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Abstract

The paper aanalyzes the nonlinear dynamic response of microresonators. A simple phys-
ical model of a single span beam axially constrained at both end, possibly with elastic
constraints, is considered as representative of different common layout of microresonators.
An analytical model, based on the Hamilton’s principle, accounting for large displacements
is presented and validated thanks to numerical finite element analyses. In order to widen
the linear operation range of the device an optimal geometry of the resonator is proposed.
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1 Introduction

Microresonators are currently used in various microelectromechanical devices (MEMS) such as
accelerometers [1], [8], [5], pressure sensors [4] and strain transducers [11]. In resonant sensors
the quantity to be measured produces a shift of the resonance frequency which can be recorded.
Resonant sensing, with respect to others sensing principles, has the advantage of direct frequency
output, high potential sensitivity and large dynamic range. The growing need of low cost
devices imposes a drastic size reduction of these sensors. To maintain a good detectability and
sensitivity, however, the maximum oscillation amplitude cannot be reduced proportionally. This
implies that micro- and nano-resonators are often operated in the nonlinear regime.

Nonlinearities in electrostatically actuated resonators can have both mechanical and capac-
itive origin (see e.g. [6]). Mechanical nonlinearities in turn can be due to the material behavior
and/or to geometrical effects. While material nonlinearities can usually be neglected in silicon
microbeam resonators, mechanical nonlinearities related to large displacements play a significant
role. Their effect increase as the size is reduced and hysteresis phenomena limit the allowable
excitation range and quality factor of the resonator [1]. Electrostatic nonlinearities, on the other
hand, are inherent to the actuation mechanism and they do not increase significantly as the size
is reduced.

In the literature several complete formulations of nonlinear dynamics for plates, beam and
cables are available, however, in the MEMS community, usually use is made of simplified one-
degree of freedom models based on coarse assumptions on nonlinearities. The objective of
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the present work is to provide a rather simple but theoretically sound means the predict the
nonlinear behaviour due to geometrical effects in microbeam resonators. In section 2 the theory
of nonlinear oscillations (see e.g. [9], [10]) is reviewed and the Hamilton’s principle is used as
the basis of a one degree of freedom formulation. Explicit solutions for single span beams
axially constrained by elastic springs are given and discussed. Besides the simplicity of the
physical model several different dynamic behaviors consistent with real problems are obtained.
In section 3 the nonlinear oscillation theory is applied to doubly clamped silicon microresonators
and analytical results are compared with those obtained by a finite element electromechanical
coupled analysis. Then a new geometry is proposed in order to enhance the range of dynamic
linear behavior of the microresonator.

2 Nonlinear vibration of an axially loaded beam

2.1 Problem formulation

Consider a prismatic elastic beam with cross section A, momentum of inertia I and length L

subject to an initial constant axial load P0 and to a transversal distributed dynamic load q (t, x),
x being the coordinate along the beam axis and t the time. Let the longitudinal and transversal
displacements of the beam axis be described by u (x, t) and w(x, t), respectively. The beam is
axially constrained at both ends, possibly with elastic constraints represented by an axial spring
of stiffness ka at one end (see Figure 1).

The model here adopted for the description of the dynamic response of the beam is restricted
by several hypotheses: (i) the beam is modeled by the Euler Bernoulli theory, (ii) variation of
the cross section during vibration is neglected, (iii) stretching of the beam is small but finite
(see e.g. [10] for details). With the above hypotheses, the axial strain along the beam axis reads

ε0 (x, t) = u′ +
1
2

(
w′

)2 (1)

where a prime denotes spatial derivative with respect to the beam axis.
Denoting by E the material Young’s modulus, the axial force N and the bending moment

M can be expressed as

N (x, t) = P0 + EA

(
u′ +

1
2

(
w′

)2
)

M (x, t) = EIw′′ (2)

The equations of motion are readily derived by considering the equilibrium of forces acting
on the differential segment of mass ρAdx of the deflected beam (see Figure 1)

N ′ − ρAü = 0

M ′′ − (
Nw′

)′ + ρAẅ = q (3)
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Figure 1: Scheme of the vibrating beam and free body diagram.

Introducing Eqs. (2) into Eqs. (3), one obtains a coupled differential system for the axial
and transversal displacements u and w.

If inertial effects in the axial direction can be neglected, the problem decouples and one
can obtain a differential equation in w only, as explained in the following. Setting to zero the
longitudinal inertial force, from Eq. (3a), the axial force turns out to be a function of time only.
From Eq. (2a) it follows

u′ =
N (t)− P0

EA
− 1

2
(
w′

)2 (4)

Integrating in space Eq.(4) with the boundary conditions

u (0, t) = 0, u (L, t) = −N (t)− P0

ka
(5)

one obtains the axial force in the form

N (t) = P0 +
kaEA

kaL + EA

∫ L

0

1
2

(
w′

)2
dx (6)

Note that the axial force has two contributions: the first one is due to a prestress P0
A acting on

the beam, constant in time and independent from the beam transversal displacement w, while
the second one is generated by the elongation of the beam induced by its finite deflection. This
second contribution is present only in axially constrained beams. Substituting the axial force
into the transversal dynamic equilibrium, Eq. (3b), the following nonlinear equation for the
transverse beam oscillation is obtained

(
EIw′′

)′′ − P0w
′′ − kaEA

kaL + EA
w′′

∫ L

0

1
2

(
w′

)2
dx + ρAẅ = q (7)
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Table 1: Coefficients c and γ in Eq. (9) for single span beams with different boundary conditions

c γ

clamped-free 1.875 2.66
sliding-pinned 1.572 2.47
pinned-pinned 3.142 9.87
sliding-sliding 3.142 9.87
clamped-clamped 4.730 40.7

If the axial elongation is not constrained, the governing differential equation for the transverse
displacement simplifies to: (

EIw′′
)′′ − P0w

′′ + ρAẅ = q (8)

This latter equation has been widely studied in the literature and several solutions are available.
The presence of a constant axial load P0 changes the natural circular frequencies of the beam
oscillation. For a single span beam, frequencies increase in the case of a tensile load and decrease
in the case of a compressive load. The first resonant circular frequency ω0 can be expressed as
(cfr e.g. [3], [9], [5])

ω0 (P0) =
c2

L2

√
EI

ρA

√
1 +

P0L2

γEI
(9)

where the coefficients c and γ depend on the boundary conditions. Table 1 collects their values
for several boundary conditions.

Equation (8) and hence (9) can also be used for axially constrained beams if transverse os-
cillations can be considered small with respect to the beam height. This hypothesis, which is
often reasonable for structural problems at the macroscale, is in general not valid for microstruc-
tures as those of MEMS resonators. In this case the complete equation (7) and the associated
boundary conditions should be considered.

2.2 Hamilton’s principle

The nonlinear equilibrium equation (7) can also be obtained by the Hamilton’s variational
statement of dynamics. The Hamilton functional reads

H (t) =
∫ t

0
[T − V ] dt =

∫ t

0
Ldt (10)

T being the kinetic energy, V the potential energy and L = T − V the Lagrange function.
Neglecting the inertial effect in the axial direction the kinetic and potential energies are expressed
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as

T (ẇ) =
1
2

∫ L

0
ρAẇ2dx

V (w) =
1
2

∫ L

0
EI

(
w′′

)2
dx +

1
2

kaEA

kaL + EA

[∫ L

0

1
2

(
w′

)2
dx

]2

+ P0

∫ L

0

1
2

(
w′

)2
dx−

∫ L

0
qwdx

(11)

The Hamilton’s principle states that the real motion makes stationary the Hamiltonian func-
tional increment for any varied path δw from time t1 and t2 with δw (t1) = δw (t2) = 0, i.e.

δ

∫ t2

t1

[T (ẇ)− V (w)] dt = 0 (12)

Integrating by parts in time the first term one obtains

δ

∫ t2

t1

T (ẇ) dt =
∫ t2

t1

δTdt = −
∫ t2

t1

∫ L

0
ρAẅδwdxdt (13)

The second term in (12) can be developed as

δ

∫ t2

t1

V (w) dt =
∫ t2

t1

δV dt =

∫ t2

t1

[∫ L

0

(
EIw′′

)
δw′′dx +

kaEA

kaL + EA

∫ L

0

1
2

(
w′

)2
dx

∫ L

0
w′δw′dx + P0

∫ L

0
w′δw′dx−

∫ L

0
qδwdx

]
dt

(14)

Integrating by parts in space the variation δV one has

δV (w) =
[(

EIw′′
)
δw′

]L

0
−

[((
EIw′′

)′ − P0w
′ − kaEA

kaL + EA

∫ L

0

1
2

(
w′

)2
dx w′

)
δw

]L

0

+

∫ L

0

[(
EIw′′

)′′ − P0w
′′ − kaEA

kaL + EA
w′′

∫ L

0

1
2

(
w′

)2
dx− q

]
δwdx (15)

Substituting Eqs. (13) and (15) into Eq. (12) one finally obtains the equation

−
∫ t2

t1

∫ L

0

[
ρAẅ +

(
EIw′′

)′′ − P0w
′′ − kaEA

kaL + EA
w′′

∫ L

0

1
2

(
w′

)2
dx− q

]
δwdx dt

− [(
EIw′′

)
δw′

]L

0
+

[((
EIw′′

)′ − P0w
′ − kaEA

kaL + EA

∫ L

0

1
2

(
w′

)2
dx w′

)
δw

]L

0

= 0 (16)

Since the variation δw is arbitrary Eq. (16) is equivalent to the dynamic equilibrium equation
(7) with the boundary conditions

EIw′′ = 0 or δw′ = 0 for x = 0, L

(
EIw′′

)′ − P0w
′ − kaEA

kaL + EA

∫ L

0

1
2

(
w′

)2
dx w′ = 0 or δw = 0 for x = 0, L

.
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2.3 One degree of freedom approximation

Numerical solutions for the transversal oscillation of the nonlinear beam can be obtained ex-
pressing w in terms of a set of n generalized coordinate Zi(t) multiplied by known space functions
Ψi (x) , substituting it into the kinetic and potential energies and using the Hamilton’s principle
to obtain the Lagrange equations of motion

d

dt

∂L
∂Żi

− ∂L
∂Zi

= 0 i = 1, .., n

In the spirit of the Rayleigh method a single generalized variable Z(t) can be introduced and
the approximate solution for the transversal oscillation of a nonlinear beam can be searched in
the form

w (x, t) = Z(t)Ψ (x) (17)

Ψ (x) being the eigenfunction of the same problem without second order effects. Considering
free oscillations (q = 0), the approximate Lagrangian function reads

L
(
Ż, Z

)
=

1
2
Ż2

∫ L

0
ρAΨ2dx− 1

2
Z2

∫ L

0
EI

(
Ψ′′)2

dx

− 1
2

kaEA

kaL + EA
Z4

∫ L

0

(Ψ′)2

2
dx

∫ L

0

(Ψ′)2

2
dx− Z2P0

∫ L

0

(Ψ′)2

2
dx

The corresponding Lagrange equation of motion is

mZ̈ + k1Z + k3Z
3 = 0 (18)

with

m =
∫ L

0
ρAΨ2dx,

k1 = ke + kG, ke =
∫ L

0
EI

(
Ψ′′)2

dx, kG = P0

∫ L

0

(
Ψ′)2

dx,

k3 =
1
2

kaEA

kaL + EA

∫ L

0

(
Ψ′)2

dx

∫ L

0

(
Ψ′)2

dx (19)

Equation (18) is known as the Duffing oscillator equation for a single degree of freedom system,
m is the equivalent mass, ke is the equivalent linear elastic flexural stiffness, kG is the generalized
geometric stiffness due to a constant initial axial load and k3 is the cubic nonlinear constant.
For the problem under consideration of nonlinear oscillation of a single span beam k3 given in
Eq. (19) is always positive (hard spring effect). The solution of Eq. (18) can be obtained from
series of successive approximations, see [7]

Z = Z(1) + Z(2) + Z(3) (20)
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where

Z(1) = A cosωt, Z(2) = 0, Z(3) = −A3

32
k3

k1
cos 3ωt (21)

In (21) A is the oscillation amplitude and ω is the actual value of the natural frequency which

differs from the reference value of the linear case ω0 =
√

k1
m . The natural frequency of the

nonlinear problem can be expressed as

ω = ω0

(
1 +

3
8

k3

k1
A2

)
(22)

Note that, at difference from a linear oscillator, the fundamental frequency ω of the Duffing
oscillator does depend on the oscillation amplitude A.

Nonlinearity also affects the forced oscillations of the system. Considering a harmonic driving
term f (t) = f cosΩt, of frequency Ω close to the natural frequency, neglecting damping, one
obtains a relation between the amplitude f and the frequency Ω of the driving force and the
amplitude A of the forced vibration of the beam (see e.g. [7])

(
f

k1

)2

=
(

2
(

1− Ω
ω0

)
A +

3
4

k3

k1
A3

)2

(23)

The solution of equation (23) is shown in Figure 2 in terms of the dynamic amplification factor
A/ f

k1
versus the ratio Ω

ω0
between the frequency of the driving force Ω and the reference natural

frequency ω0. For k3 > 0, the resonance curve is bent towards the high frequencies and there are
three solutions for sufficiently high frequencies. Two solutions are stable while the third belongs
to an unstable branch, dotted in Figure 2.

Figure 2: Forced frequency response of nonlinear resonator: normalized dynamic amplification
factor vs. normalized frequency.
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Figure 3: Resonance curves in the nonlinear region, accounting for damping, for different excita-
tion amplitude f.

When also damping is considered the response becomes a multi-valued function of the fre-
quency, in some finite frequency range, only above a critical excitation amplitude fc. Figure 3
shows typical responses for f S fc in terms of oscillation amplitude, normalized with the beam
thickness h, versus normalized frequency Ω

ω0
. In all cases the resonant frequency is shifted up-

wards but for f < fc hysteresis phenomena due to the multi-valued response are avoided. Even
though usually resonating devices are designed to have a hysteresis-free response there are some
applications in which the nonlinear bistable regime is attained, see e.g. [2].

A more general form of the nonlinear dynamic equilibrium equation for a single degree of
freedom oscillator also includes a second order term in Z

mZ̈ + k1Z + k2Z
2 + k3Z

3 = 0 (24)

Note that in capacitive microresonators the quadratic term can arise from electrostatic nonlin-
earities as discussed in [6] but it can also be present as a consequence of a slightly different
geometry of the resonator, as it will be shown in Section 3.2.

The solution of Eq. (24) is still given by Eq. (20) with

Z(1) = A cosωt, Z(2) = 0, Z(3) =
A3

16

(
1
3

(
k2

k1

)2

− k3

2k1

)
cos 3ωt (25)

ω = ω0

[
1 +

(
3
8

k3

k1
− 5

12

(
k2

k1

)2
)

A2

]
(26)
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As for the oscillation response driven by a force f (t) = f cosΩt, the following relation holds
instead of (23)

(
f

k1

)2

=

[
2

(
1− Ω

ω0

)
A +

(
3
4

k3

k1
− 5

6

(
k2

k1

)2
)

A3

]2

(27)

Depending on the values of the stiffness constants k1, k2 and k3, different frequency response
curves can be obtained, namely one can have three solutions for some Ω

ω0
< 1 (soft spring effect),

one solution for all Ω
ω0

or three solutions for some Ω
ω0

> 1 (hard spring effect). Figure 4 shows

the behavior of a resonator with k3 > 0, for varying ratio k2L
k1

. Note that from (27) if k3 = 10
9

k22

k1

the coefficient of A3 vanishes in Eq. (27) and the frequency response curve of a linear oscillator
is recovered. For a real system with damping, the dynamic magnification factor A/ f

k1
is limited

and there is a range of values of k1, k2 and k3 for which a unique solution is obtained. This
feature is very important in real resonators as will be discussed in the following section.
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Figure 4: Forced frequency response of nonlinear resonator for varying stiffness ratio Lk2
k1

:
normalized dynamic amplification factor vs. normalized frequency.

3 Capacitive nonlinear microresonators

3.1 Doubly clamped resonator

As a first example consider the silicon resonator schematically shown in Figure 5, of length
L = 400µm and cross section 1.2µm× 15µm. The resonator is doubly clamped and it is excited
by an electrode (parallel plate scheme with a gap g = 2.1µm). In the following this resonator
will be referred to as ”I-shaped” resonator.
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A coupled electromechanical analysis has been performed in order to compute the axial force
induced in the beam for different levels of the voltage applied to the electrode. Both the beam
and the dielectric medium between the electrodes should be discretized to compute the electric
field and the corresponding mechanical response of the resonator. Since large displacements
are considered, the electrostatic problem should be solved on a varying domain, considering the
deformed mesh. A detail of the adopted discretization is shown in Figure 5. The electric force
makes the beam oscillating and induces a axial tensile force in the beam: Figure 6 shows the
axial force in the beam for increasing values of the maximum oscillation at the center C of the
beam wmax

(
L
2

)
= max

t
w

(
L
2 , t

)
.

2.1 µm

400 µm

A

C

B

1.2 µm

electrode for excitation

detail of  the adopted mesh

resonant
beam

Figure 5: Geometry and discretization of the capacitive ”I-shaped”, doubly clamped resonator

An analytical prediction of the axial force can be obtained from the nonlinear dynamic beam
theory previously presented with the single degree of freedom approximation. To this purpose
we set P0 = 0 and we introduce the approximate solution (17) into Eq. (6), choosing for Ψ (x)
the eigenfunction of the doubly clamped linear beam, normalized so that Ψ

(
L
2

)
= 1, i.e.

Ψ =
1

1.588

[
cos

(
4.73

x

L

)
− cosh

(
4.73

x

L

)
− 0.9825(sin

(
4.73

x

L

)
− sinh

(
4.73

x

L

)
)
]

(28)

Assuming the Young’s modulus E = 150 GPa for the silicon, the resulting axial force is (using
IS units, with Z expressed in meters)

N (t) = 41.15× 106 Z (t)2

This analytical estimate, also plotted in Figure 6, is in very good agreement with the numerical
results. It should be noted that this geometry of the resonator, which is representative of
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silicon resonators fabricated by surface micromachining results in relative high axial force (some
micronewton for a maximum oscillation of tenths of micron) implying a significant nonlinear
behavior.
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Figure 6: Axial force versus maximun displacement of the mid point for the ”I-shaped” resonator

3.2 ”L-shaped” resonator

A completely different behavior can be obtained by slightly changing the resonator geometry
adding a short arm A-B of length a, as shown in Figure 7. This resonator will be called ”L-
shaped” resonator. In this case the transversal electrostatic force produces a axial force in the
resonant beam also when second order effects are neglected. This additional contribution to the
axial force linearly depends on the applied electrostatic force and hence on the oscillation of
the central point w

(
L
2 , t

)
, or, in the single degree of freedom approximation, on the coordinate

Z (t) . A simple scheme for the evaluation of the axial force at the first order, N1 (t) , is shown in
Figure 8. The transversal load q represents the electric force induced by the applied voltage; this
force is uniformly distributed only in the ideal case of a parallel plate with uniform gap between
the electrodes. The actual distribution is non-uniform due to the beam deformation. Figure
9 shows the variation of the electric force along the resonator for increasing values of applied
voltage: for low voltage an almost uniform distribution is obtained while for high voltage there
is a significant variation of the intensity along the bar. Assuming in a first approximation a
uniform q and using the linear Bernoulli beam theory, standard calculation gives

N1 = qL
α2 (24αβ − 1)

8 (1 + α) (3β + 9αβ + 36αβ2 − 9α2β + α3 + 9α3β + 3α4β)
(29)
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with α = a
L and β = I

AL2 . Since the amplitude of the oscillation is proportional to the applied
load q, one can conclude that the first order axial force is proportional to the amplitude Z

through a coefficient F only depending on the geometrical properties α, β and L

N1 (t) = F (α, β, L) Z (t) (30)

Including also the second order effect the 1D oscillator equivalent to the ”L-shaped” resonator
turns out to be governed by the Eq. (24), with k2 related to F.

2.1 µm

400 µm

D

C

B
A

1.2 µm

electrode for excitation

detail of  the adopted mesh

resonant
beam

a

Figure 7: Geometry and discretization of the ”L- shaped”, doubly clamped resonator

R2

N1R3

qq

L

a

Figure 8: ”L-shaped” resonator: scheme for the evaluation of the axial force (first order)

The finite element simulation allows to compute the axial force in the resonator for increasing
oscillation. Results are shown in Figure 10, bold line. An analytical approximation can be
obtained adding to the first order term computed according to Eq. (30) the second order term
given by Eq. (6), with a suitable value of the axial-spring stiffness ka. This spring should
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Figure 9: Distribution of the electric force along the resonator for varying applied voltage

represent the axial constraint given by the part A-B to the resonator B-D. The value of ka can
be bounded by the values ka = 3EI

a3 and ka = 12EI
a3 , corresponding respectively, to free rotation

and to zero rotation of node B. The analytical estimates of axial force obtained with this two
extreme values are also shown in Figure 10: a reasonable prediction is obtained with the free
rotation hypothesis.

For this geometry of the resonator the axial force is initially of compression due to the first
order term, then, for high values of oscillation amplitude, the nonlinear tension term becomes
predominant. In all the considered range of displacement the axial force turns out to be signif-
icantly smaller than the one obtained for the ”I-shaped” resonator and there is a value of the
oscillation for which the axial force vanishes. This feature is very important since one can tune
the actuation voltage amplitude in such a way that the axial force vanishes and the oscillator
response can be considered as linear. Figure 11 shows the deformed configuration obtained by
the finite element analysis with the contour plot of the vertical stress from which the axial force
has been computed.

4 Conclusions

The contribution of non-linear terms in the equation of motion drastically change the dynamic
behavior of resonating slender beams especially when their size is reduced. To push the limits of
the linear behavior a ”L-shaped” capacitive silicon resonator has been proposed. Both analytical
and numerical analyses show that this geometry, coupled with a proper choice of the actuation
voltage, can effectively reduce the effect of nonlinearities. The use of this microresonator in
acceleration sensing is currently under study.
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Figure 10: ”L-shaped” resonator: axial force versus maximum oscillation amplitude: numerical
results and analitical prediction considering zero rotation or free rotation.

Figure 11: ”L-shaped” resonator: controur plots of the vertical stress of the deformed configura-
tion (amplification factor 50) and detail of the boundary conditions.
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