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Abstract 
In this paper, modelling and simulation of a multi-body system for 
its vibration control using sensors and actuators is presented. The 
model developed on MSC ADAMS consists of six legs connecting 
moving and base plates using spherical joints with axial rotation of 
legs constrained. It contains linear actuator collocated with force sen-
sor. Mathematical model of the mechanism representing the Kine-
matic and Dynamic analysis of model is presented. The Leg Length 
variation obtained using MATLAB is obtained in order to validate 
the model developed in MSC ADAMS. Natural frequencies for six 
different mode shapes are obtained from vibration excitation analy-
sis. A decentralized force feedback controller which uses PID control 
law with single gain is used for actively attenuating the vibration, 
which is coming from base platform. The transfer function, defined 
as the ratio of Laplace transformation of the acceleration of moving 
plate and base plate, is considered as a measure of isolation. Effect 
of proportional, derivative and integral feedback is studied separately 
and together as well. A significant isolation in the resonance trans-
missibility and natural frequency of the mechanism is demonstrated. 
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Platform; vibration control; force sensor; linear actuator; PID con-
troller. 
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1 INTRODUCTION 

Vibrations propagating into the mechanical systems can cause many problems at different levels 
causing performance degradation for sensitive systems. Vibrations accompany us everywhere and in 
most cases these vibrations are undesirable. The adverse effect of these vibrations can range from 
negligible to catastrophic depending on the severity of the disturbance and the sensitivity of the 
equipment (Abu Hanieh et al., 2002). Vibration control techniques have been developed to provide 
dynamic protection to all types of equipment from undesirable effect of vibrations. 
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 The Stewart parallel mechanism (Stewart, 1965) has the capability to control the six degrees of 
freedom of a rigid body, and has proven to be of high positioning accuracy. So, the Stewart parallel 
mechanism is chosen to stabilize the receivers of the telescope. The Stewart parallel mechanism in 
this application has two platforms, one is the platform to be stabilized, and the other is the base 
platform that is mounted on the cable-car. When the base platform vibrates with wind-induced cable-
car, the vibrations of the stabilized platform can be alleviated by adjusting the six actuators with 
appropriate control laws. Most of the available studies on dynamics and control of Stewart platform 
(Geng et al., 1992; Lebret et al., 1993; Dasgupta and Mruthyunjaya, 1998; Liu et al., 2000; Gallardo 
et al., 2003; Mukherjee et al., 2007; Lopes, 2009; Li et al., 2012) deals with the case that the base 
platforms are fixed but for this application the dynamics and control of the mechanism are different 
from the available analyses. 
 Stewart Platform Mechanisms have been investigated for many years as six DOF motion genera-
tors and six DOF parallel link manipulators. The Stewart Platform is one of the most popular parallel 
manipulators requiring least number of actuators to generate six degree-of freedom, high load carrying 
capacity, robust kinematics and dynamic behavior with absence of error-summation issues as is in 
serial manipulator makes it suitable choice for a number of applications including aerospace and 
defense, automotive, transportation, machine tool technology, and recently medical applications. 
Broadly its applications are for precise pointing and motion manipulation. Motion manipulation cat-
egory includes the vibration isolation wherein the disturbance propagating from base to moving or 
vice versa through the legs is attenuated by the integrated sensor and actuators. 
 Hongling et al. (2007) discusses typical problems in active vibration isolation systems and compares 
the control force, feedback gain, and actuator stroke of several passive-active vibration isolation sys-
tems. In order to improve the performance of the active isolation systems a joint vibration reduction 
method that combines an active vibration isolation system and an adaptive dynamic vibration ab-
sorber are also discussed in the paper. Geng and Haynes (1993), Graf and Dillmann (1997) and Cobb 
et al. (1999) have investigated the use of Stewart Gough platform for vibration isolation, but they 
are concentrated on vibrations of small amplitude and as the inertia of the base is much higher than 
that of the payload, the couple effect of the two platforms is not prominent. 
 Preumont et al. (2007) presented a six-axis vibration isolator for space applications by considering 
the decentralized feedback control approach which has attractive robustness properties. Kapur et al. 
(2007) brought out a method wherein the instantaneous gain in the degrees of freedom of mechanisms 
at singular configurations can be completely overcome by an appropriate choice of flexural joints in 
the place of regular joints. Liu and Benli (2008) presented the use of hybrid isolators for active 
vibration control of the flexure struts of Stewart platform. Dynamic performance of the system de-
pends both on the control parameters as well as the physical parameters of the system. Wang et al. 
(2009) proposed an optimal design method to expand the bandwidth for the control of large hydraulic 
Stewart platform. The method is based on generalized natural frequency and takes hydraulic oil into 
consideration. They presented Lagrangian formulation which considers the whole leg inertia to obtain 
the accurate equivalent mass matrix.  
 Hoque et al. (2010) presented a six-degree-of-freedom hybrid vibration isolation system integrated 
with an active negative suspension, an active–passive positive suspension and a passive weight support 
mechanism in order to develop a six-axis vibration isolation system using active zero-power controlled 
magnetic suspension. Hajimirzaalian et al. (2010) have shown the comparison between the inverse 
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dynamic solution based on Lagrangian formulation and the direct dynamic solution of the Stewart 
platform by simulation with ADAMS. Fehr and Eberhard (2011) considered nonmodal model reduc-
tion techniques for flexible multibody systems within the floating frame of reference framework. In 
their work, they have presented four different possibilities of modeling appropriate interface points to 
reduce the number of inputs and outputs. 
 Hoque et al. (2011) proposes a module-type three-degree-of-freedom vibration isolation system for 
a parallel mechanism using modified zero-power control. Li et al. (2012) proposed a hybrid manipu-
lator applied to vibration isolation of the manufacturing systems in which the translations and rota-
tions of the manipulator are decoupled, so the proposed isolator can isolate vibrations with wide range 
of frequency. Hayat et al. (2012) presented the design and analysis of a compliant mechanism using 
hyperbolic flexural hinges. Hajimirzaalian et al. (2013) presented the dynamic analysis and simulation 
for a nonlinear model of a Stewart platform with asymmetric-adjustable payload, based on Lagrangian 
approach. The system has been modelled in ADAMS engineering software and the inverse dynamic 
solution has been developed by both analytical (Lagrangian formulation) and simulation (ADAMS) 
methods. Furqan and  Alam (2013) designed and analysed a complete positioning system of Stewart 
Platform that consists of top plate (moving platform), a bottom plate (fixed base), and six extensible 
legs connecting the top plate to the bottom plate. In order to achieve better accuracy over commonly 
used universal and spherical joints the flexible joints have been employed. Xia et al. (2014) established 
a driveline dynamic model of the RWD vehicle by multi-body dynamic method. They calculated the 
natural frequencies and modal shapes for each gear position and predicted torsional vibration respon-
ses by forced vibration analysis. Zhang et al. (2014) presented the first-order approximation coupling 
model of planar 3-RRR flexible parallel robots, in which the rigid body motion constraints, elastic 
deformation motion constraints, and dynamic constraints of the moving platform are considered.  
 In this paper modeling and Simulation of Stewart Platform for vibration control using sensor and 
actuator is presented. The inverse and forward kinematic analysis is done and code is developed in 
order to validate the results of the model developed in MSC ADAMS. The moving and fixed platforms 
provided in Harib and Srinivasan (2003) is considered to compare the results. The model has been 
developed on MSC ADAMS using geometric and inertia properties of the different parts of the model. 
Analysis for vibration exciter was done by providing a sinusoidal base excitation of 25 milli g in all 
three orthogonal axes. A decentralized force feedback controller using PID control law with single 
gain has been used for actively attenuation the vibration coming from base platform. Finally the 
simulation results for vibration excitation and vibration isolation is presented. Effect of proportional, 
derivative and integral feedback is also studied separately and together as well  

 
2 DESCRIPTION OF THE MODEL 

Figure 1 shows a spatial 6-dof, 6 SPS parallel manipulator having  six identical limbs connecting the 
moving platform to the fixed base through spherical joints at points Bi  and Ai , for i  1, 2…6 
respectively. To fully describe its position and orientation, six coordinates are needed. The X-Y-Z 
coordinate frame is fixed to the stationary base at point AO , the centre of the base plate. The u-v-w 
coordinate frame is attached to the payload platform at the centre point BO  and moves with the 
payload platform. 
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Figure 1: Schematic diagram of Stewart Platform. 

 
In the nominal position, the X-Y-Z fixed base coordinate system is co-aligned with the moveable u-
v-w coordinate frame but is offset by the vector p, whose magnitude is the separation distance between 
the payload platform and the base plate, and whose direction is along the +Z-axis. The vector aligned 
with each actuator, il  had a magnitude equal to the length of that actuator. The vector ai  is from 
the fixed origin AO  to the corresponding Ai  joint. The vector Bbi  is from the moving platform origin 
OB to the Bi joint in the payload frame, u-v-w (bi in fixed X-Y-Z frame). 
 The moving platform is a rigid body that possesses six degrees of freedom. To fully describe its 
position and orientation, six coordinates are needed. Three of these coordinates are positional dis-
placements that locate the position of a reference point in the moving platform with reference to a 
fixed coordinate system. The other three coordinates are angular displacements that describe the 
orientation of the moving platform with reference to a nonrotating coordinate system. Euler angles 
are used to represent rigid body kinematics and dynamics. The set of Euler angles  , ,     which 
uniquely determine the orientations of a rigid body are used. The frame X’Y’Z’  as in Harib and 
Srinivasan (2003) is a nonrotating coordinate system that translates with the rigid body while frame 
xyz is a body coordinate system that both rotates and translates with the rigid body. 
 A generalized coordinate vector q , whose elements are the six variables, is chosen to describe the 
position and orientation of the platform, as 
 
  , ,  ,  ,  ,  

T
q X Y Z      (1) 

 
The joint space coordinate vector l  is defined as 
 
  1 2 3 4 5 6 ,  ,  ,  ,  ,   

T
l l l l l ll   (2) 

 
where il  for i  1, . . . , 6 are the lengths of the six numbered links of the Stewart Platform. 
 
3 KINEMATIC AND DYNAMIC ANALYSES 

In this section Kinematic analysis is performed to determine the manipulator motion as constrained 
by the geometry of the links. The kinematic analysis is done without considering to the forces or 
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torques that cause or result from the motion. The dynamic analysis of the multi-body system of the 
platform is carried out in terms of the Newton–Euler equations. 
 
3.1 Kinematic analysis 

A 3x3 rotation matrix A
BR  involving the three Euler angles , ,     is used for mapping between x-

y-z reference frame and X’-Y’-Z’ reference frame. A
BR  is given for the used Euler angle representation 

as 
 

 A
B

c c c s s s c c s c s s

R c s c c s s s c c c s c

s s c s c

           
           

    

                

  (3) 

 
where c  and s  denote cosine and sine respectively. The angular velocity and angular acceleration of 
the moving platform with reference to frame W  as functions of the first and second time derivatives 
of the Euler angles is given by 
 

 
0

0

1 0

x

y

z

c s c

s c s

c

   
     

  

                                     







  (4) 

and 

 
00

0  0

1 0 0 0

x

y

z

s c s s cc s s

s c s c s s c c

c s

            
              

     

                                                                               







   

   

 

  (5) 

 
Referring to Figure 1, the coordinates of the thi  attachment point ib  on the moving platform, given 
with reference to frame of moving platform as  , , 

i i i

TB
i b b bb u v w , are obtained with reference to 

the world coordinate system (i.e. the coordinate system of fixed base) by using 
 
     A B

i B ib p R b    (6) 
 
 Once the position of the attachment point ib  is determined, the Leg length vector ( iL ) of link is 
simply obtained by taking the difference of attachment points on moving and base platform with 
reference to fixed frame. The length of link ( il ) will be simply obtained by taking the magnitude of 
leg length vector and the unit vector ( in ) along the axis of the prismatic joint of link from base to 
moving platform is computed by dividing the leg length vector by its magnitude. 
 
3.2 Jacobean analysis 

The velocity of point ib  is obtained by differentiating Eq. (6) with respect to time 
 
 A B

i B ib p R b  

   (7) 
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The projection of this velocity vector on the axis of the prismatic joint of link i  yields the extension 
rate of link i  
 
  A B

i i i i B i il b n p n R b n       

   (8) 

or 

  A B
i i B i il p n R b n    

   (9) 
 
For the purpose of deriving the inverse Jacobian matrix of the Stewart Platform, it is useful to write 
Eq. (9) for the six links, in matrix form, as 
 

 1
1

p
l J




     



   (10) 

where 

 
 

 

1 1 1
1

1

6 6 6

TT A B
B

TT A B
B

n R b n

J

n R b n



               

    (11) 

 
Using the generalized coordinate the equation is reduced to provide the Jacobian matrix of the ma-
chine. 
 
 1 1 1

1 2l J J q J q   

    (12) 

where 

 

3 3 3 3

1
2

3 3

0

0

1 0

I O

c s s
J

O s c s

c

  
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

 





               

  (13) 

 
where c  and s  denote cosine and sine respectively. 

3.3 Dynamic analysis 

Referring to Figure 2, the accelerations of the centers of mass of part 1 (the moving part) and part 2 
(the stationary part) are given by 
 
      1 1 1 2i i i i i i i i i i i i ia l l n l l n l n l n                (14) 

  2 2 2i i i i i ia l n l n         (15) 
 
where 1l  and 2l  are the lengths between the centres of mass of parts 1 and 2 and the attachment 
points ia  and ib , respectively. 
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Figure 2: Force components on thi  link with two frictionless spherical joints. 

 
Let the reaction force of the platform acting on link i  be resolved into two components, as shown in 
Figure 2, one component a

iF  along the prismatic joint axis of link i , and the other component n
iF  

normal to the joint axis. It is assumed that the force component n
iF  and the reaction moment iM  

transmitted through the universal joint to find the force component a
iF  

 
 a n

i i iF F F    (16) 
 
where normal component force and axial component force are given by 
 
  n

i i i i i i iF N n m c n l      (17) 

and 

 a a
i i iF f n   (18) 

 
a
if  contains the magnitude and sign of a

iF . The six scalar quantities a
if  for 1,….,6i   can be 

determined from the summation of the force and moment components acting on the platform which 
will result in Newton’s equation for the platform as 
 

 
6 6

1 1

a n
i i i p p g

i i

f n F m G m x
 

        (19) 

 
Taking the moments about the platform reference point, Euler's equation for the platform gives 
 

  
6 6 6

1 1 1

a A B A B n
p i B i i B i i i p p p g

i i i

m r G f R b n R b F M I I m r x  
  

                (20) 

 
where pm  is the mass of the platform, gx  is the acceleration of the platform center of mass and pI  
is the mass moments of inertia of the platform with reference to the world frame W  at the center of 
mass of the platform. gx  is determined in terms of the platform motion variables as 
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  gx x r r           (21) 

 
Eqs. (19) and (20) make a system of 6 linear equations in a

if  for i  1 to 6. They can be solved for 
a
if  as 

 

 
1

1

6

a

T

a

f

J C

f

           


  (22) 

 
where we use the matrix 1

1J   as given by Eq. (11), and define the known vector C  as 
 

 
 

6

1
6 6

1 1

n
p p g i

i

A B n
p p g p p B i i i

i i

m G m x F
C

m r G m r x I I R b F M  



 

                         



 





  (23) 

 
Once the interaction forces between the struts and the moving platform are determined, we proceed 
to compute the actuation forces if  that power the prismatic joints. This force component will be the 
axial force that the ball screw exerts on the nut for the electromechanical actuation considered. if  is 
determined by summing the axial force components acting on the inner strut tube and nut, which is 
given by 
 
 1 1 1

a
i i i i if m a n f m G n       (24) 

 
The joint space force vector F , containing the six actuation force components if  for i  1 to 6, can 
be written as 
 

  1 6 . . . 
T

F f f   (25) 
 
Using Eq. (24), F  can be obtained as 
 

 

 

1 11 1

1

1 61 6

.

.

T

m a G n

F J C

m a G n

           


 

 
On the other hand, the Cartesian space force/torque vector can be obtained using the Jacobian matrix 
J  as 
 
 TJ F   or (26) 

Latin American Journal of Solids and Structures 12 (2015) 1505-1524 
  



M. Naushad Alam et al. / Dynamic analysis and vibration control of a multi-body system using MSC Adams         1513 

 
 

 

1 11 1

2

1 61 6

.

.

T T

m a G n

J J C

m a G n

  

           


  (27) 

 
where 2

TJ  is given by Eq. (13) 
 
4 MODELING OF MULTIBODY SYSTEM USING MSC ADAMS 

A parametric model is developed in MSC ADAMS environment. The parametric model variables 
b m b mR r t       0.18 m 0.17 m 0.12 m 0.3 rad 0.5 rad 

    are used to generate an initial ge-
ometric model. Legs contain sensors and actuator and two frictionless spherical joints connecting top 
and base platforms. Legs are modeled by two rigid bodies connected by a frictionless sliding joint. 
The actuator and sensors are embedded into lower part of the leg as can be seen in Figure 3. The 
payload is rigidly connected to moving platform with the geometric centre lying on the lateral axis of 
the platform. The moving platform is provided with central hole to save the weight. The base platform 
is modeled as ring wherein all the legs are attached. For simulation studies base platform is modeled 
as heavy mass much more than the system mass of the order of 103 kg. 
 

 
Figure 3: MSC ADAMS Model of S-G Mechanism. 

 
4.1 Validation of the developed simulation model 

In order to validate the simulation model a MATLAB code is developed based on the mathematical 
formulation discussed in section 3. The numerical values for the coordinates of attach points at moving 
and fixed platforms provided in Harib and Srinivasan (2003) is first used to validate the mathematical 
formulation.  
 

Parameter 1b (m) 2b (m) 3b (m) 4b (m) 5b (m) 6b (m) 

U 0.225 0.1125 -0.1125 -0.225 -0.1125 -0.1125 
V 0.0 0.1949 0.1949 0.0 -0.1949 -0.1949 
W -0.228 -0.228 -0.228 -0.228 -0.228 -0.228 

Table 1: Attachment points on the moving platform with reference to OB. 
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 1a (m) 2a (m) 3a (m) 4a (m) 5a (m) 6a (m) 

X 1.7580 1.6021 -1.7580 -1.6021 0.0 0.0 
Y 2.8 3.07 2.8 3.07 2.8 3.07 
Z -1.015 -0.925 -1.015 -0.925 2.03 1.85 

Table 2: Attachment points on the base platform with reference to OA. 
 
The position and orientation of the platform are given as: 
 
 0.2 0.3 0.4 0.1 1.4 0.1

T
q         (28) 

 
where the linear displacements are given in meters and the angular displacements are given in radians. 
 Using the position and orientation of the platform the Kinematic Analysis is performed through 
the use of MATLAB and the results of leg lengths of six legs obtained are compared well with the 
results obtained by Harib and Srinivasan (2003) which is shown in Table 3. The comparison of the 
results presented thus validates the mathematical formulation which will be further used for validat-
ing the simulation model developed on MSC ADAMS. 

 
 Leg Length (m) 

Leg Present Value Harib and Srinivasan (2003) 

1 3.0513 3.0508 
2 3.2327 3.2324 
3 3.2994 3.2997 
4 3.4565 3.4560 
5 3.5791 3.5797 
6 3.6938 3.6935 

Table 3: Leg Lengths of Stewart Gough Mechanism obtained from Kinematic Analysis. 
 
Now, when a time varying position and orientation is given the Kinematic results of leg lengths 
obtained using MSC ADAMS are compared with the result of MATLAB. A very good comparison of 
the results is presented in Figure 4. Upon comparison of the result, the simulation model developed 
in MSC ADAMS is validated and the model will further be used to obtain the simulation results of 
vibration isolation results. 

  
5 SIMULATION RESULTS 

5.1 Analysis for vibration excitation 

The normal mode analysis is carried out with a stiffness of 1E5 N/m assigned to legs using spring 
and with geometric and inertial properties provided to different parts of the model. When the model 
is provided a base excitation in the form of acceleration at the geometric centre of base platform as 
sine sweep of constant magnitude of 25 milli g up to 1000 Hz., six different mode shapes are obtained 
as shown in Figure 5-6. Figure 5 shows one of the two bending mode shapes which are similar about 
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lateral axis. The natural frequencies of the two bending mode are 15.7224 and 15.796 Hz. Figure 6 
shows the plunge mode wherein vibration is about longitudinal axis and the natural frequency is 
22.0192 Hz. The shear modes shown in Figure 7 are not purely shear as there is small offset in the 
CM of the payload and thus it is loosely coupled with bending also. The natural frequencies of the 
two shear mode are 33.2412 and 33.6565 Hz.  Figure 8 represents the torsional mode shape having 
natural frequency of 38.2003 Hz where it is rotating about Z-axis. This mode is least likely to be 
excited thus in spite of being near the disturbance frequency does not pose any problem. All the Eigen 
values are pure imaginary as no passive damping at this point has been introduced in the system. 
 

      
Figure 4: Leg Lengths of six legs (i) using MatLab, (ii) using Adams. 

 

      
 Figure 5: Bending Mode. Figure 6: Plunge Mode. 
 
5.2 Response of Stewart Platform to quasi static loads 

Inertia load that comes on the Stewart Platform due to input acceleration applied at CG of base plate 
can be decomposed into two components one fluctuating part called dynamics load and the other 
called quasi static that is the mean over which dynamic part fluctuates. The response in change in 
length of legs is recorded when the platform is subjected to ramp acceleration of 20 g is applied in 
each axis separately. 
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 Figure 7: Shear Mode. Figure 8: Torsional Mode. 
 
5.2.1 Response of Stewart Platform due to input in X axis 

A ramp of acceleration of 20 g is applied at the CG of base platform in X axis direction. The elonga-
tions of the legs without control action are presented in Figure 9. The maximum extension and 
compression is 12 mm and 11 mm, respectively. The legs can be made stiffer using additional springs 
or soft stopper (made of viscoelastic material rubber etc.) that will become functional only when 
elongation/compression of the legs extends beyond the specified limits. The resisting forces coming 
from the springs alone are shown in the Figure 10.  
 

 
Figure 9: Elongation of Legs due to Input Acceleration in X axis. 

 

 
Figure 10: Spring Forces Resisting the QSL Loads in X axis. 
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The input acceleration given to base and the output acceleration at the centre of moving platform in 
the same direction is plotted in the Figure 11 which shows nearly rigid behavior with exception of 
small fluctuations that is because of elastic spring.    
 

 
Figure 11: Response of Output Acceleration of Moving Platform in X axis. 

 
5.2.2 Response of Stewart Platform due to input in Z axis 

Like X-axis again a ramp acceleration of 20 g is applied at the CG of the base platform in direction 
of Z-axis. Figures 12-14 show the deformations of legs, forces and output acceleration of moving 
platform in the excitation direction. The Figure 12 shows that the legs are under compression as is 
obvious. It undergoes nearly 7 mm compressions in absence of any additional provision meant for 
restricting the excessive elongation. The resisting forces shown in Figure 13 are responsible for integ-
rity of structures against inertial load is supported by legs-spring of stiffness 1E5 N/m. 
 The input acceleration given to base and the output acceleration at the center of moving platform 
in the same direction is plotted in the Figure 14 which shows nearly rigid behavior with exception of 
small fluctuations that is because of spring action of the legs.    
 

 
Figure 12: Elongation of Legs due to Input Acceleration in Z. 

Latin American Journal of Solids and Structures 12 (2015) 1505-1524 
 



1518          M. Naushad Alam et al. / Dynamic analysis and vibration control of a multi-body system using MSC Adams   

 
Figure 13: Spring Forces Resisting the QSL Loads in Z axis. 

 

 
Figure 14: Response of Output Acceleration of Moving Platform. 

 
5.3 Frequency domain analysis for vibration isolation  

For vibration isolation of the system a decentralized force feedback PID based control law is imple-
mented. A uniaxial force sensor embedded in the lower part of leg collocated with actuator is used 
for force feedback. The system performance is assessed by acceleration transmissibility defined be-
tween the accelerations of base platform and moving platform. To understand the close loop behavior 
of the system simulation was carried out using proportional, integral and derivative gains separately 
and then their combined actions to get suitable performance. 
 
5.3.1 Integral force feedback controls 

Integral force feedback using single gains for all loops is implemented. The transfer function of the 
system defined as ratio of output acceleration at the geometric center of moving platform to input 
acceleration that is applied at the base as sine sweep of constant magnitude of 50E-3 g up to 1000 
Hz. Figure 15 shows the transfer function for Z-axis excitation. The uncontrolled resonance transmis-
sibility can be seen at 22 Hz where there is the plunge mode frequency. No other modes get excited 
at for this direction input. It can be seen that resonance peak is decreasing as integral feedback gain 
is increasing and for some gains it is even less then unity upon increasing the gain largely. 
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Figure 15: Longitudinal axis Transmissibility for Integral Controller. 

 
A similar transmissibility for X-axis excitation is also obtained and is presented in the Figure 16. Here 
two modes are excited one at 15 Hz (bending mode) and other around 33 Hz (shear mode). These 
two excitation frequencies were expected as these are weakly coupled modes. For both axis excitations 
resonance frequencies of the system remains unaltered but only resonance peaks decreases. 
 

 
Figure 16: Lateral axis Transmissibility for Integral Controller. 

 
5.3.2 Proportional or derivative force feedback controls 

Figures 17-18 presents the transmissibility for X and Z axes with the use of Proportional force feed-
back controller. It is observed that using Proportional feedback controller has not much effect on 
resonance transmissibility however shifts the isolation region in higher frequency regime. Figures 19-
20 presents the transmissibility for X and Z axes with the use of Derivative force feedback controller. 
This control strategy has not much effect on resonance transmissibility but significantly shifting the 
isolation region in lower frequency regime. Since resonance transmissibility is not significantly chang-
ing using both the controllers these should always be used with Integral force feedback controller.  
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Figure 17: Longitudinal axis Transmissibility for Proportional Controller. 

 

 
Figure 18:  Lateral axis Transmissibility for Proportional Controller. 

 

 
Figure 19: Longitudinal axis Transmissibility for Derivative Controller. 

 
Latin American Journal of Solids and Structures 12 (2015) 1505-1524 
  



M. Naushad Alam et al. / Dynamic analysis and vibration control of a multi-body system using MSC Adams         1521 

 
Figure 20: Lateral axis Transmissibility for Derivative Controller. 

 
5.3.3 System performance with PID control 

Finally system performance is evaluated with PID control with following gains, I  -200, D  -2, 
P  -2.5. Figure 21 shows the longitudinal axis transmissibility defined as the relation of the Laplace 
transforms of the Z axis acceleration at the center of moving platform to the transform of acceleration 
inputs applied at the center of the base platform. Figure 22 and 24 shows the phase plots with PID 
controller and without control action for longitudinal and lateral axis transfer functions respectively. 
Using PID controller a significant reduction in the resonance transmissibility is observed and the 
natural frequency is also reduced. 
 

 
Figure 21: Longitudinal axis Transmissibility using PID controller. 

 
Figure 23 shows the lateral axis transmissibility defined as the relation of the Laplace transforms of 
the X axis acceleration at the center of moving platform to the transform of acceleration inputs 
applied at the center of the base platform. The transmissibility defined in this work present a more 
realistic model as disturbances are acting in all directions. Here again a significant reduction in the 
transmissibility and natural frequency is observed by using a PID controller at the natural frequencies. 
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Figure 22: Phase Plot of Longitudinal axis Transfer Function. 

 

 
Figure 23: Lateral axis Transmissibility using PID controller. 

 

 
Figure 24: Phase Plot of Lateral axis Transfer Function. 
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6 CONCLUSIONS 

In this paper, modelling and simulation of Stewart platform mechanism, a multi-body system for its 
vibration control using sensors and actuators is presented. Firstly, kinematic and dynamic modeling 
based on Newton-Euler formulation is derived for a general class of Stewart platform mechanism. 
Then, modeling of the mechanism using geometric and inertial properties is done on MSC ADAMS. 
Finally, the simulation results for the vibration analysis are presented. Simulation results shows dif-
ferent mode shapes when sinusoidal disturbance in the three orthogonal axes is provided. When a 
proportional feedback controller is applied the resonance transmissibility is not effected even it am-
plifies on increasing the gain however shifts the isolation region in higher frequency regime. The use 
of derivative feedback controller reduces the suspension frequency of the mechanism thus increasing 
the isolation range, however, the resonance transmissibility is not reduced more over a big negative 
gains even amplifies it. The use of Integral feedback controller reduces the resonance peak monoton-
ically without altering the corner frequencies of the platform. The combined use of PID controller 
significantly reduces the resonance transmissibility and the natural frequency in the lateral and lon-
gitudinal axis when input in 3 orthogonal axes is applied simultaneously.  
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