7

1

( , , ) ,
−+

=

= ∑ j xt ibz j

j

j

x z t e A x e
λωφ   (45) 

 ( )
4

8

1

( , , ) ,
−+

=

= ∑ j xt ibz j

j

j

T x z t e A x e
λω

  (46) 

 

 ( ) ( )( )( )
4

1 5 1 5 6 3 7 8

1

( , , ) 2 1 2 ,
−+

=

= − + − − + + −∑ j xt ibz j j j j j

xx j j j

j

x z t e b x b x ibx b x x A e
λωσ λ λ   (47) 

 

 ( ) ( )( )( )
4

1 6 1 5 6 3 7 8

1

( , , ) 2 1 2 ,
−+

=

= + − − + + −∑ j xt ibz j j j j j

zz j j

j

x z t e b ibx b x ibx b x x A e
λωσ λ   (48) 

 

 ( ) ( )
4

1 5 6

1

( , , ) ,
−+

=

= −∑ j xt ibz j j

xz j j

j

x z t b e ibx x A e
λωσ λ                              (49) 

To complete the solution we have to know the constants 
1 2 3
, ,A A A and

4
A , so we will use the follow-

ing boundary conditions. 

 
5  APPLICATION 

We will consider that the bounding plane of the medium 0=x  traction free and has a constant 

heat flux with constant strength.  

Thus, the appropriate boundary conditions are 
 

 (0, , ) (0, , ) 0= =
xx xz

z t z tσ σ ,  (50) 

 

 (0, , ) 0
∂

=
∂

z t
x

φ
,  (51)  

 

and 
 

 (0, , ) =
o

q z t q ,  (52) 
 

which gives 
 

 
*(0, , )∂

= −
∂ o

T z t
Lq

x
, (53) 

 

where 
o
q is the strength of the heat flux and it is constant 

From the boundary conditions (50), (51) and (53), we obtain 
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1

11 12 13 141

21 22 23 242

31 23 33 343

41 42 43 444

0

0
,

0

−
    
    
     =
    
    

−     o

H H H HA

H H H HA

H H H HA

H H H H LqA

  (54) 

 

where the element of matrix 
rs

H  are given by: 

 

 ( )( )1 1 1 1 1

11 1 1 5 1 1 5 6 3 7 82 1 2 ,= − + − − + + −H b x b x ibx b x xλ λ   

 

 ( )( )2 2 2 2 2

12 1 2 5 1 2 5 6 3 7 82 1 2 ,= − + − − + + −H b x b x ibx b x xλ λ
 

 

 ( )( )3 3 3 3 3

13 1 3 5 1 3 5 6 3 7 82 1 2 ,= − + − − + + −H b x b x ibx b x xλ λ   

 

 ( )( )4 4 4 4 4

14 1 4 5 1 4 5 6 3 7 82 1 2 ,= − + − − + + −H b x b x ibx b x xλ λ
 

 

 1 1 2 2 3 3 4 4

21 5 1 6 22 5 2 6 23 5 3 6 24 5 4 6, , , ,= = − = − = − = −H ibx x H ibx x H ibx x H ibx xλ λ λ λ  
 

 1 2 3 4

31 1 7 32 2 7 33 3 7 34 4 7, , , ,= − = − = − = −H x H x H x H xλ λ λ λ  
 

 1 2 3 4

41 1 8 42 2 8 43 3 8 44 4 8, , , .= − = − = − = −H x H x H x H xλ λ λ λ  

 
6  NUMERICAL RESULTS AND DISCUSSIONS 

Following Kumar and Devi (2011), magnesium material was chosen for purposes of numerical eval-

uations. The physical data are given as 

 
10 2 10 2

3 3 3 1 1

2 1 2 1 1 *

15 2

6

= 2.17 10 (N)(m ); = 3.278 10 (N)(m ); 2; 1.2; 1.3;

1.74 10 (kg)(m) ; 1.04 10 ( )(kg) ( ) ; 298( );

(N)(m )(2.68 1 ) ; 1.7 10 ( )( )( ) ; 100; 50;

1.753 10 (m ;

0

)

− −

− − −

− − ∗ − −

−

× × = = =

= × = × =

× = × == =

= ×

o

o

o o

E o

o

o

a b

c J K T K

K k W m K r

λ µ ω

ρ

νγ

ψ 3 2 1 10 2

01 1

10 2 6 2 1 5

0.0787 10 (N)(m) ( ) ; 1.475 10 (N)(m );

1.13849 10 (N)(m ); 2 10 (N)(m )( ) ; =3.688 10 (N).

− − − −

− − − −

= × = ×

= × = × ×
o

o o o

s

b m K

ω ξ

α

 

 

Figures 1-8 represent the temperature distribution, displacement u distribution, displacement w 

distribution, the change in volume fraction field of voids distribution, the strain distribution, the 

stress 
xx

σ distribution, the stress 
xz

σ distribution and the stress 
zz

σ distribution respectively at con-

stant time 2.5=t  and constant 0.5=z with different values of the fractional parameter 

0.5, 1.0, 1.5=α  which express for the weak thermal conductivity, normal thermal conductivity and 

super thermal conductivity respectively. 
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In figure 1, the fractional order parameterα has a significant effect on the temperature distribu-

tion, where increasing onα causes increasing on T and the rate of change of T with respect to x also 

increases when α increases which is compatible with the definition of the thermal conductivity. 

In figures 2 and 3, the fractional order parameterα has a significant effect on the displacement u 

and w distributions, where increasing onα causes increasing on the absolute values of u and w, and 

the rate of change of them with respect to x also increase when α increases which is compatible 

with the definition of the thermal conductivity. 

Figure 4 shows the variation of change in volume fraction field respect to x with different value 

of the fractional order parameterα . It is seen that, the volume fraction starts with its maximum 

value at the origin and decreases until attaining zero. The fractional order parameterα has a signifi-

cant effect on the change in volume fraction field of voids distributionφ , where decreases with the 

decrease in the value of fractional parameterα . 

In figure 5, the fractional order parameterα has a significant effect on strain distribution e, where 

increasing onα causes increasing one , and the rate of change of e  with respect to x also increases 

when α increases which is compatible with the definition of the thermal conductivity. 

In figures 6-8, the fractional order parameterα has significant effects on all components of the stress 

distribution, where increasing onα causes increasing the absolute values of the stresses, and the rate 

of change of them with respect to x also increase when α increases which is compatible with the 

definition of the thermal conductivity. 

 

 

Figure 1: The temperature distribution with different value of the fractional parameter. 
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Figure 2: The displacement u distribution with different value of the fractional parameter. 

 

Figure 3: The displacement w distribution with different value of the fractional parameter. 
 
 

Figure 4: The change in volume fraction field of voids distribution with different value of the fractional parameter. 

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

x

u

 

 

α = 0.5
α = 1.0
α = 1.5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

x

w

 

 
α = 0.5
α = 1.0
α = 1.5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.002

0.004

0.006

0.008

0.01

0.012

x

φ

 

 
α = 0.5
α = 1.0
α = 1.5



I. A. Abbas and H. M. Youssef / Two-Dimensional Fractional Order Generalized Thermoelastic Porous Material   1427 

Latin American Journal of Solids and Structures 12 (2015) 1415-1431 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The strain distribution with different value of the fractional parameter. 

 

Figure 6: The stress 
xx

σ distribution with different value of the fractional parameter. 
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Figure 7: The stress 
xz

σ distribution with different value of the fractional parameter. 

 

Figure 8: The stress 
zz

σ distribution with different value of the fractional parameter. 

 

7  CONCLUSION 

In this work, the effect of the fractional order of the temperature, displacement components, the 

stress components, changes in volume fraction field and temperature distribution have been study-

ing for a two-dimensional problem of a porous material is considered within the context of the frac-

tional order generalized thermoelasticity theory with one relaxation time. We found that, the frac-

tional order parameter has significant effects on all the studied fields and the results supporting the 

definition of the classification of the thermal conductivity of the materials to three types; weak, 

normal and super conductivity. 
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