
1182 

 

Abstract 
Many authors have shown that the effective design of viscoelastic 
systems can be conveniently carried out by using modern math-
ematical models to represent the frequency- and temperature-
dependent behavior of viscoelastic materials. However, in the 
quest for design procedures of real-word engineering structures, 
the large number of exact evaluations of the dynamic responses 
during iterative procedures, combined with the typically high 
dimensions of large finite element models, makes the numerical 
analysis very costly, sometimes unfeasible. It is especially true 
when the viscoelastic materials are used to reduce vibrations of 
nonlinear systems. As a matter of fact, which the resolution of 
the resulting nonlinear equations of motion with frequency- and 
temperature-dependent viscoelastic damping forces is an interest-
ing, but hard-to-solve problem. Those difficulties motivate the 
present study, in which a time-domain condensation strategy of 
viscoelastic systems is addressed, where the viscoelastic behavior 
is modeled by using a four parameter fractional derivative model. 
After the discussion of various theoretical aspects, the exact and 
reduced time responses are calculated for a three-layer sandwich 
plate by considering nonlinear boundary conditions. 
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1 INTRODUCTION 

The use of viscoelastic materials has been regarded as a convenient strategy in many types of 
industrial applications, where these materials can be applied either as discrete devices or surface 
treatments at a relatively low cost (Nashif et al., 1985; Rao, 2001; Samali and Kwok, 1995). A 
typical example is the application of viscoelastic constrained layers in compressors systems (de 
Lima et al., 2007). However, the behavior of viscoelastic materials presents some inherent com-

Antônio Marcos Gonçalves de Limaa 

Noureddine Bouhaddib 

Domingos Alves Radec 

Marcelo Belonsid 

 
a,dFederal University of Uberlândia, 
School of Mechanical Engineering, Cam-
pus Santa Mônica, Uberlândia-MG, 
Brazil 
bFEMTO-ST Institute, Chaléat Applied 
Mechanics Laboratory, Univeristy of 
Franche-Comté, Besançon, France 
cInstituto Tecnológico de Aeronáutica, 
ITA, São José dos Campos, SP, Brazil 
 
Corresponding author: 
aamglima@mecanica.ufu.br 
bnoureddine.bouhaddi@univ-fcomte.fr 
cdomingos@ufu.br 
dmarcelobelonsi@bol.com.br 
 

http://dx.doi.org/10.1590/1679-78251695 
 
Received 13.11.2014 
Accepted 18.02.2015 
Available online 19.02.2015 
 

 

mailto:amglima@mecanica.ufu.br
mailto:noureddine.bouhaddi@univ-fcomte.fr
mailto:domingos@ufu.br


1183          A.M.G. de Lima et al. / A time-domain finite element model reduction method for viscoelastic linear and nonlinear systems 

 

plexities such as the influence of operational and environmental factors (frequency, temperature, 
pre-loads, etc.) (Nashif et al., 1985). Thus, several approaches have been developed for performing 
dynamic responses of engineering structures containing viscoelastic damping devices (Bagley and 
Torvik, 1979; Golla and Hughes, 1985; McTavish and Hughes, 1993; Lesieutre and Bianchini, 
1995). However, many authors have found-out that the proposed mathematical models used for 
performing the frequency- and temperature-dependent behavior of viscoelastic materials, based on 
the concept of internal variables lead to global systems of equations of motion whose numbers of 
degrees of freedom (DOFs) largely exceed the order of the associated undamped structures (Bal-
mès and Germès, 2002; de Lima et al., 2009; de Lima et al., 2010). As a result, if such response 
evaluations are made based on computations performed on the full finite element (FE) models of 
structures treated with viscoelastic materials composed by many thousands of DOFs, which is not 
rarely the case, the computational cost necessary to perform exact response evaluations during 
iterative processes such as structural optimization and uncertainty propagation, can become 
prohibitive, even unfeasible (de Lima et al., 2010; Zghal et al., 2014). Moreover, the increased 
dimension of the analytical models can preclude their use for active control and nonlinear vibra-
tion computations, in which time-domain analyses must be performed. 
 These drawbacks can be circumvented by combining directly the so-called model-reduction 
techniques in an attempt to reduce the order of the FE model while preserving its capability to 
represent the dynamic behavior of viscoelastic systems. However, it must be reminded that an 
inherent difficulty of any model reduction procedure applied to viscoelastic systems lies on the 
fact that the viscoelastic stiffness matrix depends on frequency and temperature. Another difficul-
ty is to choose the projection bases in order to reduce truncation effects (de Lima et al., 2010).  
 One possible strategy is to generate a set of Ritz vectors capable of representing with satisfac-
tory accuracy the structural behaviour under structural modifications. For example, Balmès and 
Germès (2002) studied the possibility of using a constant Ritz basis to create parametric families 
of reduced models developed for viscoelastic structures to be applied in the frequency-domain. 
Bouazzouni et al. (1997) developed an optimal method to construct additional vectors by using 
the dynamic behavior of undamped structures before modifications. De Lima et al. (2009) have 
proposed the use of a frequency- and temperature-independent reduction basis of viscoelastic sys-
tems based on the construction of residual static vectors taking into account the external loads 
and the viscoelastic damping forces. 
 The disadvantage of such approaches lies in the fact that a basis of reduction composed by a 
large number of residual static vectors is obtained, thus augmenting the computation effort in-
volved in the condensation. Also, the proposed condensation strategies are restricted to the fre-
quency-domain analysis, since the complex modulus approach is used to represent the viscoelastic 
dynamic features. More recently, Zghal et al. (2014) have proposed a model reduction method of 
nonlinear dynamic analysis of viscoelastic systems in time domain using the well-known Golla-
Hughes-McTavish (GHM) model (Golla and Hughes, 1985; McTavish and Hughes, 1993). Howev-
er, it leads to augmented global systems of equations of motion whose numbers of DOFs largely 
exceed the order of the associated undamped structures. This fact motivates the proposition of a 
time-domain condensation method based on the use of constant enriched reduction bases, which 
take into account a priori information of the viscoelastic damping forces and the local perturba-
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tions to be applied in the transient analysis of viscoelastic systems. The perturbations can be 
applied related to either structural viscoelastic modifications or local nonlinearities. 
 As for the viscoelastic models, among the widely used mathematical representations accoun-
ting for the typical dependence of the viscoelastic properties with respect to frequency and tempe-
rature (Bagley and Torvik, 1979; Golla and Hughes, 1985; McTavish and Hughes, 1993; Lesieutre 
and Bianchini, 1995), in the present study, the proposed time-domain condensation approach is 
specially adapted for viscoelastic systems in which the viscoelastic behavior is modeled by using 
the four-parameter fractional derivative model (FDM) originally proposed by Bagley and Torvik 
(1979) and modified by Galucio et al. (2004). Although the association of this viscoelastic model 
in a FE discretization has been largely used in previous studies devoted to linear vibrating sys-
tems, the main contribution intended for the present study is the proposition of a straightforward 
time-domain condensation strategy to reduce linear and nonlinear viscoelastic systems, which 
requires specially adapted time-domain analytical and numerical resolution procedures. 
 In the remainder, after the presentation of various aspects related to the theoretical founda-
tions, the description of numerical applications composed by a three-layer sandwich plate structu-
re with embedded viscoelastic materials, subjected to linear and nonlinear structural modifica-
tions, demonstrates the effectiveness of the proposed condensation strategy. 
 
2 REVIEW OF THE FE MODELING OF PLATES WITH VISCOELASTIC CONSTRAINING LAYERS 

In this section, the model of a moderately thin three-layer sandwich plate FE, which can be fre-
quently found, for example, in aerospace systems, is summarized based on the original develop-
ments made by Khatua and Cheung (1973) and implemented by de Lima et al. (2006). The inclu-
sion of the frequency- and temperature- dependent behavior of the viscoelastic material is made 
by using the so-called Elastic-Viscoelastic Correspondence Principle (Nashif et al., 1985), accor-
ding to which, the structural matrices are first generated for specific types of finite elements 
(rods, beams, plates, etc.) assuming that the longitudinal modulus and/or the shear modulus (ac-
cording to the stress state assumed) are constant (independent on frequency and temperature). 
Then, after the finite element matrices are constructed, the frequency-temperature dependency of 
those moduli can be introduced according to the complex modulus approach combined with the 
Frequency-Temperature Superposition Principle (de Lima et al., 2009). 
 Figure 1 depicts a rectangular element formed by an elastic base-plate (1), a viscoelastic core 
(2) and an elastic constraining layer (3). This element contains four nodes and seven DOFs per 
node, representing the in-plane displacements in the middle plane of the base-plate in directions 
x  and y  (denoted by 1u  and 1v , respectively), the in-plane displacements of the middle plane of 
the constraining layer in directions x  and y  (denoted by 3u  and 3v , respectively), the transverse 
displacements,w , and the cross-section rotations about x  and y , denoted by x  and y , respec-
tively. 
 In the development of the theory, the following assumptions are adopted: (i) all the materials 
involved are homogeneous and isotropic and present linear behavior; (ii) normal strains in direc-
tion z are null for the three layers; (iii) the elastic layers (1) and (3) are modeled according to 
Kirchhoff’s theory; (iv) for the viscoelastic core, Mindlin’s theory is adopted (transverse shear is 
included); (v) the cross-section rotations, x  and y , are the same for the elastic layers; (vi) the 
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Figure 1: Schematic representation of three-layer sandwich plate element. 

 
transverse displacement, w , is the same for all the layers. These assumptions have been conside-
red by many authors as being adequate for the modeling of thin panels, as is the case of the 
structures addressed herein (Austin, 1999). Moreover, previous studies carried-out by the authors 
demonstrated satisfactory correlation between model predictions and experimental results (de 
Lima et al., 2003). 
 The discretization of the displacement fields within the element is made by using bilinear in-
terpolation functions for the displacements in the middle plane of the elastic layers in directions 
x  and y , and a cubic interpolation function for the transverse displacement, according to the 
relation,  ( , , ) ( , ) ( )ex y t x y tu N u , where ( , )x yN  is the matrix formed by the shape functions, and 

( )( )e t u 1 1 3 3

T
i i i i i i i

x yu v u v w   
    with i  1 to 4 designates the vector containing the nodal variables 

as functions of time. The strain-displacement relations in vector form,   ε x, y, z,t  
     e tB ux, y, z , are used and the resulting strains for the elastic layers, k ε ( ) ( ) ( ) Tk k k

x y xy       
 1, 3k  , and for the viscoelastic core, 2 ε (2) (2) (2) (2) (2) T

x y xy xz yz     
  , are generated.  

 Thus, based on the stress-states assumed for each layer and the corresponding stress-strain 
relations, following standard analytical developments based on variational approaches, the strain 
and kinetic energies of the three-layer sandwich plate FE are formulated and the elementary mass 
and stiffnesses matrices are obtained as follows: 
 

        

3

1 0 0

, , d d
b a

e T
k k

k x y

h x y x y y x
  

   Μ N N   (1.a) 

         

1,3 0 0 0

, , , , d d d
kh b a

e T
e k k k

k z x y

x y z x y z y x z
   

    Κ B C B   (1.b) 

      
 

  2 2 2 2
0 0 0

, , , , d d d

vh b a
e T

z x y

x y z x y z y x z
 

  

   Κ B C B   (1.c) 

 
where kC   1, 3k   is the isotropic elastic material properties matrix, and 2 v

 C C  contains the 
frequency- and temperature-dependent material properties for the viscoelastic core. Matrix 

 x, y, zB is formed by differential operators appearing in the strain-displacement relations for 
each layer, as detailed in de Lima et al. (2006). Also, b  and a  designate, respectively, the dimen-
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sions of the plate element in directions x and y, and kh  and k  are the thickness and the mass 
density of the k -th layer, respectively. 
 According to the theory of the sandwich plate finite element summarized above and assuming 
that the Poisson ratio is independent from frequency and temperature in such a way that the 
frequency- and temperature-dependent longitudinal and transverse moduli are related to each 
other through the relation,  2 1v vE G    , the design parameters of mass and stiffness of each 
layer can be factored-out of the elementary matrices by uncoupling membrane, bending and shear 
effects as: 
 

 

     

         

     

1 1 1 1,1 1 1 1,1

2
2 2 2 2,0 2 2 1 2,1 2 2 1 2,2 2 2 2,0

3 3 3 3,1 3 3 3,1

e e e
m b

e e e e e
m m m b

e e e
m b

h h

h h d h d h

h h

 

   

 

 

   

 

M M M

M M M M M

M M M

  (2.a) 
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  (2.b) 

 
where 3 1 2 32d h h h    and kE  ( 1, 3k  ) represents the longitudinal moduli of the elastic la-
yers. Also, subscripts m, b and s indicate, respectively, the membrane, bending and shear effects 
in the structural matrices.  
 It should be noted that, in Eqs. (2), the matrices appearing in the right-hand side are constant 
sparse matrices which are independent from the design parameters. It is clearly perceived how the 
use of such expressions facilitates a variety of finite element computations, since it enables to 
account for structural modifications and/or parametric uncertainties in the values of the design 
parameters in a straightforward way during iterative processes. Also, it facilitates, to a large ex-
tent, the evaluation of the sensitivities of the responses with respect to the design parameters.  
 From the elementary matrices computed for each element of the FE mesh, and neglecting ot-
her forms of damping, the elementary equations of motion are given as: (1)(2) 
 

  
       

       e e e e
e e v et t t     
M u K K u f   (3) 

 
where the stiffness matrices,      

1 3
e ee

e  Κ Κ Κ  and    
2
ee

v
 Κ Κ  give, respectively, the contri-

butions of the purely elastic and viscoelastic parts of the damped structure, and 
       

1 2 3
e e ee   M M M M  includes the contribution of the base-plate, the viscoelastic core and 

the constraining layer to the inertia matrix. Finally,    e tu  and    e tf  are, respectively, the 
vectors of the generalized displacements and external loads. 
 Cleary, Eq. (3) must be used to construct the global equations of motion, accounting for the 
node connectivity of the discretization mesh, using standard FE assembling procedures. 
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2.1 Fractional derivative model incorporated into FE matrices 

The dependency of the viscoelastic stiffness matrix on frequency and temperature is a conse-
quence of the dependency of the material moduli with respect to these factors. A variety of math-
ematical models has been developed to represent the viscoelastic behavior and have been shown 
to be suitable to be used in combination with the FE discretization.  
 In this paper, as the interest is confined to a proposition of a time-domain reduction procedure 
of viscoelastic systems, the Fractional Derivative Model (FDM) initially proposed by Bagley and 
Torvik (1979) is used in combination with the Grünwald discretization technique (Galucio et al., 
2004) to approximate the fractional operator appearing in the following one-dimensional stress 
state constitutive equation assumed for the viscoelastic material: 
 

  
 

 0
d

d

t E E
t t

Et







  




    (4) 

 
where 0E  and E  are, respectively, the relaxed or static modulus, and non-relaxed or high-
frequency limit value of the modulus,   is the relaxation time, and   represents the fractional 
order of the time derivative  0 1  .  
 One important aspect regarding the use of the following complex modulus function, 

     0 1vE E E i i
 

 
   , obtained by applying the Fourier transform to Eq. (4) is 

the identification of the four parameters ( 0E ,E ,  , ) from experimental data-sheets provided 
by the manufactures containing the material storage modulus and loss factor as functions of fre-
quency and temperature. Thus, from the complex modulus definition, the determination of the 
values of the material parameters can be carried out by formulating an optimization problem in 
which the objective function represents the difference between the experimental data points and 
the corresponding model predictions in the frequency band of interest for a fixed temperature 
value (Galucio et al., 2004). As a result, the designer can obtain the storage modulus and the loss 
factor at any given temperature into a frequency band of interest, as illustrated in Fig. 2 for the 
particular material considered in the present study. 
 

 
(a) 

 
(b) 

Figure 2: (a) Storage modulus and (b) loss factor for different temperatures for the 3M™ ISD112. 
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Also, it must be emphasize that Eq. (4) was obtained by introducing the following internal varia-
ble as a strain function,      t t t E     , in the standard one-dimensional stress state 
constitutive equation for linear viscoelastic materials. As a result, Eq. (4) contains only one frac-
tional derivative term,  d t d t  , instead of two presented in the classical constitutive equa-
tion, and can be approximated by the following Grünwald definition,  d t d t    

 10
pn

jj
t A t j t 


   , noting that 1 1A  , to generate the following discretized form of the 
anelastic strain: 
 

        0
1

1

1
pn

j
j

E E
t c t c A t j t

E
  





       (5) 

 
where  c t      , t t n   is the time step, pn n  is the number of discretization 
points, and 1jA   represents the Grünwald coefficients given by the recurrence formula, 1jA    
 1 jj A j  .  
 At this point, the term  

   e
v e tK u  appearing in equations of motion (3) can be expressed as, 

 
 

   e
v e t K u       , , , , , d d dT

z y x

x y z x y z t x y z   σB , 

 
where for a general stress-strain relation, the vector  , , ,x y z tσ  can be written in terms of the 
anelastic strain (5) taking into account the strain relation,      t t t E     , as follows: 
 

      0
0 1

10 0

, , , 1 , , , , , ,
pn

j
j

E E E
x y z t E c x y z t c A x y z t j t

E E
 




             
σ ε ε   (6) 

 
 By combining Eq. (6) with the elastic and anelastic strain-displacement relations, 
       e tε B ux, y, z,t x, y, z  and        e t Bε ux, y, z,t x, y, z , the resulting modified elementary 

equation of motion takes the following form: 
 
  

     
       e e e

v e v e vt t t j t    K u K u f   (7) 

where 

   0

0

1e e
v v

E E
c

E


       
K K  and      

   1
10

pn
e e

v v j e
j

E
t j t c A t j t

E





    f K u . 

 
 Upon introduction of Eq. (7) into Eq. (3) and after matrix assembling, the global equations of 
motion of the viscoelastic system containing N  DOFs can be written as: 
 
          e v vt t t t j t     

M u K K u f f   (8) 

where 
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nel
e
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
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1

nel
e

e e
e



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1
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ev

v
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
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are the global finite element mass and stiffness matrices, and symbol   indicates matrix assem-
bling.  tu  is the vector of global DOFs and  tf  is the vector of the generalized external loads. 

 v t j t f  is a load vector, which depends on the anelastic displacements,  tu , and the 
Grünwald coefficients. These later account for the fading memory of viscoelastic materials. 
 It is interesting to highlight that Eq. (8) represents a time-domain model of structures contai-
ning viscoelastic materials, which can be interpreted as the result of incorporating modifications 
in the original elastic stiffness of the base-structure associated to viscoelastic materials, which is, 
in fact, independent of time, and by adding viscoelastic time-varying damping forces to the origi-
nal external loads. 
 By comparing this modeling approach to other alternatives that have been proposed based on 
the adoption of particular representations for the frequency- and temperature-dependent behavior 
of the viscoelastic materials [5-8, 12], the proposed strategy does not require transformation of the 
equations of motion into a state-space form to generate frequency- and temperature-independent 
state matrices. 
 Based on Eq. (8), a time-domain condensation method based on the use of a frequency- and 
temperature-independent reduction bases is addressed next. 

 
3 TIME-DOMAIN CONDENSATION OF VISCOELASTIC SYSTEMS FOR DESIGN PROCEDURE 

In the case of complex structures of industrial interest, FE models are usually constituted by a 
large number of DOFs (hundreds of thousand or even millions). In such cases, it becomes practi-
cally impossible to compute the time-domain response directly from Eq. (8), owing to high com-
putation times and storage memory required. This fact motivates the use of model reduction pro-
cedures, which aim at reducing the model dimensions (and the associated computational burden), 
while keeping a reasonable predictive capability of the numerical models. This can be done based 
on the assumption that the exact response, given by the resolution of Eq. (8), can be approached 
by a projection on a reduced vector basis as: 
 
    0 ˆt tu T u   (9) 
 
where 0

N NRC T  is the transformation matrix formed column-wise by vectors,  ˆ NRt Cu  is 
the vector of generalized coordinates, and NR N  is the number of vectors in the basis.  
 Once associated to the transformation expressed in Eq. (9), the equations of motion (8) can be 
rewritten as follows: 
 
          ˆˆ ˆˆ ˆˆ ˆe v vt t t t j t     

M u K K u f f   (10) 

 
where 0 0

ˆ T
e eK T K T , 0 0

ˆ T
v v K T K T , 0 0

ˆ TM T MT ,    0
ˆ T
v vt j t t j t     f T f  and  ˆ t f  

 0
T tT f  are the reduced matrices and vectors.  
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 For models of structures containing viscous or structural damping, it is relatively common to 
use a constant projection basis formed by a subset of eigenvectors of the associated conservative 
structure, as the mass and stiffness matrices are invariant (Nashif et al., 1985). However, for sys-
tems containing viscoelastic materials, the selection of the reduction basis is more delicate as this 
condition does not hold. Owing to the dependence of the stiffness matrix with respect to frequen-
cy and temperature, the reduction basis should be able to represent the changes of the dynamic 
behavior as frequency and temperature vary (de Lima et al., 2010). This motivates the proposi-
tion of a special time-domain condensation method based on the use of a frequency- and tempera-
ture-independent enriched reduction basis which takes into account a priori information of the 
viscoelastic damping forces. These static responses are computed by using the tangent viscoelastic 
stiffness matrix computed in the low frequency range by considering the real value of the mo-
dulus, 0E , as follows: 
 
 0 0 vE  K K Ke   (11) 
 
 Hence, the nominal basis can be obtained by the resolution of the eigenvalue problem: 
 

 
 

 
0

0 1 2 0 1

0 1, ,

, , ,

i i

NR NR

i N

diag



 

  

    



 

ϕ

ϕ ϕ ϕ ϕ Λ

K M
  (12) 

 
 The basis, 0ϕ , is further enriched by introducing the following residues formed by the static 
displacements associated, respectively, to viscoelastic damping forces and external excitations: 
 
 0 1

0 0v v
  ϕR K K   (13.a) 

 1
0
R K b   (13.b) 

 
where N fR b  is a Boolean matrix which enables to select, among the DOFs, those in which 
the unit excitation forces are applied.  
 The residues (13.a) are interpreted as the columns of the flexibility matrix of the associated 
undamped system, related to the coordinates of application of the viscoelastic damping forces, 
which can be better understood by examining Eq. (8), noting that the term involving the vis-
coelastic behavior can be moved to the right-hand side, where it plays the role of additional forces 
applied to the associated conservative structure.  
 Thus, the enriched basis of reduction for the viscoelastic system is given as: (13) 
 

 0
0 0 v

    ϕT R R   (14) 

 
3.1 Static residual vectors accounting for local nonlinearities 

Local nonlinear behavior can be frequently found in a number of real-word engineering systems 
such as those having mechanical connections and joints. Thus, the objective of this section is to 
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extend the proposed reduction method to viscoelastically damped systems supported by lumped 
nonlinear springs. In this case, the inclusion of nonlinear effects into the global equations of mo-
tion (8) can be easily done by the concept of dyadic structural modifications (Maia and Mon-
talvão e Silva, 1997), in which the loading system exerted by nonlinear springs on the viscoelastic 
system at the node of attachment, nd , can be expressed in the following vector form, by assu-
ming cubic nonlinearity: 
 
      nd nd nd

nl l nd nl ndt t t  f K u K u   (15) 
 
where   1 1 3 3

T

nd x yt u v u v w      u  and   3 3 3 3 3 3 3
1 1 3 3

T

nd x yt u v u v w      
u  are the vectors 

containing the DOFs associated to the node of attachment of the linear and nonlinear contribu-
tions of the nonlinear springs in the global coordinate system. 
 Hence, the global system of equations of motion for the nonlinear viscoelastic system can be 
expressed under the following form: 
 
            e l v vt t t t j t t       

M u K K K u f f f   (16) 
 
where T nd

l l u uK I K I  and T nd
nl nl

 u uK I K I  are, respectively, the diagonal stiffnesses matrices co-
rresponding to the linear and nonlinear contributions, uI  and 

uI  designate the ,u u -th columns 
of the identity matrices of order N , and    nlt t  f K u .  
 For small nonlinearities, Eq. (16) shows that the nonlinear behavior can be understood as a 
perturbation indicated by,  tf , of the linear behavior, and can be view as a modification in-
troduced on the linear viscoelastic system. As a result, the reduction method presented in the 
previous section can be extended to the case of nonlinear viscoelastic systems by a further en-
richment of the reduction basis including normal modes related to the linear conservative associa-
ted system perturbed by the nonlinear springs. These modes can be obtained by the resolution of 
the eigenvalue problem: 
 
   0

0 0 1, ,i i i N  



ϕK M   (17) 
 
where 0 0 l K K K .  

Based on the fact that the vibration modes of the perturbed system does not differ appreciably 
from that of the non-perturbed nominal system, it is possible to assume that, i ϕ 0

i i  ϕ ϕ , 
where, 0

iϕ , designates the modes of the nominal conservative associated system obtained by the 
resolution of Eq. (17), and i ϕ  is the perturbation due to the local nonlinearities which can be 
interpreted as an external load applied on the linear model, 0

iϕ . Thus, a set of static responses 
can be generated:  
  
 1

0


  

ϕ K b   (18) 

 
where N mR 

 b  is also a Boolean matrix which enables to select the nonlinear DOFs in which 
the unit forces are applied and static responses are computed, and m  is the number of nonlinear 
DOFs. 
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 Hence, the final condensation basis taking into account a priori knowledge of the perturba-
tions can be expressed as follows: 
 

 0 1 m
      

ϕ ϕT T   (19) 

 
 The residues,  ϕ , are not necessarily of maximum rank. Thus, with the aim of obtaining a 
limited number of independent residual vectors, it is appropriate to select the dominating direc-
tions of this basis, which can be done by performing the Singular Value Decomposition (SVD) of 
T  to identify its dominant singular values.  
 By considering the basis (19), the equations of motion (16) can be rewritten as: 
 
          0

ˆˆ ˆ ˆˆ
vt t t t j t t     

M u K u f f f   (20) 

 
where ˆ TM T MT , 0 0

ˆ T K T K T ,    ˆ Tt tf T f ,    ˆ T
v vt j t t j t     f T f  and  ˆ t f  

 T tT f  are the reduced matrices and vectors.  
 As will be demonstrated later on, the reduction basis given in Eq. (19) is robust enough to 
provide accurate predictions of the reduced model under the influence of the viscoelastic treat-
ment, external excitations and nonlinear supports. 
 
4 ITERATIVE RESOLUTION PROCEDURE 

Based on the modeling features of the viscoelastic behavior and the presence of local nonlineari-
ties, the resulting nonlinear differential equation of motion (20) were numerically solved using a 
variant of the Newmark integration scheme (Bathe, 1996) performed in the MATLAB environ-
ment.  
 Figure 3 shows the main steps of the numerical procedure which can be summarized as follows: 
(i) at the beginning of the process, 0t , after defining the operating temperature of the viscoelastic 
material, vT , the Newmark integration parameters,  ,  , and the variables  0, , ,E E    for 
FDM model obtained from curve-fitting of experimental data (Galucio et al., 2004), it is possible 
to compute the real and anelastic displacements, velocities and accelerations fields,  0tu ,  0tu , 
 0tu  and  0tu , respectively, and the full mass, M , and stiffnesses matrices  , , ,e v l nl

K K K K  
taking into account the mechanical boundary conditions; (ii) next, an eigenvalue problem is per-
formed according to Eq. (17) in order to extract the eigenvalue modes, 0

ϕ , of the linear conserva-
tive associated system to generate the first basis of reduction to be further enriched by the resid-
ual static vectors associated to the external excitations, 1

0
 R K b , the viscoelastic damping 

forces, 0 1
0 0v v
  

R K K ϕ , the modifications introduced on the viscoelastic zones, 1
0


  

 K bϕ , or 
by the local nonlinearities, 1

0
  

 K bϕ . With the enriched basis of reduction it is possible to 
reduce the system in order to generate the reduced matrices, M̂  and 0

̂K  and vectors, û , û , f̂ , 
ˆ
f  and ̂f ; (iii) next, an iteration is initiated and the loading vectors due to the external loads, 

f̂ , the nonlinear perturbation, ˆ
f , and the viscoelastic damping forces, ˆ

v
f , are evaluated at 

each iteration process. Also, a new set of reduced displacement fields, 1îu , are generated through 
the residues, 1iR , performed according to the Newmark integration scheme, and taking into ac-
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count the reduced matrices, M̂  and 0
̂K ; (iv) in the next step, a new set of reduced velocities, 

1î
u , and accelerations, 1î

u , and the reduced anelastic displacements, 1îu , fields, are generated. 
The iterative process is stopped when the maximum number of iterations is reached with a toler-
ance criterion supported by the Newmark integration scheme. Also, the iterative process is the 
same for linear viscoelastic systems, where 0 0

ˆ ˆˆ
vE  

eK K K  and  ˆ t f 0  are retained in Eq. 
(20). 
 

 
Figure 3: Flowchart of the numerical procedure used to compute the system response. 

 
5 APPLICATIONS TO PLATE TREATED WITH CONSTRAINED VISCOELASTIC LAYER 

In this first application, numerical tests were performed using the representative system shown in 
Fig. 4 composed by a clamped-clamped-free-free rectangular plate made of aluminum, fully 
treated with a layer of 3M ISD112™ (2013) viscoelastic material constrained between the base-
plate and an outer aluminum sheet. The FE model is composed of 140 elements and the viscoelas-
tic treatment is modeled according to the three-layer sandwich plate element developed according 
to Section 2. The geometric dimensions in x  and y  directions are depicted in the same figure, 
and the thicknesses of the base-plate, constraining layer, and viscoelastic core are, respectively, 
1.0 mm, 0.5 mm and 0.254 mm. The material properties for the base-plate and constraining layer 
are: Young modulus E 70×109 N/m2; mass density  2700 kg/m3; Poisson ratio,  0.3. For 
the 3M™ ISD112,  950kg/m3,  0.49, and the parameters of the FDM model can be obtai-
ned by performing a curve-fitting procedure taking into account the viscoelastic material data 
provided in Fig. 2 in terms of storage modulus and loss factor, for a given temperature of the 
viscoelastic material.  
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 The plate is subjected to a harmonic force of the form,    0 0sin 2F t F f t , where 0F  10 N 
is the amplitude of the excitation and 0f  is the excitation frequency, and to a transverse triangu-
lar impulse loading applied to point I  indicated in Fig. 4. The numerical tests were performed in 
the time interval, 0 0 s, 0.35 sft t t      , for an arbitrarily chosen constant time step, t   
0.01 ms, and the computations consisted in obtaining the normalized transverse displacements, 

 310 u t L , associated to point I . 
 

 
Figure 4: Sketch of the sandwich plate with the mechanical boundary conditions. 

 
First, the responses are computed using the full FE model without any condensation. Figures 5 
represents the amplitudes of the normalized transverse displacements of the plate with and 
without viscoelastic treatment due to the applied impulse and harmonic loadings by assuming a 
temperature of the viscoelastic material of 26o C with the following FDM parameters, 0E 1.2817 
MPa, E  454.52 MPa,  5.94x10-7 s and 0.6744  . For the harmonic loading, the excitati-
on frequency ( 0f  76.47 Hz) is close to the first flexural mode of the sandwich plate in which the 
viscoelastic stiffness matrix was computed in the low frequency range by considering the real va-
lue of the modulus, 0E . Also, it was considered a proportional damping computed by the follo-
wing relation, 0.005 D Ke . As expected, as the time increases, the flexural vibrations become 
larger showing the resonance characteristics of the plate for this loading condition. By comparing 
the time-domain responses of the sandwich plate for both input signals, it can be clearly perceived 
that a significantly reduction in the amplitudes of the transverse displacements of the plate is 
achieved, even when the excitation frequency is close to the first resonance.  
 The interest now is to evaluate the enriched basis of reduction by using the static residues 
associated to the external excitations and viscoelastic damping forces. To verify the direct con-
densation procedure, one considers the following nominal basis: 1 0

    T Rϕ (19 eigenvectors, 
plus one residual vector computed by the Eq. (13.b)); 0

2 0 v
    T R Rϕ (19 eigenvectors, one 

residual computed by the Eq. (13.b), 14 residual vectors computed according to the Eq. (13.a) 
after SVD filtering). The residues 0

vR  were computed based on the largest singular values, for 
which the relation, max i   1x106, for i  1 to 14 holds. The interest in examining these situa-
tions is to quantify the improvement entailed by the residual vectors associated to the viscoelastic 
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Figure 5: Transverse displacements of the plate with and without surface viscoelastic treatment due to the applied 

harmonic (left) and impulse (right) loadings. 
 
damping forces and to demonstrate the capability of the time-domain reduction modeling proce-
dure to accommodate such design variants. 
 Figure 6 shows the normalized time responses obtained by using the two nominal bases, as 
compared to the reference displacements computed by using the exact system. It can be clearly 
seen that the accuracy is improved upon enrichment of the reduction basis by the inclusion of 
residual vectors accounting for the static residues associated to the viscoelastic damping forces for 
both input signals, demonstrating that the use of these residues are sufficient to represent with 
accuracy the time-domain behavior of viscoelastically damped structures.  
 

      

      
Figure 6: Transverse displacements of the reference and reduced systems by using the nominal basis 1T  and 2T . 
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As a complementary demonstration of the utility of the proposed condensation strategy in the 
analysis of viscoelastic systems, Fig. 7 shows the amplitudes of the frequency response functions 
(FRFs) of the sandwich plate computed by using the two nominal bases for the impulse loading 
condition, as compared to the amplitudes of the FRF computed for the exact system. Again, Fig. 
7(b) confirms that the use of first order residues associated with viscoelastic damping forces are 
sufficient to represent with satisfactory accuracy the dynamic behavior of the viscoelastic system. 
Moreover, these results provide a sense of the efficiency of the surface viscoelastic treatment in 
mitigating the transverse vibrations of the plate. 
 

      
Figure 7: Amplitudes of the FRFs of the reference and reduced systems by using the nominal basis 1T  and 2T . 

 
5.1 Structural modifications 

In this second application the utility of the time-domain reduction strategy in the analysis of mo-
dified viscoelastic systems is shown. The interest is to evaluate the robustness of the nominal 
basis further enriched to account for small perturbations introduced into the nominal model, ac-
cording to Eq. (19). The modifications considered consist in increasing the thicknesses of the vis-
coelastic and constraining layers of the nominal system in 80%, as indicated in Fig. 4, and the 
exact time-domain responses and the amplitudes of the FRFs of the perturbed system was com-
puted using the modified FE model, as shown in Figure 8. It can be noted that the dynamic 
behavior of the perturbed system does not differ appreciably from that of the nominal system. 
 

      
Figure 8: Time-domain responses and FRFs amplitudes for the nominal and perturbed exact systems. 
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In Fig. 9, the responses of the perturbed exact system in the time and frequency domains are 
compared to the counterparts computed by using the nominal reduction basis 2T  containing 34 
vectors, without further enrichment accounting for structural modifications. The observed diffe-
rences for both domains lead to conclude that this basis is not capable of representing accurately 
enough the changes of the dynamic behavior induced by the structural viscoelastic modifications, 
since the basis 2T  represents with accuracy the behavior of the nominal system, as shown in Fig. 
6. Thus, in a number of real-word engineering applications of passive constraining damping la-
yers, this reduction may be found to be insufficient to provide the necessary representation of the 
dynamic behavior of viscoelastic materials associated to structural variations. In the same figure, 
it is possible to compare the dynamic responses of the perturbed exact system to the counterparts 
computed by using the basis 3 2 

    T RΤ  containing 41 vectors (including 7 SVD-filtered resi-
dual vectors) associated to the structural modifications. This time, one can observe a very satis-
factory agreement between the amplitudes of the dynamic responses of both models. This leads to 
conclude that the reduction basis 3T  is robust enough to represent the response of the perturbed 
viscoelastic system. 

 

      

      
Figure 9: Time-domain responses and FRFs amplitudes for the exact and reduced 

systems by using the basis 2T  and 3T . 
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5.2 Modifications due to local nonlinearities 

In this section, it is considered the same system shown in Fig. 4 subjected to non-linear boundary 
conditions through the application of transverse non-linear springs on the right edge of the plate 
located at x 0.30 m. The non-linear behavior of the springs are computed by the Eq. (15), whe-
re the linear, l l lk K K , and non-linear, nl nl nlk K K , stiffnesses are evaluated by assuming 
the values lk  100 N/m and nlk  1x109 N/m3, where lK  and nlK  are diagonal identity matri-
ces. For the harmonic loading condition, 0F  30 N is the amplitude of the excitation and the 
excitation frequency, 0f  24 Hz, is close to the first flexural mode of the conservative associated 
system in which the stiffness is computed by the relation, 0 0 v lE   

eK K K K . 
 The interest is to evaluate the enriched basis of reduction by using the static residues associa-
ted to the non-linear perturbations by considering the following basis: 0

2 0 v
    T R Rϕ (19 ei-

genvectors, one residual vector computed by the Eq. (13.b), 14 residues computed according to 
the Eq. (13.b) after SVD filtering); 3 2

    T T ϕ  (the basis 2T  and 11 vectors computed by the 
Eq. (18)).  
 Figure 10 shows that a reasonable agreement between the dynamic responses of both models is 
obtained by using the basis, 3T . The agreement is less satisfactory for the reduction basis, 2T , 
leading to conclude that the static residues associated to the local non-linearities is robust enough 
to represent the response of the non-linear viscoelastic system.  
 

      
Figure 10: Time-domain responses of the reference and reduced systems by using the basis 2T  and 3T  for 30 N. 

 
Clearly, it should be reminded that this kind of reasoning is strictly valid for small non-linear 
damped behaviors as, depending on the amplitude of the excitation, the use of a constant enri-
ched basis can only provide rough approximations of exact non-linear behaviors, as shown in Fig. 
11. It can be noted the degree of influence of the non-linear behavior on the prediction: the larger 
the non-linear behavior with respect to a given excitation, the larger the influence of it on the 
accuracy of the reduced model. In this case, the results could possibly be improved by updating 
the reduction basis, 3T , at each iteration cycle to account for the non-linear variations. In general, 
it results in a prohibitive computational time, since a set of updated eigenproblems must be sol-
ved. Another strategy is the so-called Combined Approximations Approach (CA) (Kirsch and 
Bogomolni, 2007) developed originally for linear and non-linear undamped reanalysis. These as-
pects should be considered in future works. 
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Figure 11: Time-domain responses of the reference and reduced systems by using 

the basis 2T  and 3T  for 50 N and 100 N. 
 
6 CONCLUDING REMARKS 

A robust time-domain condensation procedure intended to be used for dealing with linear and 
non-linear viscoelastically damped systems was suggested and evaluated. The original aspects of 
the procedure lies in the adaptation of the concept of robust condensation, initially developed for 
linear undamped structures in the frequency-domain, for systems containing viscoelastic materials 
in the time-domain, and the extension of the proposed methodology to non-linear structures in-
corporating viscoelastic materials with the aim of vibration attenuation. This approach allows 
design parameters of a superelement to be modified, for example in the context of linear and non-
linear reanalysis such as an optimization and/or model updating processes and structural damage 
analysis, without the necessity to perform a complete superelement analysis at each point in pa-
rameter space. Thus, the improved model reduction transformation can be prepared in advance 
and then used directly during the iteration processes to avoid the exact recalculation of the modi-
fied zones.  
 At the present time, the proposed time-condensation process is not constrained solely to the 
dynamic applications discussed herein, and can already be used to approximate reanalysis of li-
near and non-linear behaviors to viscoelastically damped structures in control technology and 
optimization and structural damage analyses where the iterative solutions consist of repeated 
analyses followed by redesign steps. However, it must be reminded that depending on the structu-
ral local perturbations introduced on the viscoelastic zones and the non-linear behavior to be con-
sidered, the proposed time-condensation are no longer valid and the reduction basis must be 
adapted to account for the local perturbations during the iteration cycles. 
 Finally, it is important to pointed-out that that the efficiency of the proposed time-
condensation compared with the complete analysis of the modified viscoelastic systems can be 
measured by the accuracy the dynamic responses, as demonstrated by the obtained results, and 
computational effort. It was found that the CPU effort for the dynamic reanalysis of the modified 
linear viscoelastic systems is reduced by more than 64%, compared with the complete analyses of 
the modified design. For the viscoelastic systems incorporating local non-linearities the total 
computational effort can be reduced by more than 96% for both cases investigated herein. 
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