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Abstract 
Pneumatic isolators are promising candidates for increasing the 
quality of accurate instruments. For this purpose, higher perfor-
mance of such isolators is a prerequisite. In particular, the time-
delay due to the air transmission is an inherent issue with pneu-
matic systems, which needs to be overcome using modern control 
methods. In this paper an adaptive fuzzy sliding mode controller is 
proposed to improve the performance of a pneumatic isolator in 
the low frequency range, i.e., where the passive techniques have 
obvious shortcomings. The main idea is to combine the adaptive 
fuzzy controller with adaptive predictor as a new time delay con-
trol technique. The adaptive fuzzy sliding mode control and the 
adaptive fuzzy predictor help to circumvent the input delay and 
nonlinearities in such isolators. The main advantage of the pro-
posed method is that the closed-loop system stability is guaran-
teed under certain conditions. Simulation results reveal the effec-
tiveness of the proposed method, compared with other existing 
time –delay control methods. 
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1 INTRODUCTION 

Pneumatic vibration isolators (PVIs) are simple and effective vibration isolators. The vibration-
sensitive equipment can be isolated using PVIs; for example, for the wafer scanners to fabricate 
integrated circuits, and the electron microscopes used for submicron imaging (Subrahmanyan and 
Trumper, 2000). PVIs isolate the vibration properly in the frequency range above the resonance 
frequencies associated with larger masses with a small stiffness characteristic (Heertjes and van de 
Wouw, 2006). Due to more precise measurement requirements and the sensitivity of the equipment 
to vibration, the standards for ground vibration in the frequency range lower than 10 Hz have be-
come tougher (Gordon, 1999). The simultaneous vibration reduction at excitation frequencies above 
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and below the system natural frequencies, which are typically 2-6 Hz, is a hard design constraint. 
Therefore, the active control of the pneumatic vibration isolation tables was considered as an effec-
tive vibration reduction way for the low excitation frequencies (Shin and Kim, 2009).  
 Previous works on active control of vibration isolators are often based on linear control tech-
niques (Beard et al., 1994; Nagaya and Kanai, 1995). An active/passive nonlinear isolator was pro-
posed which used some optimization techniques (Royston and Singh, 1996). PVI control by combin-
ing feedback linearization with a linear loop-shaping controller is adopted (Heertjes and van de 
Wouw, 2006). The mentioned active control techniques need the measurement of acceleration and 
not the pressure or mass flow rate (Chen and Shih, 2007). The compensation of the pneumatic iso-
lation table fluctuation which is caused by switching of the feedforward compensator was considered 
(Shirani et al., 2012). These control methods cannot suppress both the seismic vibration and the 
direct (payload) disturbances simultaneously. A state space representation of PVIs and a robust 
time delay control design was presented (Chang et al., 2010). This control algorithm achieved the 
suppression of seismic vibration and payload disturbance. Many of the existing methods heavily rely 
on the mathematical model of the plant, while the model of a typical PVI contains many uncertain-
ties and nonlinearities. Therefore, many of such methods cannot guarantee the closed-loop stability 
under real situations. 
 In this paper, the adaptive fuzzy sliding mode controller (AFSMC) (Poursamad and Markazi, 
2009) is used for the purpose of controlling PVIs. A fuzzy system estimates an ideal sliding-mode 
controller, and a switching robust controller compensates for the difference between the ideal con-
troller and the fuzzy approximation. The parameters of the fuzzy system and the uncertainty bound 
of the robust controller, are tuned adaptively. Furthermore, a predictor estimates the future value 
of the sliding surface parameter. The fuzzy system and adaptive rules use the prediction error to 
minimize the difference between the estimated value and the actual one in the prediction horizon. 
The predictor is designed by a one-step-ahead algorithm which reduces the computational cost sig-
nificantly. 
 Through this adaptive control algorithm there is no need for known uncertainty bounds of the 
pneumatic vibration isolator table model, as long as the bound exists. Also, the sliding mode 
scheme compensates for the uncertainties and disturbances by means of controlling the pressure 
inside the pneumatic chamber. 
 The outline of this paper is as follows. ‘Problem statement and preliminaries’ are provided in 
Section 2. Section 3 introduces the controller and predictor and investigates the closed-loop stabil-
ity. Evaluation of the proposed method is considered in Section 4, by simulation studies and com-
parison to the results of the Time-delay control method introduced in (Shin and Kim, 2009). Con-
cluding Remarks are given in Section 5. 
 
2 PROBLEM STATEMENT AND PRELIMINARIES 

2.1 Mathematical modeling of the PVIT 

Consider a pneumatic vibration isolation system consisting of a payload and a single pneumatic 
chamber as shown in Figure 1. Stiffness of the single chamber is known to be dependent on frequen-
cy and amplitude of vibration (Lee and Kim, 2007). 
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Figure 1: Pneumatic table for isolation of equipment from excitation at ground. 

 
The governing equation for the mentioned pneumatic vibration isolation table can be written in the 
state space form as 
 

  
00 1 0

1 s d b d b tcps d d

x x
k k x c x pAk k cx x

mm m m

                                                    







, (1) 

 
where, x x    x   is the state vector which consists of the payload vertical movement and velocity. 
The payload is attached to the base by means of PVI, but the table is disturbed by the base 
movement b b bx x    x  , so the second term in the right hand side of (1) represent the ground 
vibration effects. tcp  is the dynamic pressure from the actuator as the control input of system. Also, 
m  denotes the mass of payload, 2

0 0/s p tk p A V  real stiffness of the single chamber, dk  and dc  is 
real part of the complex stiffness of diaphragm and equivalent viscous damping of diaphragm, re-
spectively. pA  is the effective area of the piston cross-sectional area and the diaphragm (Shin and 
Kim, 2009; Lee and Kim, 2007).  Table 1 gives the values of the parameters of mentioned system. It 
should be noted here that the actuators and sensors which is used for controlling such systems, have 
some time delays (Chang et al., 2010). This problem gets more importance when high precision of 
the installed equipment on PVIT is required. Therefore, it is considered that tcp  reaches the plant 
with a time delay  , as a common way for modeling of the mentioned actuation and measurement 
delays (Galambos et al., 2014). 

 
Symbol Name Value 

m  Payload 87 kg 
  Specific heat ratio 1.4 

0p  Static pressure 3.51×105 Pa 

0tV  Chamber volume 2.978×10-4 m3 

pA  Effective piston area 2.518×10-3 m2 

dc  Equivalent viscous damping of diaphragm 2.78×102 N.s/m 

dk  Real part of complex stiffness of diaphragm 1.12×104 N.s/m 

Table 1: Parameters of pneumatic spring and payload. 

Latin American Journal of Solids and Structures 12 (2015) 1525-1539 
 



1528          M. Khazaee and A.H.D. Markazi / Control of input delayed pneumatic vibration isolation table using adaptive fuzzy sliding mode 

2.2 General problem statement  

For the time delay control of PVIs, the general problem can be considered as the following input-
delayed nonlinear system as 
 

 
         
 

nx t f g u t

y t C

    

x x
x

  (2) 

 
where 1 1, , ,

T n
nx x x    x  ,  y t    and  u t    are the system states, measurable output 

and input, respectively,  f   and  g   are probably unknown but smooth nonlinear functions, and 
  is a constant delay. The control goal is that  u t  causes the system tracks a desired state vector 

 d tx  and closed-loop signals remain bounded. It is mentioned that the proposed control design 
method can be used for nonlinear affine-in-control systems and it is not limited to the SISO sys-
tems. 
 For the adaptive fuzzy sliding mode control (AFSMC) in contrast with time delay control tech-
niques (TDC) (Heertjes and van de Wouw, 2006; Shin and Kim, 2009; Lee and Kim, 2007), there is 
no need for precise model and the availability of all states. In the so called TDC techniques the 
delayed value of dynamics  ,f t x  and  ,g t x  are used to approximate the control signal 
 u t , where   is an overall time delay. Thus, the input time delay must be considered for control-

ling the PVIs, and the control problem is changed to an input delay system. The proposed AFSMC 
with adaptive fuzzy predictor which are introduced in the next section, can enhance the perfor-
mance of PVIs by solving this control problem. 
 In this paper, the following single output linear parameter fuzzy system is employed to approxi-
mate the nonlinear function and input signal over a compact set X  with input 1  nx x    x  , 
and rn  IF-THEN rules; for example, 
 

Rule r : IF 1x  is 1  rA and … and nx  is  r
nA  THEN   rf kx , 1, , rr n  , 

 
where f  is the output of the fuzzy system, rk  is the fuzzy singleton for output of thr  rule, and 

1 , ,r r
nA A  are the fuzzy sets defined through some Gaussian membership functions as 
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in which r

jc  and r
j  are the center and width of the Gaussian membership function. Define the fir-

ing strength of the thr  rule as 
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and using singleton fuzzification, product inference system, and center average deffuzification, the 
output of the fuzzy algorithms yield as 
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    * ,T nf X    x k w x x    (5) 
 
where * * *

1 , , r

r

T n
nk k     k   is the bounded vector of output fuzzy singleton and     is a 

bounded error, i.e., *
Nk k , N   with Nk  and N  being positive constants.   w x  

   1 , ,
r

T

nw w   x x  is the vectors of firing strength of rules. 
 
Remark 1. The fuzzy system (5) uniformly approximates 

 

: f X Y  if X  is compact (closed and 
bounded) and f  is continuous. Then, the approximation error uniformly converges to zero, thus   
is a bounded error (Kosko, 1994). 
 
3 PREDICTOR AND CONTROLLER DESIGN 

3.1 Adaptive Fuzzy Predictor (AFP) 

The first step is developing an adaptive predictor for system (2). Select positive parameters 1,..., na a  
an appropriately such that the polynomial 1

1...n n
ns a s a    is Hurwitz, then the following ma-

trix A  is stable and select the symmetric positive definite matrices P  and Q  such that the Lya-
punov matrix equations TA P PA Q    and TPB C  are satisfied. 
 

 

1 2 3
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a a a a
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         (6) 

 
The unknown nonlinear functions  f x  and  g x  can be approximated using the fuzzy systems 
with input  ˆ tx , the predictor state vector. According to (5), the output of fuzzy algorithms yield 
as 
 
 *

f
T

fuz ff  h w   (7) 

 *
g

T
fuz gg  q w   (8) 

 
over a compact set, where 1[ , , ]

r

T
mh h h  and 1[ , , ]

r

T
mq q q  are the vectors of output fuzzy 

singleton, 1[ , , ]
r

T
f f fmw w w  and 1[ , , ]

r

T
g g gmw w w  are the vectors of firing strength of rules.  

The nonlinear system (2) with input delay, can be considered as follows 
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  (9) 

 
where 1 1, , ,

T n
nx x x    x   is the state vector of system (2). 
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Regarding the fact that the fuzzy output vectors h  and q  contain the behavior of system dynam-
ics, the following online predictor can be designed by appropriate adaptation algorithm. 
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where      1| | , , | n

p p npt t x t t x t t         x   and  |py t t    are the predic-
tions of the future system states and output of (9) respectively. The following adaptation algorithm 
is employed to update the fuzzy output vectors 
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where 0, 1,2T

i i i     are adaptation rates, 0i   are modification parameters, and 
p py y y   is the predictor output error.  

The prediction error dynamics is obtained by subtracting (10) from (9) as 
 

      |p pt t t t      x x x   (12) 
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  (13) 

 
where approximation and the overall error h , q , and   are defined as 
 
 * ˆ h h h   (14) 

 * ˆ q q q   (15) 

          * *| |T T
f f f g g gt t t t t t u t                     h w w q w w   (16) 

 
Remark 2. It is stated that the fuzzy estimation error is bounded and converges to zero in Remark 
(1), i.e., f  and g  are bounded. The optimum values of fuzzy inputs are not infinity, thus, *h  and 

*q  are bounded. Also,  w  is bounded based on the definition in (4). Finally, it is concluded that 
  is a bounded error. So that N   holds with N  being a positive constant. Then the following 
lemma is achieved. 
 
Lemma 1. Consider nonlinear system (2), the adaptive fuzzy predictor is given in (10) with the 
adaptive law (11), then the predictor error px  and the fuzzy output vector errors h  and q  are 
uniformly ultimately bounded. 
 
Proof. Select the Lyapunov candidate function for predictor as 
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From the predictor adaptation algorithm (11) it can be concluded that 
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By using Young’s inequality  2 2 2
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After selecting the appropriate parameters for the predictor, it can be shown that 1 1 0pV     
for all  p tx  within a compact set pX , then the time derivative of Lyapunov function of predictor 
is negative semi-definite. Also, because the input delay does not affect the stability proof of predic-
tor, there is no need to use the stability analysis for time-varying system for it. Thus, px  and the 
fuzzy output vector errors h  and q  are uniformly ultimately bounded. 
  
3.2 Adaptive Fuzzy Sliding Mode Controller (AFSMC) 

The prediction of future system states  |p t tx  are derived based on the current system infor-
mation from predictor (10). Now, sliding mode control based on states  |p t tx  compensates 
the effect of input delay in the feedback loop. In this section, a sliding mode feedback control is 
designed for tracking of reference signal and the overall closed-loop stability. 

Consider the fuzzy systems with input  ˆ |s t t , which is obtained as 
 
      1

| |ˆ
n

s t t D t t  


   x   (18) 

      | |d pt t t t t      x x x

   (19) 
 
where  |t tx  is the predicted value of  tx . Based on (5) we have 
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 T
fuzu  k w   (20) 

 
where 1, ,

r

T

nk k    k  is the vector of output fuzzy singleton, and 1, ,
r

T

nw w    w  is the vector 
of firing strength of rules. The estimation error of the fuzzy system is denoted by which is assumed 
to be bounded, i.e., 
 
      (21) 

 
where   is estimation error bound. An adaptive algorithm is used for tuning the fuzzy singleton 
output as 
 
    1 |  sgnˆ ŝ t t g    k k w


   (22) 

 
where 1  is adaptation rate and k̂  is the estimated value of output fuzzy singleton, and 
 
 ˆ k k k   (23) 
 
Therefore, the output of fuzzy system can be rewritten as 
 
 ˆˆ T

fuzu  k w   (24) 

 
To compensate the fuzzy estimation error, the rbu  is designed as 
 
    s ˆ sgˆ gn | nrbu s t t g       (25) 

 
where ̂   is the error bound estimation which is adjusted adaptively by 
 
  2

ˆ |ŝ t t     


   (26) 

 
where 2  is a positive constant which is defined by designer and 
 
 ˆ       (27) 
 
The total control signal consist of both fuzzy and robust control as 
 
 f̂uz rbu u u    (28) 
 
Lemma 2. Consider nonlinear time-delay system (2), the predictor (10) with the update law (11) 
and the adaptive fuzzy sliding mode controller (28) with the adaptive law (22) and (26), then 
(1) All signals in the closed-loop system are bounded. 
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(2) The tracking error x  and the fuzzy estimation errors k  and   are uniformly ultimately bound-
ed. 
 
Proof. Select the Lyapunov candidate function for the controller as 
 

 2 2

1 2

1

2 2 2
T

c

g g
V s

 
   k k     (29) 

 
For delay compensation the sliding surface is constructed as shown in (18). Remembering that the 
final goal is to make actual sliding surface of system zero, 
 
      1n

s t D x t


     (30) 

and 

      dx t x t x t    (31) 

 
From (2), (28), (30), and (31) the derivative of sliding surface derived as 
 

      
1

1 *

1

,ˆ ˆ ˆk ,

n

n n n i i
i fuz rb

i

s D C D x g u u s u s


 



                
 x    (32) 

 
The time derivative of Lyapunov function (29) is 
 

    
1 2

1
 sgn .T

c rb

g
V g s g s g u

 

          
k w k    

  . 

 
By using (22), (26), and (28) in the derivative we have 
 
       | sgn |ˆ ˆ|ˆˆT

cV sg g s s t t s g s t t g s t t              k w     (33) 

 
Based on Lemma 1, the predictor error will be bounded as last, thus 
 

     
0 0
lim 0 lim |p pt t

t t t t       x x x
 

  

 
By using the later result and (18), (19), (30), and (31) it concluded that 
 
    

0
im |ˆl

t
s t s t t   



  (34) 

 
Based on the results of (33) and (34), the derivative is simplified as 
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 ˆ ˆ .cV sg s g g s s g s g s g s g                 

   0cV s g         (35) 
 

cV  is semi-negative definite then the system is stable and s , k , and   will remain bounded. Now 
consider the following Lipchitz function 
 
     Ct s g V         (36) 

 
From integrating  t  it can be shown that 
 

       
0

d 0 , , , ,

t

C CV s V s t      k k     

 
because   0 , ,CV s k   is bounded and   , ,CV s t k   is non-increasing and bounded, therefore 
 

 
0

lim d

t

t
 


    

 
also, by using the Barbalat Lemma, it is concluded that  lim 0

t
t


   and  lim 0

t
s t


 . Finally it is 

proved that all signals in the closed loop system will remain bounded and the tracking error is uni-
formly ultimately bounded.  
 
4 SIMULATION STUDY 

The proposed AFSMC-AFP consists of a predictor (10) and a sliding mode controller (28). Figure 2 
depicts the block diagram of the control algorithm for the general form of Pneumatic Vibration 
Isolation Tables (PVITs). The simulation is done by using the control algorithm for the system (1), 
where   tcu t p  is input signal. The control command is sent to an electrical drive board which 
provides the reference voltage for the control servo valve, a proportional valve of nozzle-flapper type 
(Chang et al., 2010). The valve regulates the dynamic pressure of the chamber. But this actuation 
process causes an input time delay  0.01 s. 

In order to apply the AFSMC, the desired state vector is  d t  0x  and the sliding surface is 
defined as 
 
 s x x     (37) 
 
In the simulation, the input membership functions are Gaussian. The initial fuzzy output vector are 
arbitrarily to select as k 0.5 0 0.5ˆ T      and the initial value of uncertainty bound is chosen as 
ˆ 0.05  . The adaptation rate are set to 1 0.1   and 2 1  . The predictor parameters are se-
lected as 1 5a  , 2 5a  , and the learning gains are specified as 1 50   and 1 0.05  . It is not-
ed that the adaptation rate can be tuned based on the size of delay to achieve the good perfor-
mance. 
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Figure 2: Schematic diagram for proposed AFSMC-AFP. 

 
In this study, a random ground vibration with rate of rmsmm/s30bx   is used as the base excita-
tion. This excitation is the criteria VC-C in standard of ground vibration (Gordon, 1999) and is 
allowed marginally for electron microscopes. The system parameters are as in Table 1 for the simu-
lation. The time responses of system are presented in Figures 3 and 4, and the control signal in 
Figure 5. It is noted that the AFSMC-AFP starts at 20 st   for better understanding. The ratio 
of cross-and auto- correlation of the vibration signals at the payload is a common index for deter-
mining the isolation performance. This index is called transmissibility which is estimated from the 
two signals as follows 
 

 BX

BB

G
Transmissibility

G
   (38) 

 
where the subscripts B  and X  denote the vibration signals at the base and on the payload, respec-
tively, BXG  and BBG  cross- and auto-power spectral density function, respectively. For the calcula-
tion of this index Hanning window is applied by ensemble average of 50 times, and at a frequency 
resolution of 0.2 Hz. Figure 6 shows the transmissibility index and isolation performance by the 
AFSMC-AFP can be better than the TDC technique and the passive one. The root mean square of 
the transmissibilities by the AFSMC-AFP is less than 40 % of TDC and 2 % of that by the passive 
one in the frequency range under 7 Hz which is very desirable for enhancing the vibration isolation 
performance of table for low frequency around the resonance. 
 Simultaneous suppression was analyzed with seismic vibration and direct disturbance being ap-
plied to system. The seismic disturbance was generated in the same way as before, but this time a 
direct disturbance is applied at 20 st  . Figure 7 shows the time response of the payload resulting 
from seismic vibration and direct disturbance. Based on this figure and the existing results (Chang 
et al.,  2010), the settling time of the PVI with AFSMC-AFP is significantly less than that of the 
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passive PVI (3.10 s) and less than 50% of TDC (0.99 s). So that based on these results it is evident 
that the AFSMC-AFP is an effective control scheme for PVIT in simultaneous suppression. 

 

 
Figure 3: Normalized System position response to seismic vibration VC-C ground vibration ( 0.01s  ). 

 

 
Figure 4: Normalized System velocity response to seismic vibration VC-C ground vibration ( 0.01s  ). 

 
 Frequency Range Passive TDC AFSMC 

Root means square (RMS) 
1 – 10 Hz 2.8345 0.1291 0.0469 
10 – 30 Hz 0.0445 0.0618 0.1948 

Table 2: RMS value of transmissibility magnitude. 
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Figure 5: Normalized AFSMC-AFP control signal for seismic vibration VC-C ground vibration ( 0.01s  ). 

 

 
Figure 6: Transmissibility of passive, active, and AFSMC controlled pneumatic vibration 

table in presence of VC-C ground vibration ( 0.01s  ). 

 
5 CONCLUSION 

In this paper, a new method of adaptive active control is proposed for the pneumatic vibration iso-
lation tables. As the ground isolation requirements of vibration sensitive equipment become more 
stringent, the active control of such devices are unavoidable. In the previous sections it is shown 
that the proposed adaptive fuzzy sliding mode control with adaptive fuzzy predictor can handle this 
problem in a good way. This method does not require the precise model and magnitude of the un-
certainties. Also, the linearity or nonlinearity of model is not important. AFSMC design results in 
the desired low-amplitude response, thus attaining a higher isolator performance. 
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Figure 7: Normalized System velocity response to seismic vibration and direct disturbance at t = 20 s. 
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