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Abstract
This work presents a fully non-linear finite element formulation for shell analysis compris-

ing linear strain variation along the thickness of the shell and geometrically exact description
for curved triangular elements. The developed formulation assumes positions and general-
ized unconstrained vectors as the variables of the problem, not displacements and finite
rotations. The full 3D Saint-Venant-Kirchhoff constitutive relation is adopted and, to avoid
locking, the rate of thickness variation enhancement is introduced. As a consequence, the
second Piola-Kirchhoff stress tensor and the Green strain measure are employed to derive
the specific strain energy potential. Curved triangular elements with cubic approximation
are adopted using simple notation. Selected numerical simulations illustrate and confirm the
objectivity, accuracy, path independence and applicability of the proposed technique.
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1 Introduction

Following [19] one can say that a considerable number of nonlinear shell models which explicitly
account for thickness change has been developed in the past years [2,7,13,14,17–20,22–24]. Most
of these works incorporate the extra thickness strain terms at the element level via the enhanced
assumed strain concept, leading very often to hybrid-mixed formulations. Some works like [17,18]
provide only translational degrees-of-freedom in a continuum basis, but ill-conditioned systems
are generated and additional locking effects appear. The purpose of this work is to present a new
positional formulation for shell analysis that incorporates the rate of thickness variation directly
in the kinematics and avoids the use of finite rotation schemes as Euler-Rodrigues formulae and
similar [19, 22]. As far as the authors’ knowledge goes, the absence of finite rotations formulae
and the positional characteristic of the shell formulation make it unique in literature. The
second Piola-Kirchhoff stress tensor and the Green strain measure are employed to derive the
formulation. Curved triangular elements with cubic approximation are developed. Selected
numerical simulations illustrate and confirm the objectivity, accuracy, path independence and
applicability of the proposed formulation.
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2 Strain measure and specific strain energy potential

This section summarizes simple concepts used to derive the proposed formulation. The Green
strain tensor is derived directly from the gradient of the change of configuration function (or
deformation gradient), represented by letter A, given as follows:

Aij =
∂fi

∂xj
(1)

fi is the change of configuration function, as depicted in figure 1, and ∂xj represents variation
regarding initial position. In figure 1 dxi and dyi represent an infinitesimal fiber in the initial and

Figure 1: Change of configuration

current continuum configurations, respectively. Following [16], the Green strain can be written
as:

Eij =
1
2

[AkiAkj − δij ] =
1
2

[Cij − δij ] (2)

In which index notation is adopted. The variables Cij and δij are the right Cauchy-Green
stretch tensor and the Kroenecker delta, respectively. The Saint-Venant-Kirchhoff strain energy
per unit of initial volume is written as:

ue =
1
2
EijCijklEkl (3)

resulting in a linear elastic constitutive law relating second Piola Kirchhoff stress and Green
strain, i.e.:

Sij =
∂ue

∂Eij
= CijklEkl (4a)

The elastic tensor is given by

Cijkl =
2Gν

1− 2ν
δijδkl + G(δikδjl + δilδjk) (4b)
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Where G is the shear modulus, given by,

G =
E

2(1 + ν)
(4c)

with E being the well known Young modulus and ν the Poisson ratio. The relation among
Second Piola Kirchhof stress and the true stress (Cauchy Stress) is straightforward [10,16]. For
the sake of completeness it is necessary to recall that the right Cauchy-Green stretch tensor is
positive definite, symmetric and has six independent values [16].

3 Kinematical approximation and positional mapping

This section describes operational procedure to implement the proposed kinematics for shells
taking into account the rate of thickness variation. It is important to note that expressions,
simple as they are, are general and comprise curved elements. Appendix A is prepared specially
to give a clear understanding of the unconstrained vector mapping, deriving it directly from a
solid representation, conserving its capacity of describing what is called large rotations. If a
solid has one of its dimensions smaller than others it is called a shell. One can approximate the
mid-surface positions of a shell, see figure 2, by the following mapping.

fm0
i = xm

i (ξ1, ξ2, X`i) = φ`(ξ1, ξ2)X`i (5)

fm1
i = ym

i (ξ1, ξ2, Y`i) = φ`(ξ1, ξ2)Y`i (6)

where xm
i is the ith coordinate of a generic point in the mid surface of the shell at initial

configuration, X`i is the ith coordinate of node ` at initial configuration, ym
i is the ith coordinate

of a generic point in the mid surface of the shell at current configuration, Y`i is the ith coordinate
of node ` at current configuration. A similar mapping has been proposed by [5] for membrane
analysis. One can see in figure 2 that fm0 is the positional mapping from the auxiliary space to
the initial configuration, fm1 is the positional mapping from the auxiliary space to the current
configuration, fm is the positional mapping from the initial configuration to the current one
(not to be written) and the values Am0, Am1, Am are their respective gradients. To complete
the shell description for both initial and current configurations, one realizes that the difference
among the coordinates of a point out of the mid-surface and its corresponding, belonging to the
mid-surface, generates position vectors ~go or ~g1, see figure 3. By the other hand, a general point
of the shell can be defined by adding the position vectors to the corresponding coordinates of a
mid-surface point, i.e.,

xi = xm
i + g0

i (7)

yi = ym
i + g1

i (8)

For constant strain along thickness, following figure 3, one writes g0
i and g1

i as functions of
non-dimensional variables, as

g0
i =

h0

2
e0
i (ξ1, ξ2) ξ3 (9)
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Figure 2: Mid-surface mapping

g1
i =

h(ξ1, ξ2)
2

e1
i (ξ1, ξ2) ξ3 (10)

where h0,h, e0
i , e

1
i are, respectively, the initial thickness of the shell, the current thickness of

the shell, the normal unit vector to the initial mid-surface and the current unit vector, not
normal to the current mid-surface. At this point it is important to mention that some classical
formulations impose (at least at nodes) that e1

i is orthogonal to the mid surface and constraint
to a spherical subspace governed by finite rotation variables, see for instance [3, 19, 21, 23]. It
is also known that there are important formulations that consider the influence of shear strain
in the kinematics and therefore the directors are not orthogonal to the final surface; see e.g.
references [1,8,9]. As mentioned before, applying Reissner kinematics together with a complete
3D constitutive relation generates Poisson Locking, see for instance [4]. This problem is solved
by considering an additional degree of freedom into the basic kinematics that considers linear
strain along the thickness of the shell. To introduce this behavior, regarding ξ3, a new scalar
variable should be considered, it is called here the rate of thickness variation and is denoted by
letter a. It is not necessary to introduce this new variable for initial configuration, so expression
9 does not change, however expression 10 turns into:

g1
i =

h(ξ1, ξ2)
2

ei(ξ1, ξ2)
[
ξ3 + a(ξ1, ξ2)ξ2

3

]
(11)

We will assume that the initial thickness is constant regarding the shell element and that e0
i is

approximated as
e0
i (ξ1, ξ2) = φ`(ξ1, ξ2)N0

i` (12)

where N0
i` are normal unit vectors evaluated at nodal points ` for initial configuration. In

expression 12 it is well known that the unitary norm of the initial normal vector is not preserved
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Figure 3: Position vectors and complete mapping

along the continuum element, see for instance [14]. This characteristic can be understood as
an error in establishing the initial thickness of the shell. Using two and ten elements with
cubic approximation (coarse and middle meshes) to model a π/2 cylindrical shell geometry, the
maximum achieved error, for initial thickness, is 1.5% and 4.1 10−4%, respectively. This result
allows the use of this kind of approximation for practical purposes. Equations 13, 14 and 15
explain this concept when modeling the thickness of the current configuration. For the current
configuration the following approximation is proposed,

h(ξ1, ξ2)e1
i (ξ1, ξ2) = h0ḡi(ξ1, ξ2) (13)

where ḡi is not a unit vector nor orthogonal to the mid surface, but the so-called generalized
vector. From equation 13 one recovers the current thickness of the shell, varying over the element
as

h(ξ1, ξ1) = h0

√
ḡi(ξ1, ξ1)ḡi(ξ1, ξ1) (14)

and the unit vector ei as

e1
i =

ḡi(ξ1, ξ1)√
ḡi(ξ1, ξ1)ḡi(ξ1, ξ1)

(15)

The position vectors, equations 9 and 11 are finally written as

g0
i =

h0

2
ξ3φ`(ξ1, ξ2)N0

i` (16)

g1
i =

h0

2
[
ξ3 + a(ξ1, ξ2)ξ2

3

]
φ`(ξ1, ξ2) Ḡi` (17)
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where Ḡi` are nodal values (unknown) of the generalized unconstrained vectors at node ` for
current configuration. From these considerations equations 7 and 8 are rewritten as

f0
i = xi = φ`(ξ1, ξ2)X`i +

h0

2
ξ3φ`(ξ1, ξ2)N0

i` (18)

f1
i = yi = φ`(ξ1, ξ2)Y`i +

h0

2
[
ξ3 + φ`(ξ1, ξ2)A`ξ

2
3

]
φ`(ξ1, ξ2)Ḡi` (19)

In which the rate of thickness variation (scalar) is parameterized by its nodal values A`, as
follows:

a(ξ1, ξ2) = φ`(ξ1, ξ2)A` (20)

Equations 18 and 19 are the positional description of a solid with a dimension smaller than others,
i.e., a shell. The unknown parameters per each node ` are seven, i.e., three positions Y`i, three
generalized nodal vectors Ḡi` and nodal rate of thickness variation A`. It is worth remembering
that Ḡi` are not unitary nor orthogonal to the mid surface, i.e., Ḡi` are unconstrained and not
related to finite rotation formulae. Function f0

i is used to find A0 while function f1
i is used

to find A1 (trial). The composition of these two values for each integration station gives the
numerical value of the gradient of the change of configuration for any initial geometry (curved),
i.e., A = A1(A0)−1. Forces are the energy conjugate of positions, therefore, it is possible
to impose moments over nodes or faces using this formulation. One should realize that the
conjugated of Ḡi` can change its modulus if and only if it has a component in its direction.
Using this reasoning, to apply a moment over a node one uses a vector orthogonal to Ḡi` and
the modulus of the moment is the modulus of this vector divided by the modulus of Ḡi`. The
last modulus is usually very near to the unity due to the high stiffness of the shell regarding
the transverse direction. It is worth to show the derivatives of f1

i regarding non-dimensional
variables, achieveing the gradient A1

ij as follows:

A1
i1 = φ`,1(ξ1, ξ2)Y`i +

h0

2
{[

ξ3 + φ`(ξ1, ξ2)A`ξ
2
3

]
φ`,1(ξ1, ξ2)Ḡi` +

[
φ`,1(ξ1, ξ2)A`ξ

2
3

]
φ`(ξ1, ξ2)Ḡi`

}

(21)

A1
i2 = φ`,2(ξ1, ξ2)Y`i +

h0

2
{[

ξ3 + φ`(ξ1, ξ2)A`ξ
2
3

]
φ`,2(ξ1, ξ2)Ḡi` +

[
φ`,2(ξ1, ξ2)A`ξ

2
3

]
φ`(ξ1, ξ2)Ḡi`

}

(22)

A1
i3 =

h0

2
[1 + 2φ`(ξ1, ξ2)A`ξ3 ] φ`(ξ1, ξ2)Ḡi` (23)

4 The numerical positional procedure

In this section the simplicity of the technique becomes clear, as no additional consideration is
necessary. It is important to mention that parameters X`i and N0

`i are known quantities and
will be called simply as X`i with i varying from one to six. The same is done for Y`i, A` and Ḡ`i,
i.e., the unknown quantities will be called simply by Y`i for i varying from one to seven. The
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principle of minimum potential energy can be written, for a conservative elastostatic problem,
using position considerations (not displacements) as follows:

Π(Y ) = Ue(Y )− P(Y ) (24)

Where Π is the total potential energy, Ue is the strain energy and P is the potential energy of
the applied forces, see figure 4. Assuming the strain energy per unity of initial volume as given

Figure 4: Total Potential Energy written for a body in two different positions.

by equation (3), recalling that the involved quantities are Lagrangian, the whole strain energy
stored in the body is written for the reference volume V0 as:

Ue =
∫

V0

ue dV0 =
∫

V0

1
2
EklCklijEij dV0 (25)

The potential energy of conservative applied forces is written as

P = YkFk (26)

In equation 26 Yk corresponds to the current positions (not displacement), rate of thickness
variation and generalized vectors at all points of the body, and Fk their corresponding forces. It
is interesting to note that the potential energy of applied forces may not be zero in the reference
configuration. From equations 25 and 26 the total potential energy is rewritten as

Π =
∫

V0

1
2
EklCklijEij dV0 − FkYk (27)
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From the previous equations it is possible to write equation 27 as a function of current nodal po-
sitions and applied external forces. From this reasoning the problem of achieving the equilibrium
of the elastic system is the determination of the minimum of total potential energy regarding
positions. It is done by differentiating equation 27 regarding nodal positions and making it equal
to zero. These steps are done as follows,

gj =
∂Π
∂Yj

=
∫

V0

1
2

∂

∂Yj
(EklCk limEim) dV0 − Fj (28)

In equation 28 gj is a vector that assumes null value for the exact position (solution). Splitting
the derivative of the specific strain energy, one writes:

1
2

∂

∂Yj
(EklCk limEim) =

1
2

∂

∂Eαβ
(EklCk limEim)

∂Eαβ

∂Yj
= CαβimEim

∂Eαβ

∂Yj
= σαβ

∂Eαβ

∂Yj
(29)

Substituting equation 29 into equation 28 results

gj =
∫

V0

CαβimEim
∂Eαβ

∂Yj
dV0 − Fj = F int

j − Fj = 0 (30)

where F int
j is the gradient vector of the strain energy potential regarding current positions,

understood as internal force. Equation 30 means that if the internal force vector is equal to the
applied one the solid is at equilibrium. If not, vector gj can be understood as the unbalanced
force of the mechanical system. It is important to remember that in this study the applied
forces are conservative. Non-conservative forces can be introduced directly in equation 30, if
desired. As mentioned before the nodal current positions are the unknown of the problem and,
as a consequence, the solution of equation 30. As the vector function gj(Eαβ(Y`)) is non-linear
regarding nodal parameters it is necessary to expand it from an initial trial solution, called here
Y 0

` , as follows:

gj(Y`) = gj(Y 0
` ) +

∂gj

∂Yk

∣∣∣∣
(Y 0

` )

∆Yk + O2
j = 0 (31)

Remembering that external forces are conservative one concludes that

∂gj

∂Yk

∣∣∣∣
(Y 0

` )

=
∂F int

j

∂Yk

∣∣∣∣∣
(Y 0

` )

=
∫

V0

∂

∂Yk

(
CαβimEim

∂Eαβ

∂Yj

)
dV0

∣∣∣∣∣∣
Y 0

`

= H0
kj (32)

where the matrix H0
kj is the complete Hessian matrix of the total potential energy. The derivative

inside the integral term of equation (32) is written as:

∂

∂Yk

(
CαβimEim

∂Eαβ

∂Yj

)
=

(
∂Eim

∂Yk
Cαβim

∂Eαβ

∂Yj
+ EimCαβim

∂2Eαβ

∂Yj∂Yk

)
(33)
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Neglecting higher order terms (O2
i ) equation 31 is rewritten as:

∆Yk = − (
H0

kj

)−1
gj(Y

0
` ) =

(
H0

kj

)−1 (
Fj − F int

j (Y 0
` )

)
(34)

resulting into the full Newton-Raphson procedure to solve a non-linear system of equations. As
the Hessian matrix is complete, the achieved Newton-Raphson procedure preserves the second
order convergence rate. The Newton-Raphson procedure is summarized as follows: One chooses
a trial position Y 0

` and calculates the unbalanced force vector gj(Y 0
` ) according to equation

30. By applying equation 34 one finds the variation of position ∆Yk to correct Y 0
` . With this

new position vector, one repeats the procedure until ∆Yk or gj(Y 0
` ) become small. The error,

that is, the final unbalanced force (residuum) naturally considered by the next load step if
the analyzed problem is divided into load steps, if not the problem is solved. To finalize the
technique description the first and second derivatives of the Green strain regarding current nodal
positions should be done. Firstly the necessary derivatives of the Cauchy-Green stretch tensor
are presented. Next the derivatives of strains are straightforward achieved. Recalling that the
Cauchy-Green stretch tensor is given by:

C = AtA (35)

and omitting, for simplicity, extra indices, one applies the positional FEM mapping and writes:

C = [(A0)t]−1(A1)t(Yi)A1(Yi)(A0)−1 (36)

Remembering that A0 is constant regarding the current nodal position, the first derivative is
performed as:

∂C

∂Yj
= [(A0)t]−1 ∂(A1)t(Yi)

∂Yj
A1(Yi)(A0)−1 + [(A0)t]−1(A1)t(Yi)

∂A1(Yi)
∂Yj

(A0)−1. (37)

and, from equations 21 to 23, one has only 15 null values for the first derivatives regarding
current positions and are left to the reader. Only terms relating generalized vectors and nodal
rate of thickness variation will be present in the second derivative of A1 regarding generalized
positions. The general expression of the second derivative of the Cauchy-Green stretch is given
by,

∂2C

∂Yj∂Yk
=[(A0)t]−1 ∂(A1)t(Yi)

∂Yj

∂A1(Yi)
∂Yk

(A0)−1 + [(A0)t]−1 ∂(A1)t(Yi)
∂Yk

∂A1(Yi)
∂Yj

(A0)−1

+[(A0)t]−1(A1)t(Yi)
∂2A1(Yi)
∂Yj∂Yk

(A0)−1 + [(A0)t]−1 ∂2(A1)t(Yi)
∂Yj∂Yk

A1(Yi)(A0)−1 (38)

Recalling equation 2, one achieves directly the derivatives of Green strain regarding nodal posi-
tions, i.e.:

∂E

∂Yj
=

1
2

∂C

∂Yj

∂2E

∂Yj∂Yk
=

1
2

∂2C

∂Yj∂Yk
(39)
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It is important to mention that the present technique can be applied to any strain measure based
on the Cauchy-Green stretch and any constitutive relation. Equations 30, 32 and 34 indicate
that the proposed procedure can be operated by creating the Hessian matrix and internal forces
for finite elements. Composing the global matrix and internal force vector is done by summation
of coincident degrees of freedom, as in ordinary FEM procedures. One should remember that
all nodal parameters follow the global system of reference, avoiding the use of rotation schemes.

5 Numerical examples

In a previous study [11] the positional formulation, using six parameters, was successfully tested
using seven benchmark examples, mainly regarding its ability of representing large displacement
situations using the engineering strain measure and linear constitutive relation; however a strong
Poisson (volumetric) locking have been detected. The present formulation, including the seventh
parameter A` is proved to solve this limitation.

5.1 Thin plate bending - small displacement situation and locking analysis

This example is extracted from [6] and is used to check the formulation regarding Poisson and
shear locking for thin shell undergoing small displacements. It is an important example as the
solution for plates is very sensitive to the Poisson Ratio. It is the analysis of a simple supported
square plate subjected to a transverse concentrated load at its center. The numerical results are
compared to the analytical solution obtained using Navier’s series and Kirchhoff plate theory.
The thin plate geometry is depicted in figure 5.

Figure 5: Analyzed plate and adopted discretization
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The adopted physical properties are: L = 2m, E = 2.1x106kPa, h = 0.002m and υ varying
from 0 to 0.5. The applied load is P = 0.4x10−2N . In figure 6 the results obtained using the
positional formulation with six and seven parameters are compared to the analytical solution.

Figure 6: Displacement at the centre of the plate versus Poisson Ratio.

As one can observe the seven parameters positional formulation is free from locking and
reproduces perfectly the analytical solution while the six parameter formulation locks totally.

5.2 Pinched cylinder with rigid diaphragms

A cylinder with rigid diaphragms is pinched by concentrated loads at two opposite points at its
top and bottom, see figure 7. Two discretizations are adopted. The first, for the six parameter
formulation, is a mesh of 2 × 21 × 8 curved triangular finite elements resulting in 1600 nodes,
81 less than the number used by [23]. The second is a coarser mesh, 2× 18× 6, 1045 nodes, for
the consideration of the seventh parameter. The adopted discretization for seven parameters is
shown at figure 7. Taking advantage of symmetry only one octant of the cylinder is discretized.
The adopted physical properties are: R = 100, h = 1, E = 3x104, L = 200. Two values are
adopted for the Poisson ratio, υ = 0.3 and υ = 0.49, respectively, in order to check the locking
free behavior of the present formulation.

In figure 8 the results for υ = 0.3 are compared with the one presented by [23] that employed
an enhanced quadrilateral strain based shell finite element. As one can see the positional seven
parameter formulation, presented here, can capture the flexibility of the pinched shell even for
this coarse mesh.

In figure 9, the behavior of the six and seven parameters positional formulation are compared
for υ = 0.49. The reference value for this figure is the seven parameter formulation with υ = 0.3.
As expected, the seven parameter formulation does not lock for large Poisson ratio while the
results for six parameters lock completely.
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Figure 7: Pinched Cylinder geometry, loading and six parameter discretization.

Figure 8: Displacements for points A and B, υ = 0.3.

From the results it is obvious that the positional seven parameters formulation together with
high order curved elements is able to solve geometrically non-linear shell problems with precision
and reduced mesh. Moreover, the introduction of the seventh parameter results in a locking free
behavior. Additional information is that the pinched cylinder benchmark problem is not very
sensitive to the Poisson ratio intensity, when a locking free formulation is employed.

5.3 Objectivity of the formulation regarding rotations

As mentioned in the introduction, this formulation is tested regarding mapping objectivity and
path dependence. The employed way to test this property follows well known methodologies,
see for instance [12,15]. A clamped vertical plate (shell in deformed configuration) is subject to
a transverse load at its free end as depicted in figure 10. The physical properties of the structure
are E = 100000 and ν = 0. The thickness of the shell is h = 0.1. The adopted discretization is
shown in figure 10.

Two situations are created. The first consists in applying a rotation of the clamped end
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Figure 9: Displacements for points A and B, υ = 0.49.

Figure 10: Geometrical characteristics of the problem and discretization.

regarding the clamping axis without applying any load. The objective is to show that no
stress will be generated at any stage of rotation. One hundred turns are applied and no stress
appears; moreover the positions are exactly the same after each turn. In figure 11 one can see
an illustration of this situation for the first turn. The adopted rotation step is 0.1π.

In the second situation the process is divided into two phases and both objectivity and path
dependence are tested. First, the load is increased to its final value in ten equal steps. The
resulting stress, following the longitudinal direction of the shell, at the superior face of the shell,
is depicted in figure 12.

Then the load is kept constant and acting in the same sense and direction and the rotation,
similar to the one used in the first situation, is applied. The adopted rotation step is 0.01π. At
the beginning of the rotation process the action of rotation is against the action of the loading.
At a quarter of the first turn the loading is compressing the shell and the stress values, following
the longitudinal direction of the shell, are depicted in figure 13.

At the half of the first turn the shell is in opposite position to the beginning of the rotation

Latin American Journal of Solids and Structures 5 (2008)



218 Humberto Breves Coda and Rodrigo Ribeiro Paccola

Figure 11: Stress values for the first turn -unloaded

Figure 12: Stress values for the first deformed configuration - no rotation

process, and the initially superior face of the shell is now the inferior one. The stress values
at this face are negative and their values are depicted in figure 14. The difference in stress
magnitude from the first deformed configuration and this one is due to the normal traction force
that increases the values in figure 12 and decreases the absolute values in figure 14.

At three quarters of the first turn the stress values are the ones depicted in figure 15, exactly
as expected.

Finally, after a complete revolution the stress values depicted in figure 12 are exactly re-
covered. Ninety nine more turns were performed and the results are repeated for each turn,
revealing the total objectivity of the generalized vector mapping.

After 100 turns the load is reduced to zero and the no-stress situation and displacement
is achieved, revealing the path independence of the formulation. It is worth noting that [12]
demonstrated mathematically the path dependence of finite rotation descriptions.
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Figure 13: Stress values for a quarter of the first turn (π/2)

Figure 14: Stress values for the half turn (π)

6 Conclusions

In the present work a non-conventional way to derive finite element formulation for shell anal-
ysis is presented including the rate of thickness variation in the positional formulation. The
novelty of positional formulation is the consideration of positions and generalized unconstrained
vectors as nodal parameters, not displacements and finite rotations. This feature allows an
easy development of curved high order elements. Moreover, the resulting formulation is path
independent and objective as demonstrated by examples. The formulation has been described
and implemented for triangular curved shell elements with cubic approximation for positions,
generalized vectors and rate of thickness variation, using simple language and notation. Results
are in very good agreement with the ones present in specialized literature. As expected, the
seventh parameter guarantees a locking free behavior, as demonstrated by the first two exam-
ples, and no simplification is required in the constitutive relation. Future developments are the
consideration of rubber like materials, dynamics and plasticity.
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Figure 15: Stress values for three quarters of a turn (3π/2)

Appendix A - Basic unconstrained mapping

In this appendix the standard FEM solid mapping is transformed to an unconstrained vector
mapping in order to help in the understanding of section 3. Figure A1 shows, without loss
of generality, a two-dimensional solid element, with quadrangular form, mapped from the non-
dimensional Gauss’ space to its shape, following the classical procedure and the vector procedure.

Figure A1: Solid element, classical and vector mapping.

Firstly, the transformation is shown for a two-dimensional solid element with a low order
approximation. After that it is generalized for the desired shell element. The adopted low order
shape functions are:

φ1(ξ1, ξ2) =
1
4

(1− ξ1) (1− ξ2) (A1)

φ2(ξ1, ξ2) =
1
4

(1 + ξ1) (1− ξ2) (A2)

φ3(ξ1, ξ2) =
1
4

(1 + ξ1) (1 + ξ2) (A3)

φ4(ξ1, ξ2) =
1
4

(1− ξ1) (1 + ξ2) (A4)

And for the vector discretization the longitudinal shape functions are:

ϕ1(ξ1) =
1
2

(1− ξ1) . (A5)
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ϕ2(ξ1) =
1
2

(1 + ξ1) (A6)

where ξi are non-dimensional Gauss’ coordinates, see figure A1. The classical mapping is written
as:

xi(ξ1, ξ2, X`i) = φ`(ξ1, ξ2)X`i for i = 1, 2 and ` = 1, 2, 3, 4 (A7)

where xi are any coordinates of a continuum point, φ`(ξ1, ξ2) are the shape functions and X`i are
the coordinates of nodes P`, called nodal position parameters. The equivalent vector mapping,
related to equation A7, is achieved making very simple algebraic operations and is given as:

xi(ξ1, ξ2, X
m
`i , V`i) = ϕ`(ξ1)Xm

`i +
H`iϕ`(ξ1)

2
ξ2 for i = 1, 2 and ` = 1, 2 (A8)

Where the nodal coordinates of the reference line Xm
`i and the generalized vectors H`i are given

by:

Xm
1i =

X1i + X4i

2
; Xm

2i =
X2i + X3i

2
; H1i = X4i −X1i and H2i = X3i −X2i (A9)

Expression A8 shows that the vector mapping is done using non-unitary vectors H`i as pa-
rameters. Moreover, these vectors are not orthogonal to the reference line. To generalize this
procedure, one writes the nodal vectors H1i and H2i as functions of heights H1 and H2, finding:

xi(ξ1, ξ2, X
m
`i , V`i,H`) = ϕ`(ξ1)Xm

`i +
H(`)

2
ξ2Vi`ϕ`(ξ1) for i = 1, 2 and ` = 1, 2 (A10)

Index inside brackets accompany sum, but does not mean summation. The first term of equation
A10 describes the reference line approximation and can be easily enhanced. The values Vi` are
the generalized vectors. Their approximation, along the length of the bar, is also easily enhanced,
as will be shown in the next section. These vectors are not orthogonal to the reference line and
may not be of unit value, if desired, see equation A8. Regarding the initial configuration of the
analyzed body, for simplicity, the generalized vectors are chosen unitary and orthogonal to the
reference line, however for the current configuration of the body they are not. This is the main
characterisitic of the unconstrained vector mapping. Finally, one assumes, as usual, constant
height (h0) for frame elements and equation A10 is transformed into the desired mapping:

xi(ξ1, ξ2, X
m
`i , V`i) = ϕ`(ξ1)Xm

`i +
h0

2
ξ2Vi`ϕ`(ξ1) for i = 1, 2 and ` = 1, 2 (A11)

It is straightforward to transform equation A11 into a shell representations, one needs only to
substitute the mid line approximation by a mid surface approximation, i.e.:

xi(ξ1, ξ2, ξ3, X
m
`i , V`i) = φ`(ξ1, ξ2)Xm

`i +
h0

2
ξ3Vi`φ`(ξ1.ξ2) (A12)

This expression is exactly the same as the equation 18 of the maim text. In the main text,
vector Vi` is called N0

i` for initial configuration and Ḡi` for current configuration. Moreover an
enhancement of transverse strain is proposed there for the seven parameter formulation. As
equation A12 is a solid description, as equation A7, it is able to comprise any movement of the
body, including the so called finite rotations.
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