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Abstract 

Free vibration responses of shear deformable functionally graded sin-
gle/doubly curved panels under uniform, linear and nonlinear tem-
perature fields are investigated in the present article. The microme-
chanical material model of functionally graded material is computed 
using Voigt model in conjunction with the power-law distribution to 
achieve the continuous gradation. The material properties are assu-
med to be the function of temperatures. The mid-plane kinematics 
of panel geometry is derived using the higher order shear deforma-
tion theory. The governing equation of the vibrated panel is obtained 
using Hamilton’s principle. The desired solutions of free vibrated 
functionally graded shells are computed numerically using the suita-
ble finite element steps. The convergence behaviour of the numerical 
results has been checked and validated by comparing the responses 
with that to available published literatura. The applicability of the 
proposed model has been highlighted by solving various numerical 
examples for different material and geometrical parameters and tem-
perature fields.  
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1 INTRODUCTION 

The requirement of structural strength in many engineering fields demands the advanced material 
that can maintain the structural integrity in critical environmental conditions. However, the lami-
nated composites have shown their competencies in many weight sensitivity industries for last few 
decades. But, besides from this, the layer structures are incapable to sustain their structural inte-
grity due to delamination in the severe thermal environment. In order to bridge the gap, the 
combination of two dissimilar materials with a continuous variation in transverse direction, known 
as functionally graded material (FGM), was first proposed by a group of space scientists in Japan 
(Koizumi, 1993). The capabilities of FGM in combined loading conditions attracted many resear-
chers since last two decades.   
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 Yang and Shen (2003) employed a semi-analytical approach to examine the free vibration and 
dynamic responses of functionally graded (FG) cylindrical shell under thermal environment by 
using Reddy’s higher-order shear deformation theory (HSDT). Huang and Shen (2004) studied the 
nonlinear vibration and dynamic response of FG plate in the thermal environment using the HSDT 
mid-plane kinematics and von Karman type geometric nonlinear strain terms. Sundararajan et al. 
(2005) employed the first-order shear deformation theory (FSDT) mid-plane kinematics and von-
Karman’s nonlinearity to obtain nonlinear vibration response of FG plate under thermal environ-
ment. Patel et al. (2005) examined the free vibration behaviour of FG cylindrical shells using higher-
order kinematics approximation through the thickness. Uymaz and Aydogdu (2007) studied the 
vibration responses of FG plate for various support conditions by using small strain linear elasticity 
theory. Haddadpour et al. (2007) investigated frequency responses of simply-supported FG cylin-
drical shell panel under thermal environment using Love's shell theory and Galerkin's method. 
Pradyumna and Bandyopadhyay (2008) studied the free vibration behaviour of curved FG panels 
using the higher-order formulation including Sanders’ approximation for the shell panels. Pradyu-
mna and Bandyopadhyay (2010) reported the vibration and buckling behaviour of FG curved panels 
by including the thermal effect. Santos et al. (2009) obtained the free vibration responses of cylin-
drical FG shell based on the 3D linear elastic theory by developing a semi-analytical axisymmetric 
finite element model. Pradyumna et al. (2010) developed higher-order based finite element model 
to solve the nonlinear transient vibration of FG doubly curved shell panels using New-mark tech-
nique. Hosseini-Hashemi et al. (2010) solved the moderately thick FG plate resting on elastic foun-
dations for vibration analysis using the FSDT kinematics with a modified shear correction factor 
analytically. Talha and Singh (2011) employed the HSDT mid-plane kinematics and Green–La-
grange nonlinear strains to investigate the nonlinear vibration behaviour of FG plate. Rahimia et 
al. (2011) studied the vibration responses of cylindrical FG shell panel with intermediate ring sup-
ports using Sanders’ thin shell theory. Alijani et al. (2011a) investigated the nonlinear forced vi-
bration behaviour of the simply-supported FG curved shallow shells using Donnell's nonlinear sha-
llow shell theory. Alijani et al. (2011b) analysed the nonlinear vibration responses of the FG shell 
panel using the HSDT kinematics including the temperature effect. Baferani et al. (2012) solved 
analytically the free vibration problem of the FG thin annular sector plates resting on the elastic 
foundations using Kirchhoff plate theory. Taj and Chakrabarti (2013) presented finite element 
formulation based on Reddy’s higher order theory to investigate the dynamic response of FG skew 
shell. Pradyumna and Nanda (2013) examined the nonlinear transient behaviour of the FG doubly 
curved panels with geometrical imperfection under the thermal environment using von-Karman 
type nonlinear strain terms in the framework of the FSDT mid-plane kinematics. Asemi et al. (2014) 
presented the static and dynamic behaviour of the FG skew plate based on the 3D elasticity theory. 
Bich et al. (2014) utilised the FSDT and stress function to investigate the nonlinear dynamic and 
the free vibration behaviour of imperfect eccentrically stiffened FG thick shallow shells. Shen and 
Wang (2014) analysed the nonlinear vibration behaviour of the FG cylindrical panel under thermal 
environment by using the HSDT kinematics with von-Karman nonlinearity. Zhu et al. (2014) per-
formed nonlinear thermo-mechanical analysis of FG plate using local meshless method and Kriging 
interpolation technique. In their study, the FSDT and von-Karman nonlinearity are used to define 
the total strain.  
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The previous studies show that very limited analysis on the free vibration behaviour of the FG 
single/doubly curved shell panels are reported under thermal environment. The prime objective of 
the present work to analyse free vibration behaviour of the flat/curved panel of different geometries 
(flat, cylindrical, spherical, hyperbolic and elliptical) under three different thermal fields (uniform, 
linear and nonlinear). The FG panel model has been developed based on the HSDT mid-plane 
kinematics considering the temperature-dependent material properties. The governing equation of 
the vibrated FG panel is obtained using Hamilton’s principle and discretized through suitable finite 
element steps. The convergence behaviour of the present numerical model has been checked and 
compared with available published literature. Finally, the effects of different parameters (power-
law indices, thickness ratios, aspect ratios, curvature ratios and temperatures) on the frequency 
responses under different temperature fields are computed using the proposed numerical model and 
discussed in detailed.  

 

2 GENERAL FORMULATION 

In the present study, a general doubly curved shell panel is considered to exhibit all the different 
shell panels like flat, spherical, cylindrical, hyperbolic and elliptical panels. The dimension and 
geometry of the doubly curved panel are presented in Figure 1. Here, ‘h ’ is the total thickness of 
the FG shell panel, and ‘a ’ and ‘b ’ are the sides of the panel along the x  and y  directions, res-
pectively.  The curved panel is defined with respect to the curvature radii. i.e., xR  (along with the 
x - direction) and yR  (along with the y - direction). The different panel geometries, generated from 
the doubly curved shell panel, are presented in Table 1.  

 

 

Figure 1: Geometry and dimension of the doubly curved FG shell panel. 

 

Curvature radii 
Single/doubly curved shell panel 

Flat Spherical Cylindrical Hyperbolic Elliptical 

xR  ∞  R  R  R  R  

yR  ∞  R  ∞  R−  2R  

Table 1: Different shell geometries.
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2.1 Kinematic relations 

In the present study, the displacements ( ), ,u v w  at any point along the ( ), ,x y z  coordinates in the 
shell panel are defined in the HSDT mid-plane kinematics with nine degrees of freedom as in Eq. 
(1) (Pandya and Kant, 1988). 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2 * 3 *
0 0

2 * 3 *
0 0

0

, , , , , , , ( , , ) , ,

, , , , , , , ( , , ) , ,

, , , , ,

x x

y y

u x y z t u x y t z x y t z u x y t z x y t

v x y z t v x y t z x y t z v x y t z x y t

w x y z t w x y t

θ θ

θ θ

= + + +

= + + +

=

  (1) 

 
where, t  is the time. z  is the thickness coordinate varies from 2h−  to 2h+ . 0u , 0v  and 0w  are 
the mid-plane displacements along the x , y  and z  coordinate, respectively. xθ  and 

yθ  are the ro-
tations of transverse normal about the y - and x -axis, respectively and other terms are the higher-
order terms in the Taylor series expansion defined in the mid-plane of the shell.  

Again, Eq. (1) can also be represented in the matrix form as in Eq. (2). 
 
 { } { }0fδ δ =     (2) 

 
where, { } { }Tu v wδ = , { } * * * *

0 0 0 0  0 0       
T

x y x yu v w u vδ θ θ θ θ =    and f   is the function of thick-
ness coordinate matrix and expresses as in Eq. (3). 
 

 

2 3

2 3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0 0 0 0

z z z

f z z z

 
 
   =     
  

  (3) 

 
2.2 Strain-displacement relations 

The strain-displacement relation for doubly curved shell panel can be expressed as (Kar and Panda, 
2015) 
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  (4) 

 
 Now, substituting the displacements as in Eq. (1) into Eq. (4), the strain terms can be 
represented as: 
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  (5) 

 
where, the strain terms having the superscripts 0, 1, 2, 3 are the extension, bending and the curva-
ture terms at the mid-plane. 

Again, Eq. (5) has been rearranged in the following form: 
 

 { } { }[ ]Tε ε=   (6) 

 
where, { }     

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
T

x y xy xz yz x y xy xz yz x y xy xz yz x y xy xz yzk k k k k k k k k k k k k k kε ε ε ε ε ε =     and the 
individual mid-plane strain terms are presented here in the following line. 
 

0
,x xuε = , 0

,y yvε = , 0
, ,xy y xu vε = + , 0

,xz x xwε θ= + , 0
,yz y ywε θ= + , 1

,x x xk θ= , 1
,y y yk θ= , 

1
, ,xy x y y xk θ θ= + , 1 *

02 /xz x xk u Rθ= − , 1 *
02 /yz y yk v Rθ= − , 2 *

0,x xk u= , 2 *
0,y yk v= , 2 * *

0, 0,xy y xk u v= + , 

2 * *
03 /xz x xk u Rθ= − , 2 * *

03 /yz y yk v Rθ= − , 3 *
,x x xk θ= , 3 *

,y y yk θ= , 3 * *
, ,xy x y y xk θ θ= + , 3 * /xz x xk Rθ= − , 

3 * /yz y yk Rθ= − . 

 
2 3[ ] [ ]T I zI z I z I=  is the thickness coordinate matrix where I  is the identity matrix of size 

(5×5).  

 

2.3 Effective material properties of FGM  

In this study, the bottom and the top surfaces of the FG panel are considered as metal and ceramic 
rich, respectively. The effective material properties of FGM are considered as functions of tempe-
rature and thickness coordinate. The FGM constituents are taken as function of temperature (T ) 
and can be expressed as (Reddy and Chin, 1998) 

 

 1 2 3
, 0 1 1 2 3( ) ( 1 )c m T T T T Tξ ξ ξ ξ ξ ξ−

−= + + + +   (7) 

 
where, subscript ‘c ’ and ‘m ’ denote ceramic and metal, respectively. 0ξ , 1ξ− , 1ξ , 2ξ  and 3ξ  are 
the temperature coefficients.  

The effective material properties of FGM ( ξ ) can be evaluated by using Voigt’s micromechanics 
model (Gibson et al., 1995) and the power-law distribution (Shen, 2009) expressed as 

 

 ( , )  ( ) ( ) ( ) ( )c c m mT z T z T zξ ξ ϑ ξ ϑ= +   (8) 
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where, ( ) ( )1 2c

n
z hzϑ = +  and 1( ) ( )c

n
m z zϑ ϑ= −  are the volume fractions of ceramic and metal, 

respectively. Here, n  denotes the power-law index, ranges from 0n =  (ceramic rich) to n = ∞  
(metal rich).  

Different material properties such as Young’s modulus (E ), Poisson’s ratio (v ), density ( ρ ), 
thermal expansion coefficient (a ) and thermal conductivity (k ) for the FGM constituents are 
presented in Table 2.  

 

Materials Properties 0ξ  1ξ−  1ξ   2ξ  3ξ  

ZrO2 

E (Pa) 2.4427E+11 0 -1.3710E-03 1.2140E-06 -3.6810E-10 

α (K-1) 12.766E-06 0 -1.4910E-03 1.0060E-05 -6.7780E-11 

v  0.3 0 0 0 0 

k (W/mK) 1.80 0 0 0 0 

ρ (kg/m3) 3000 0 0 0 0 

Ti-6Al-4V 

E (Pa) 1.2256E+11 0 -4.5860E-04 0 0 

α (K-1) 7.5788E-06 0 6.6380E-04 -3.1470E-06 0 

v  0.3 0 0 0 0 

k (W/mK) 7.82 0 0 0 0 

ρ (kg/m3) 4427 0 0 0 0 

Table 2: Temperature dependent properties of the FGM constituents (Huang and Shen, 2004). 

 

2.4 Temperature variation across the thickness direction   

In order to achieve any general case, three different temperature fields across the thickness direction 
of the FG panel are considered namely, uniform (TD-I), linear (TD-II) and nonlinear temperature 
rise (TD-III).  

 
2.4.1 Uniform temperature rise 

The temperature field is assumed to be uniform in the thickness direction and the ambient tempe-
rature is set as 0T = 300 K, and the variation of the temperature field is expressed as: 

 

 0T T T= + ∆   (9) 

 
2.4.2 Linear temperature rise 

The linear temperature variation is assumed through the thickness of the FG curved panel and two 
different temperatures such as mT  and cT  are assumed to be for the metal (bottom) and ceramic 
(top) rich surfaces, respectively. The temperature field of linear variation through the thickness 
direction is expressed as:  

 

 
1

( ) ( )
2m c m

z
T z T T T

h

 = + − +    
  (10) 
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2.4.3 Nonlinear temperature rise  

The FG panel structure is also exposed to the nonlinear temperature variation in the thickness 
direction and it obtained using the one-dimensional heat conduction equation and expressed as: 

 

 ( ) 0
d dT
k z

dz dz

 −  =   
  (11) 

 

where, mT T=  at the bottom surface ( 2z h= − ) and cT T=  at the top surface ( 2z h= + ). The 
analytical solution to Eq. (11) is 

 

 
( )

/2
/2

/2

1
( ) d

( )1
d

( )

z

c m

c h
h

h

T T
T z T z

k z
z

k z

+
−

−

−
= −

 
 
 
 
 

∫
∫

  (12) 

 

In Eq. (12), thermal conductivity is considered as the function of thickness coordinate only (Miya-
moto et al., 1999). The above equation is again simplified and rewritten  as in (Javaheri and Eslami, 
2002). 

 

 ( ) ( ) ( )m c mT z T T T zη= + − ×   (13) 

 
where, 
 

( 1) (2 1)2

2

(3 1) (4 1) (3 4 5
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1 1 1 1
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1 1 1
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k kz z z
z

C h n k h hn k

k k kz z z

h h hn k n k n k

η

+ +

+ +

          = +  − +  + +  +              + +

         − +  +  +              +
−

+
+

+

5 1)n+ 




 

 
and 

 

( ) ( ) ( ) ( ) ( )

2 3 4 5

2 3 4 5
1

1 2 1 3 1 4 1 5 1

cm cm cm cm cm

m m m m m

k k k k k
C

n k n k n k n k n k
= − + −

+ + + + +
+ −  

 

where, cm c mk k k= − .  

Eq. (13) can be simplified for the isotropic material (fully metal/ceramic rich) as 

 

 ( )
2

c m c mT T T T
T z z

h

+ −
= +   (14) 
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2.5 Thermoelastic constitutive relation 

The thermoelastic constitutive relations for the FG shell panel are expressed as (Shen, 2009) follows: 
 

 

11 12

21 22

33

44

55

0 0 0 1

0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

xx xx

yy yy

xy xy

xz xz

yz yz

Q Q

Q Q

Q T

Q

Q

σ ε

σ ε

τ γ α

τ γ

τ γ

                                           = − ∆                                                 

               

  (15) 

 
where, ( )2

11 22 1Q Q E υ= = − , ( )2
12 21 1Q Q Ev υ= = − , ( )33 44 55 2 1Q Q Q E υ= = = +  

Now, Eq. (15) can also be represented as   
 
 { } { } { }thQ Qσ ε ε   = −      (16) 

 
where, Q    is the stiffness matrix and { } 1 1 0 0 0

T

th Tε α = ∆    is the thermal strain vector.  
The strain energy of the curved shell panel can be expressed as: 

 

 { } { }   

/2

/2
2

d
1

d d

h
T

h

U x yzσε

+

−

 
 =  
 
 

∫∫ ∫   (17) 

 

Eq. (17) can be rewritten by substituting the mid-plane strain vector and the stresses from Eqs. (6) 
and (16) and conceded as: 
 

 { } { }( )  

1
d d

2

T
U D x yε ε =  ∫∫   (18) 

where, 

/2

/2

d

h
T

h

D T Q T z

+

−

       =       ∫ . 

 
The total work done by the membrane forces due to temperature rise across the thickness direc-

tion of the FG curved panel can be expressed as (Cook et al., 2009): 
 

 { } { } { }2 2 2 2 2 21 1
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) , , , , , , d

2 2x x x x y y y y x y x y x y xy

v

u v w N u v w N u u v v w w NW v
 
 = + + + + + + + +  
∫   (19) 

 
where,  { } ( ){ }11 12 1 1 0

T T

x y xyN N N Q Q Tα= + ∆  is the thermal force resultant. 
 

 { } { }   

1
[ ] d d

2

T

G G GW D x yε ε
 =  
 ∫∫   (20) 
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where,  { } { }G xx yy xyε ε ε ε=  is the in-plane strain vector and GD
    is the material property ma-

trix. 
The kinetic energy of the FG shell panel can be expressed as 

 

 { } { }1
d

2

T

V

T Vρ δ δ= ∫ ɺ ɺ   (21) 

 
where, ρ  and { }δɺ  are the mass density and the global velocity vector.  

By substituting the Eq. (2) in the Eq. (21), the kinetic energy of the FG curved panel can be 
written as 
 

 { } { } { } { }
/2

0 0 0 0

/2

1 1
d d [ ] d

2 2

h
T TT

A h A

T f f z A m Aδ ρ δ δ δ

+

−

       = =       
∫ ∫ ∫ɺ ɺ ɺ ɺ   (22) 

 

where, 
/2

/2

[ ] [ ] [ ]d

h

T

h

m f f zρ

+

−

= ∫  is the inertia matrix. 

 
2.6 Finite Element Formulation 

The present FG panel model is discretized by using a nine noded isoparametric quadrilateral La-
grangian element. The mid-plane displacement vectors can be expressed in terms of nodal field as 

 

 { } { }
9

0 0
1

ii
i

Nδ δ
=

=∑   (23) 

 
where, { } * * * *

0 0 0 0   0 0        
i i i i i i i i i i

T

x y x yu v w u vδ θ θ θ θ =    is the nodal displacement vector at thi  node and 

iN  is the shape function for the thi  node and mentioned in Cook et al. (2009). 
Again, the mid-plane strain vector can be written in terms of nodal displacement vector as 

 
 { } { }0  Bε δ  =  and { } { }0  G GBε δ  =  (24) 

 
where, B  and GB

    are the product form of differential operator matrix and corresponding shape 
functions for the mid-plane and in-plane strain terms, respectively. 

 
2.7 Governing equation 

The desired free vibration governing equation of the FG curved panel is obtained using Hamilton’s 
principle and expressed as 
 

 ( )
2

1

d 0

t

t

T U W tδ  − + = ∫   (25) 



2015       V.R. Kar and S.K. Panda / Free vibration responses of temperature dependent functionally graded curved panels under thermal environment 

Latin American Journal of Solids and Structures 12 (2015) 2006-2024 

 

The final form of the vibrated FG curved panel under thermal environment can be obtained by 
substituting Eq. (18-24) in the Eq. (25) and conceded as: 
 
 { } ( ){ }[ ] [ ] 0GM K Kδ δ  + + = 

ɺɺ   (26) 

 
where, 

T
M N m N       =         is the system mass matrix, 

[ ] [ ] [ ][ ]TK B D B=  is the system stiffness matrix and 
[ ] [ ] [ ][ ]T
G G G GK B D B=  is the geometric stiffness matrix.  

Now, Eq. (26) is rearranged to obtain the eigenvalue type  equation and presented as 
 

 ( )( )2[ ] [ ] 0GK K Mω  + − ∆ =    (27) 

 
where, ω  is the natural frequency and ∆  is the corresponding eigenvectors. In the present analysis, 
the natural frequency is non-dimensionalized using the following formula  
 

 ( ) ( )2 2
01 m ma h v Eω ω ρ= −   (28) 

 
where, 0E  denotes the Young’s modulus of metal at ambient temperature, i.e., T = 300 K.  

  
3 NUMERICAL RESULTS AND DISCUSSIONS 

In this section, the thermal free vibration behaviour of simply-supported FG curved shell panels 
are examined under uniform and non-uniform thermal loadings. The FGM constituents are assumed 
to be temperature dependent as presented in Table 2. The responses are computed through a 
homemade computer code developed in MATLAB based on the proposed finite element formulation. 
The convergence behaviour of the numerical model has been checked and the responses are 
compared with that to the available published results. Finally, some new numerical experiments 
are examined for different geometrical parameters to show the effectiveness of the present developed 
model.  

 
3.1 Convergence and comparison study  

As a first step, the convergence behaviour of simply-supported FG (ZrO2/ Ti-6Al-4V) flat panel 
(a = 0.2 m, a h = 8) is computed for different mesh refinement. The non-dimensional fundamental 
frequency parameter ( ) ( )( )2 2

01 m ma h v Eω ω ρ= −  is computed for different power-law indices 
(  0, 0.5, 1, 2,n = ∞ ) and presented in Figure 2. It is observed from the graph that the present 
model is showing good convergence rate with mesh refinement for all possible cases are investigated 
and a (6×6) mesh is sufficient to compute the desired frequency responses further.  
 In order to show the validity of the present developed model, a simply-supported square FG 
(ZrO2/ Ti-6Al-4V ) flat panel is analysed for four different values of the power-law indices (n = 0, 
0.5, 1 and 2) under nonlinear temperature field as shown in Figure 3. The material properties and 
geometrical parameters are same to be Huang and Shen (2004) as in Table 2. The present results 
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Figure 2: Convergence rate of frequency parameter of a square simply-supported FG flat panel. 

 

 
Figure 3: Comparison of frequency parameter of FG flat panel under thermal environment (a = 0.2 m, a h = 8). 

 
are showing very good agreement with that to the analytical solutions except n = 0 (within 14%) 
i.e., ceramic rich FG plate, when the structure exposed to the nonlinear temperature distribution 
( cT =600 K and mT = 300 K).  
  Now, another problem has been solved to show the capabilities of the present model to solve 
curved panel structure. The frequency responses ( ) ( )( )2 212 1 m m ma h v Eω ω ρ= − of simply-
supported FG spherical/cylindrical shell panels are computed for three curvature ratios (R a = 5, 
10 and 50) and three power-law indices (n = 0, 0.2 and 10) and shown in Table 3.  The top and 
bottom surfaces of the FG panel are taken as alumina (Al2O3) and aluminium (Al), respectively.  
The material properties are taken same as given in Pradyumna and Bandyopadhyay (2008).  The 
present results are showing good agreement with that of the reference. 
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Curvature 

ratio (R a ) 
 Cylindrical panel Spherical panel 

Power-law index (n ) 0 0.2 10 0 0.2 10 

5 
Present 42.658 37.225 19.204 44.405 38.794 19.856 

Pradyumna and Bandyopadhya (2008) 42.254 40.162 19.389 44.007 41.778 20.469 

10 
Present 42.298 36.906 19.088 42.747 37.302 19.244 

Pradyumna and Bandyopadhya (2008) 41.908 39.847 19.156 42.357 40.260 19.435 

50 
Present 42.182 36.810 19.061 42.200 36.823 19.063 

Pradyumna and Bandyopadhya (2008) 41.796 39.746 19.081 41.814 39.762 19.092 

Table 3: Non-dimensional frequency parameters of simply-supported FG (Al/Al2O3) cylindrical/spherical shell 

panels for different curvature ratios and power-index índices. 
 
3.2 Numerical examples 

In this section, some new examples have been solved to demonstrate the influence of different 
parameters on the frequency responses of FG flat/curved panels under thermal environment. The 
frequency responses are computed in non-dimensionalized form ( ) ( )( )2 2

01 m ma h v Eω ω ρ= −
throughout the analysis if not stated otherwise. The responses are evaluated for different parameters 
such as the thickness ratios (a h ), the curvature ratios (R a ), the power-law indices (n ) and the 
aspect ratios (a b ) and three temperature load variation (TD-I, TD-II and TD-III). If not stated 
otherwise, the results are computed throughout the analysis by setting the geometrical and the 
material parameters as R a = 5, a h = 100, n = 2 and a b =1.  The top and bottom temperatures 
are taken as cT =300, 400, 500, 600, 700 K and mT = 300 K, respectively. 
 
3.2.1 Effect of power-law index 

It is well known that the FG structure properties greatly depend on the power-law indices, and it 
also decides the distribution of each constituent across the thickness. Figures 4 and 5 show the 
frequency responses of the simply-supported square FG flat and curved (spherical, cylindrical, 
hyperbolic and elliptical) panels for three different power-law indices (n = 0, 1, 2) under three 
thermal environments (TD-I, TD-II and TD-III). It is clear from the figures that, the frequency 
parameters are decreasing as the power-law indices increase for each shell geometries. It is also 
interesting to note that the frequency responses are showing descending trend from ceramic rich to 
metal rich FG structure. It is because the ceramic materials are well known for their high stiffness 
in comparison to the metal counterpart.   
 
3.2.2 Effect of thickness ratio   

The thickness ratio is the essential geometrical parameter for any structural analysis. In this exa-
mple, the effect of the thickness ratio on the frequency responses are examined. The responses are 
computed for simply-supported square FG flat/curved panels. Figures 6 and 7 are showing the 
frequency responses of three different thickness ratios (a h = 5, 20, 100) under three thermal fields 
as discussed. It is observed that, the frequency parameters are showing increasing type of behaviour 
as the thickness ratio increase for all the cases irrespective of geometry and temperature field. It is 
due to the fact that, as the thickness ratio increases the FG panel becomes thin and it has less 
structural stiffness as compared to thick panels.  



V.R. Kar and S.K. Panda / Free vibration responses of temperature dependent functionally graded curved panels under thermal environment       2018 

Latin American Journal of Solids and Structures 12 (2015) 2006-2024 

  

3.2.3 Effect of aspect ratio  

It is well known that the aspect ratio is one of the major parameters in structural design and it 
also affect the structural responses considerably. In this example, the effect of the aspect ratio on 
the frequency responses of FG panel has been analysed for different geometries. Figures 8 and 9 
illustrate the variation of frequency responses of the simply-supported FG panels for three different 
panel configurations, i.e., a b =1.5, 2 and 2.5. It can be seen clearly that the frequency parameters 
are increasing as the aspect ratio increases because the panels with large aspect ratios are compa-
ratively stiffer.  

 

3.2.4 Effect of curvature ratio  

The curved panel is mainly characterised by the radius of curvature. In order to examine the effect 
of curvature ratio, the frequency responses of different shell geometries (spherical, cylindrical, 
hyperbolic and elliptical) are computed for three different values of curvature ratio (R a = 10, 20 
and 50) and plotted in Figure 10(a)-(d). The frequency parameters are decreasing as the curvature 
ratio increases,  i.e., in the order of R a = 10, 20 and 50. It is because, as the curvature ratio of 
any curved panel increases, it approaches to flatness and the flat panels have less membrane energy 
as compared to the curved one. It is also noted that curvature effect is predominent in case of 
spherical panel.  

 

3.2.5 Effect of temperature variation 

It is well known that the FG structures are more efficient in elevated thermal environment 
conditions as compared to the laminated structures. In addition, the mechanical properties of FGM 
constituents, i.e., the metal and the ceramic,  are well affected due to the elevated thermal 
environment. In order to show the effect of temperature on the frequency responses of the FG panel 
structure,  the frequency parameters are computed under three different temperature load (TD-I, 
TD-II, TD-III) and presented in Figures 4-10. The responses are computed for five different 
temperatures ( cT =300, 400, 500, 600, 700 K) across the thickness of the FG panel. It is observed 
from the figures that the frequency parameters are decreasing with the temperature increment, i.e., 
the FG structures become flexible at higher temperatures. It is also interesting to note that the 
frequency parameters are increasing in ascending order from TD-I, TD-II and TD-III, respectively.  

 

3.2.6 Effect of shell geometry 

The man made shells are classified based on their curvature rather than the load bearing capacity. 
Here, the frequency responses of different shell geometries (flat, spherical, cylindrical, hyperbolic 
and elliptical panels) are investigated under three different thermal environment and presented in 
Figures 4-10. It is clear from the Figures 4-7 that, the frequency responses are increasing 
progressively following the order of flat, cylindrical, elliptical, hyperbolic and spherical shell panel. 
The trends are deviating in Figures 8-10, where the elliptical panels are showing higher frequencies 
in comparison to the hyperbolic panel. The results also indicate that the curved panels are stiffer 
in comparison to that of the flat panel.    
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Figure 4: Effect of power-law index on the frequency parameters of FG flat panel under various temperature fields. 

 

 

Figure 5(a)-(d): Effect of power-law index on the frequency parameters of 

FG panels under various temperature fields. 
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Figure 6: Effect of thickness ratio on the frequency parameters of FG flat panel under various temperature fields. 

 

 
Figure 7(a)-(d): Effect of thickness ratio on the frequency parameters of 

FG panel under various temperature fields. 
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Figure 8: Effect of aspect ratio on the frequency parameters of FG flat panel under various temperature fields 

 

 

Figure 9(a)-(d): Effect of aspect ratio on the frequency parameters of FG panels under various temperature fields. 
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Figure 10(a)-(d): Effect of curvature ratio on the frequency parameters of 

FG panels under various temperature fields 

 

4 CONCLUSIONS  

The free vibration responses of simply-supported FG flat/curved shell panels are examined under 
elevated thermal environments. The responses are computed numerically using a generalised mat-
hematical model developed in the framework of the HSDT mid-plane kinematics in conjunction 
with finite element method under three different temperature loading conditions (uniform, linear 
and nonlinear). In order to achieve the real life situation, the FGM properties are assumed to be 
temperature dependent and the effective material properties are computed using Voigt’s microme-
chanical model via power-law distribution of the volume fractions. The desired governing equation 
of vibrated FG panel structure is obtained using Hamilton’s principle. The convergence behaviour 
of the present numerical model has been computed to show the stability of the numerical results 
and validated by comparing with the previously published literature. Effects of different geometrical 
and material parameters on the frequency responses of single/doubly curved and flat panels under 
uniform, linear and nonlinear thermal fields are examined and discussed in details. The following 
conclusions are made on the present parametric study on the FG flat/curved shell panels: 
• It is observed that, the frequency responses are increasing as the thickness ratio and the aspect 

ratio increases irrespective of the FG shell panel geometries. 
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• The frequency responses are decreasing as the power-law indices and the curvature ratios in-
creases.  

• The frequency parameter are decreasing with the increase of temperature load for each shell 
geometries.     

• It is also noticed that, the frequency parameters are higher for all the FG shell geometries under 
nonlinear temperature load distribution in comparison to the uniform and the linear temperature.   

• The frequency parameters are maximum and minimum for the spherical and the flat panels, 
respectively.  
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