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Fractomechanics parameter calculus using the Discrete Element
Method with bars

Abstract

The calculus of fractomechanic parameters using computa-

tional numerical methods is still an active area of investi-

gation. Traditionally, the most employed methods are the

Finite Element Method (FEM) and the Boundary Element

Method (BEM). The Discrete Element Method (DEM) with

bars is another alternative, although its usage is not so ex-

tended in the solid mechanic area. DEM success in the simu-

lation of failure mechanisms and defect nucleation motivates

its implementation in fracture mechanic problems. In order

to explore its potentialities in this kind of problems, this work

presents the static and dynamic calculus of fractomechanic

parameters of a modeled plate with DEM. For this purpose

the numerical methodologies used are the same as the ones

employed in the traditional numerical methods, such as FEM

and BEM, as well. The obtained results, compared with the

numerical and analytical results published by other authors,

allow the validation of DEM for such applications where the

fracture process must be doubtlessly taken into account.
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1 INTRODUCTION

The calculus of fractomechanic parameters using computational numerical methods is still

an active area of investigation. One of its technological applications leads to the analysis of

complex geometries and boundary conditions, which, in many cases, is impossible to solve using

the available solutions found in manuals [28]. No doubt that the most extended computational

techniques in this area are the Finite Element Method (FEM) and the Boundary Element

Method (BEM) [2], but there are new methods and techniques developed for the analysis of

specific problems and applications.

In this context it is also of particular interest to count with tools capable of modeling the

unstable crack propagation when the value of associated fractomechanic parameters exceed

their critical values. This phenomenon is traditionally modeled using FEM and BEM based
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on the cohesive surfaces methodology as in the work proposed by Needelman [22] and Aliabadi

and Saleh [3], as well as discrete particular models as in works of Cundall and Hart [8], Munjiza

et al. [21], Brara et al. [6].

As an antecedent of the present approach it is important to mention the pioneer work of

Hrenikoff [15] who proposed to represent the continuum medium through an array of bars with

an equivalent stiffness. More recently Absi [1] developed the same idea carrying out applica-

tions also using a bar arrays of equivalent stiffness to represent an elastic base foundations

and the structural walls in tall buildings. It is also important to point out the works accom-

plished by Cundall [9] that represent the continuum through other kinds of discrete elements

to simulate the mechanic behavior of granular soils in geotechnical problems.

The Discrete Element Method (DEM) with bars used in the present work, has been em-

ployed in civil and soil engineering field, applications can be found in Riera and Iturrioz

[25, 26] (simulation of the behavior of shells subjected to impulsive loading), Schnaid et al.,

[29] (fracture in solid cement foundations on soft sand bed), Dalguer et al., [10] (recreation of

the generation and subsequent spread of an earthquake) and in Rios and Riera [27] (study of

the scale effect in concrete), and more recently in Miguel et al. [20] (in the rock mechanics

behavior).

The success of DEM for modeling failure mechanisms in these fields and its ability to model

defect nucleation motivate their application on problems of fracture mechanics. Thus, in this

work the application of DEM is presented for calculating static and dynamic fractomechanic

parameters in linear elastic fracture mechanic (LEFM) using usual methodologies employed in

classical methods like FEM and BEM. We compare the results with those from the technical

literature. The DEM capacity for capturing the critical situation is also illustrated when the

fractomechanic parameters exceed the toughness of the material. Finally, there is a discussion

about the performance of the employed techniques for measuring fractomechanic parameters

within the context of DEM.

2 THE DISCRETE ELEMENT METHOD

2.1 Basic formulation of the method

The DEM, in the used version, primarily consists of continuous spatial discretization in retic-

ulated regular modules, where the stiffness of bars is defined in such a way to represent the

equivalent continuum. The model mass is discretized and concentrated in the model nodes.

Figure 1 shows a module with eight nodes in their vertices and a central node. Each node has

three associate degrees of freedom given by the spatial components of the displacement field u.

Longitudinal and diagonal elements with length Lc and
√
3/2 Lc respectively join the masses.

In the linear elasticity field Hayashi [14] checks the equivalence between the cubic arrangement

and elastic orthotropic solid with the main axes of the material oriented in the longitudinal

element direction. A restriction should be imposed in the Poisson’s ratio of ν = 0.25 for perfect

equivalence. For other ν values there are slight differences in the shear terms, which can be

ignored, especially when our interest is the nonlinear response of the studied model.
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 Figure 1 a) Core cubic module detail, b) Prism composed of several cubic modules.

When the materials have linear elastic behavior we can express the N degrees of freedom

system motion equation resulting from the spatial discretization as:

M ⋅ ü+K ⋅ u= q(t) (1)

where M denotes the diagonal mass matrix, u and ü represent displacement and generalized

acceleration vectors respectively. On the other hand the vector q(t) contains the applied

external forces. System (1) can be numerically integrated in time domain using a classic

scheme of explicit integration (Method of Central Finite Differences).

It is important to mention that, for the present applications using an implicit integration

would be more adequate, but the calculus of the fracture mechanic parameter through the

present version of DEM is only a way to show the consistency of the present approach. Our

main focus is in modeling critical crack propagation problems because, in this application field,

the present method shows itself competitive when compared with more classic methods (FEM

and BEM), and in the last case an explicit integration approach is undoubtedly the best option

to integrate the motion equation in the time domain.

In the context of DEM there is a way to simulate the fracture and fragmentation of the

model. In this case the constitutive law of the bar has a bilinear shape as presented in Figure

2 where Gf is associated with the toughness of the material and εp is a critical deformation.

This characteristic allows to simulate an unstable crack propagation in a natural way. The

proposed law permits to accomplish a balancing energy during the simulated problem. In the

present paper this characteristic is not used, just an intensity factor coefficient is applied in

subcritical situation. Documented information, about how to simulate fracture with DEM, is

possible to be found in the cited works [10, 20, 25–27, 29].

3 THE FRACTOMECHANICS PARAMETER CALCULUS

Several methods to calculate the Stress Intensity Factor (SIF), not only for the static but also

to the dynamic cases, are known. An excellent recompilation of them is possible to be found

in Aliabadi and Rooke [2].

As it follows, the SIF calculus is presented through the expressions of Irwin of the crack
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Figure 2 Reticulated bars elemental constitutive relationship – a) Adopted constitutive diagram with their

control parameters; b) Loading-unloading scheme.

opening displacement expressions (COD) in the way presented by Aliabadi and Rooke [2].

Other ways of SIF calculus into DEM context are published in Kosteski et al. [18].

3.1 The SIF extrapolation calculated from COD expression.

It is possible to obtain the SIF values from the expressions supplied by Irwin and William as

it is presented in [2]. In equation (2) such expression is shown.

K = δ E

4 + 4ν

√
2π

r
⋅ (1 + ν

2
) = δE

8

√
2π

r
(2)

In (2) r represents the distance between the crack tip and the point where the δ displace-

ment is measured, as it is shown in Figure 3.

Concerning how to take the displacement δ between two points, originally in the same

position but in opposite lips of the crack, it is possible to obtain:

KI = vy
E

8

√
2π

r
(3a)

KII = vx
E

8

√
2π

r
(3b)

KIII = vz
E

8

√
2π

r
(3c)

Where vx, vy and vz are the correspondent displacements with the three modes of fracture

known (mode I, II and III). In a problem where a mode of fracture I is activated as illustrated

in Figure 3, taking into account the axis system indicated in this figure, we can substitute into

equation (3a) vy by δ, obtaining expression (2).
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Figure 3 (a) Tensioned plate with a central crack, (b) Reference scheme for value of r and δ.

In DEM implementation, the relative displacement δ(r) indicated in Figure 3 is measured

at different distances ri near the crack tip. The stress intensity factor is calculated in each

point using the expression (3a), and an extrapolation when distance r tends to zero. In this

way it is possible to liberate the value of stress intensity factor from the adopted discretization.

With the mentioned extrapolation, we can foresee the value for r = 0 through a lineal regression

and with an adjustment of square minimums obtained from known data.

As COD is a local parameter, like K is, if the analyzed problem is dynamic, the elastic

tension waves are implicitly taken into account. Due to this fact, the expressions (2) and (3)

for static and dynamic problems are the same and that is a great advantage.

Many authors have measured the static or dynamic K using the COD as a parameter, they

have used a formula that is similar to the one here shown, and among them we can mention

Fedelinski et al. [12] who present the dual version of the boundary element method, Wen et

al. [32], who use another version of the dual boundary element method, Tabiei and Wu [30]

who work with a finite element commercial package DYNA3D.

This way to determine SIF is also cited by Nishioka [24], Aliabadi and Rooke [2] and

Anderson [4].

4 THE SIF DETERMINATION: APPLICATION EXAMPLES

Results are presented after calculating the static and dynamic SIF, through the COD, as it

was previously commented, implemented in DEM. Different configurations in 2 and 3D are

analyzed and the results compared with the ones found in technical bibliography.

Notice that in the examples here shown there were only calculated the static or dynamic

SIF, without reaching the critical situation. For this reason in all the illustrated examples high

values were considered for critical strain εp and toughness Gf , to avoid the damage of the bar

that compounds the analyzed models.

But as it was cited in the introduction and illustrated in previous work among others

[10, 20, 27, 29], the fracture and fragmentation of the model is very simple to be implemented

in DEM context and this characteristic is the main advantage of these method.
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So the examples here presented have as a goal, that is, to show that DEM simulates

correctly the behaviors foreseen by the Linear Elastic Fracture Mechanics.

4.1 Example 1: Static SIF calculus of circular discontinuity embedded in a large prismatic
block

The SIF value for a circular crack embedded in a large prismatic block, which is submitted to

remote tensile stress applied perpendicularly, is shown in Figure 4.a.

This case has a close solution available in the fracture mechanic classical literature [4]

according to the expression bellow:

KI =
2

π
σ
√
π ⋅ a (4)

The value obtained with (4) will be considered the reference to the DEM results (K0)

shown as follows. So, for the first example in 3D, the normalized SIF for the case studied will

be equal to unity, since:

KI

K0
= 1 (5)

4.1.1 DEM Model

The block was modeled with a discretization of 30 elemental cubic modules in each side, the

circular crack has 5 elemental cubic modules of radius as it is possible to appreciated in Figure

4.b). The total number of degree of freedom (dof) of this model is 170373 (3 dof per node).

In the same figure, the boundary conditions and the detail of node duplication are also

shown in order to improve the crack model, as explained in [18].
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Figure 4 Example of application 1 (a) A circle plane crack embedded in a large prismatic block submitted to
remote tensile stress perpendicularly to its plane. (b) DEM model where the shape of the crack is
indicated, how it was modeled and how the stress was applied.
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Table 1 Material properties for the studied example, and the parameter used in the simulations.

Material properties DEM Parameters

E 2100 MPa Lc 3.00 E−4 m

ν 0.25 ν 0.25

ρ 908 kg/m3 ∆t 1.0 E−8 seg

4.1.2 Obtained results

In Figure 5 the obtained results observed, fluctuated around the theoretical value, taken as

reference. These fluctuations appear because the model is solved in the time domain. It is

possible to reduce the oscillations applying the mechanical boundary conditions (MBC) in a

lower velocity.

The amplitude of this fluctuation can be minimized through a reduction of MBC velocity

application or increasing the damping of the system.

The influence of the discretization was treated in other works as cited above: In Iturrioz et

al. [16] the convergence analysis was performed in a rock block case submitted to pure shear

load; In Tech et al [31] the convergence analysis was accomplished in a 2D example where a

FIT vs. crack length was computed.
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Figure 5 Results in terms of normalized SIF for the Example 1.

In the present work a convergence study was performed in one of the examples shown (see
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item 4.3), where the invariance of the results for different levels of discretization in terms of

dynamical SIF parameter is illustrated.

In Figures 6 (a) and (b) the vertical stress (σyy) is possible to be observed for the two cuts

carried out in the block; the first one is perpendicular to the crack plane, which passes through

the middle of the block, the second one passes through the crack plane.

In the second cut, perturbations can be observed in the stress values near the crack. These

perturbations are associated with the level of discretization used.

It is very important to remember that the DEM primary unknowns are the displacement

and nodal forces. These unknowns are associated with the discontinuing nature of the model.

The equivalent stress or strain can be obtained with a post-process routine computing the

result nodal forces associated to each elemental cubic module. Details about how to compute

the stress through elementary cubic modules are documented in [5].

4.2 Example 2: Static K for an elliptical plane crack embedded in a large prismatic block

The SIF for the case of elliptical plane crack embedded in a large prismatic block also has a

theoretical solution [4].  
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Figure 6 (a) Perpendicular cut and (b) the crack plane cut . In both cases the vertical stress was mapped σyy

(Pa).

In Figures 7(a) and (b) the iso-stress surfaces are illustrated and they show a 3D stress

distribution image near the crack border. Figure 7 (b) shows the iso-stress into the yellow

iso-stress surface, shown in Figure 7(a).
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Figure 7 Scheme of the iso-stress surface σyy (Pa). Figure (b) shows the red iso-stress surface into the yellow
iso-stress one shown in (a).

4.2.1 DEM Model

The DEM model of example 2 was discretized with 30 elemental cubic modules in the width

(2W), the same quantities of cubic modules in the height and 15 modules in the thickness (t).

The crack was discretized with 10 modules in the mayor axis (c) and 7 modules in minor axis

(a). In the present case the total dof is 88116, (taken into account that the fissure nodes are

double nodes).

The SIF in the minor axis direction (θ = 90○) was calculated.

The boundary conditions are shown in Figure 8, a uniform tensile was prescribed in the

superior side of the block and all displacements were fixed in the inferior side of the block.

The tensile stress was applied with a low velocity to minimize the inertial effects in the results

and, in this way, the obtained result can be considered as static. The material properties of

the example modeled are the same as in example 1, see table 1.

Figure 8 indicates the geometric characteristic of example 2.

Using a classical expression shown in the bibliography [4] the result of example 2 is presented

in (6), in a dimensional way. The reference used to normalize the results was given in the

expression (4) (SIF for the plane circular crack embedded in a large block).

KI

K0

ϕ=90o

= 1.549 (6)

4.2.2 Obtained results

Using the COD and measuring the displacement in a coincident plane with the ellipse minor

axis, the results obtained are shown in Figure 9. In this Figure it is possible to observe a good

correlation between the obtained values with DEM and the theoretical value illustrated in (6).
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In Figure 10 a frontal view (a) and two cuts (b) and (c) are shown, perpendicular to the

crack plane, and coincident to the crack plane respectively. In this figure it is possible to

observe the distribution of the vertical stress and the stress concentration generated in the

crack border.  
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Figure 8 The geometric configuration where the dimensions and boundary conditions details are indicated.
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 Figure 9 Normalized SIF measure in the direction of the ellipse minor axis vs. applied tensile stress.
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Figure 10 Iso-stress map σyy (Pa), (a) Frontal view, (b) perpendicular to the crack plane cut, (c) Coincident
to the crack plane cut.

In Figure 11 a three-dimensional map of iso-stress σyy is shown. This figure shows clearly

the distribution of stress around the discontinuity.

As it follows, examples in 2 and 3D show where the dynamic SIF was evaluated. 
 

 

 

 Figure 11 Three-dimensional scheme of the surface of iso-stress σyy (Pa) in the example 2 (large prismatic
block with a plane semi-elliptical crack).
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4.3 Example 3: Dynamic SIF calculus for a rectangular plate with a central crack inclined
45○

The present example concerns about the dynamic SIF determination of a rectangular plate

with a central crack inclined 45○. It is a problem with a mixed fracture mode, therefore SIF

can be decomposed in two characteristic modes (Mode I and II). The plate is dynamically

excited in the axial direction following a Heaviside function with the spatial uniform stress

from t = 0. The material of the plate is considered elastic linear and its properties are: E

=200000 MPa, ν = 0.3, ρ = 5000 kg/m3 and Gc = 300 N/m.

The geometric characteristics of the analyzed problem are shown in Figure 12 (a) and the

accomplished discretization with DEM in Figure 12 (b).
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Figure 12 Scheme of the studied plate. (a) geometric characteristics of the cracked plate (dimensions in mm),
(b) the DEM model.

4.3.1 DEM Model

The example 3 is modeled through DEM using different types of discretizations. All models

have only one module of thickness and the displacements in the perpendicular direction of the

plate in all its nodes were restricted to simulate a plane strain condition. Details of how the

crack was modeled, doubling its nodes, and how the loads were applied are shown in Fig.12

(b). Table 2 indicates the different discretizations utilized for this analysis, being in all of

these: ν = 0.25, and ∆t = 1.0 E−8 s.
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Table 2 Different discretizations and dof utilized for the example 3.

Lc Modules Degrees of freedom

Model A 1.25 E−3m 25 x 49 4784

Model B 1.00 E−3m 31 x 61 7420

Model C 2.50 E−4m 121 x 241 116080

Model D 2.00 E−4m 150 x 300 181100

Model E 1.25 E−4m 241 x 481 462560

4.3.2 Obtained results

Figure 13 a) shows the values of SIF in Mode I and Mode II normalized with K0 = (σ ⋅
√
π ⋅ a)

vs. time, obtained through COD in the context of DEM. In Figure 13 b the results are shown

together with the ones from other authors, that is: Dominguez and Gallego [11] that used the

BEM in time domain and Krysl and Belytschko [19] that used the Galerkin’s method. It is

possible to observe that the DEM results have a good correlation with the ones from other

authors, taken as reference.
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Figure 13 Results in terms of dynamic normalized SIF for Mode I (KI) and for Mode II (KII).

The little influence of the discretization is shown in Figure 13 (a) where results A to E

models of this example are illustrated.

In Figure 13 b) it can be observed that before the longitudinal wave arrives at the crack

tip, that is, when t < 3.6µs, the SIF value is zero. The maximum SIF value coincides with the

time in which the Rayleigh wave, that comes from the farthest border, reaches the crack tip

at 9.5 µs.

In Figure 14 a detail of the maximum main stress near the crack tip for a time of 12µs is

shown.

Latin American Journal of Solids and Structures 6(2009) 301 – 321



314 L. Kosteski et al / Fractomechanics parameter calculus using the Discrete Element Method with bars

 

 

 
 Figure 14 Detail of stress distribution in the crack tip [Pa] in terms of maximum main stress at 12µs.

In Figure 15 a set of graphs that represents the distribution of the maximum main stress on

the cracked plate, for different times of the simulated process, is illustrated. It can be observed

how DEM captures the behavior of the elastic waves, that in the beginning of the process up

to t = 3 µs, move parallel to the border where the external stress was applied.

After t=3.6 µs a stress concentration in both crack tips can be perceived, with maxima

values between 12 to 15µs. From this region on the stress in the crack tip begins to decrease

following the shape indicated in Figure 15 in terms of normalized SIF.

4.4 Example 4: dynamic SIF calculus for a plate with a border crack inclined 45○

The example 4 corresponds to a rectangular plate with a 45○ inclined border crack. In Figure

16 a) its layout is shown. On the plate an external stress is applied with uniform spatial

distribution and following a Heaviside time function up to t=0. The material properties are:

Shear Modulus 29.4 GPa, the Poisson’s ratio 0.286 and the density is 2450 Kg/m3.

4.4.1 DEM Model

The plate modeled in DEM in the example 4 has 220 elemental modulus of height, 160 modules

of width and only one modulus of thickness (it is considered the plane strain condition). In

the present case 142072 dof were used taking into account the double nodes in the crack.

In the present example it was necessary to use a very refined discretization to obtain a

good accurate result in terms of SIF vs. Time. This problem doesn’t present symmetry. For

this reason the elastic waves reach the crack in a more complex form and it is mandatory that

a more dense discretization than in the previous examples be utilized in order to obtain good

results through COD method.

In Table 3 the material properties are shown for the studied example and also the DEM

Latin American Journal of Solids and Structures 6(2009) 301 – 321



L. Kosteski et al / Fractomechanics parameter calculus using the Discrete Element Method with bars 315 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
12 µs 15 µs  9 µs  6 µs  3 µs 18 µs 21 µs 

0 3 6 9 12 15 18 21 24

-0.5

0.0

0.5

1.0

1.5

2.0

 K
I
/K

0
 DEM: Crack Opening Displacement

 KII/K0 DEM: Crack Opening Displacement

K
d/K

0

t (µs)

Figure 15 The normalized mode I and II SIF vs. time and the main maximum stress map (Pa) for the example 3.
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Figure 16 a) Layout of example 4( plate with a inclined border crack)[mm] .b) Model implemented in DEM.
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parameters used.

Table 3 Properties of the material for the studied example and DEM parameters used in the present simulation.

Material Properties DEM Parameters

E 75.6 GPa Lc 2.00 E−4 m

ν 0.286 ν 0.25

ρ 2450 kg/m3 ∆t 1.0 E−8 seg

4.4.2 Obtained results

The curves KId and KIId vs. time obtained using the COD for the SIF calculus are shown in

Figures 17 a) and b) with the results obtained by Dominguez and Gallego [11] who used BEM

in the time domain, Kishimoto et al. [17], who applied FEM and by Fedelinsky et al. [12] who

used another version of BEM. A good correlation between DEM results and the references can

be observed.

The correlation between the elastic wave distribution and the curve SIF vs. time at different

times are illustrated in Figure 18. In this Figure it is possible to observe that up to t1 = 3.61

µs, the SIF value is null (where t1 is the time taken by p wave to reach the crack tip from the

border, where the stress was applied).

The interaction between the elastic waves and the boundary conditions characterizes the

shape of the KI , KII vs. time curves.

There is no symmetry in example 4, neither in the geometry configuration nor in the

boundary conditions applied on the plate. This situation produces a very complex interaction

between the elastic waves that are generated by the applied stress and, despite this, the

obtained results with DEM have a very good correlation with the references.

4.5 Example 5: The dynamic SIF for an elliptical crack embedded in a rectangular block

A last example of a dynamic SIF calculus in an elliptical crack embedded in a prismatic block

is shown. The body is submitted to a remote axial stress with Heaviside function where

time is t>0. Figure 19 presents the geometry and boundary conditions of the model, plus the

dimension and the position of the elliptical discontinuity.

The material used was linear elastic considering an elasticity modulus of 200Gpa, and

Poisson’s ratio of 0.298 and density of 7900 Kg/m3.

4.5.1 DEM model

The DEMmodeled body is composed by 122 modules of height, 72 of width and 48 of thickness.

The material properties and the main DEM parameters used in the simulation are summarized

in table 4. In the present example 2584809 of dof were necessary to build this model.
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Figure 17 The dynamic normalized Example 4 SIF for the Mode I (KI) and for the Mode II (KII) . 
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Figure 18 Stress distribution in terms of maximum main stress (Pa) and its relationship with the SIF vs. time
curve.
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σ0

 
 Figure 19 The elliptical crack embedded in a prismatic block, isometric scheme of DEM model, and details of

the cracked plane. The dimensions are in mm.

4.5.2 Obtained results

The normalized SIF regarding to the value obtained with equation (4) in the minor axis of

the ellipse is shown in Figure 20. In this figure the normalized SIF is graphicated vs. time

and compared with other authors’ results: Guo and Nairn [13], who used the Material Point

Method (MPM); Nishioka [23], the FEM; and Chen and Wilkens [7] the Finite Difference

Method (FDM).

Table 4 Material properties and DEM parameters used in the simulation of the Example 5.

Material Properties DEM Parameters

E 200 GPa Lc 2.50 E−3 m

ν 0.298 ν 0.25

ρ 7900 kg/m3 ∆t 1.0 E−7 seg

As it can be observed from Figure 20 the obtained result with DEM are in correlation with

the reference.

In the present example, times that are shorter than t1 = 27 µs, (time in which the elastic

waves reach the lips of the elliptical crack), the SIF value is null.

Some waves reflect on the block borders and reach the lips crack at 41 µs. At this time the

first peak in the SIF vs. time curve appears (see Figure 20).
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Other characteristic point in the SIF vs. time curve of Figure 20 is t2 = 47 µs, that

corresponds to the time in which the s waves reach the crack lips. At this time a valley in

Figure 20 occurs.

The SIF vs. time curve peak is found when the p waves that reflect in the extreme border

parallel to the crack plane reach the lips of the crack at t3 = 2, t1 = 54µs, as it is possible to

observe in Figure 20. After this point it is too difficult to follow the correlation between the

motion elastic waves and the SIF values.
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Figure 20 Dynamic SIF normalized by the Mode I (KI).

5 CONCLUSIONS

In the present work several applications are shown where the static and dynamic SIF for several

geometries are calculated in 2 and 3 dimensions. The results shown are compared with other

authors’ results.

In cases where the dynamic SIF was calculated, the interpretation of SIF vs. time curve

was carried out.

During the present work it was possible to conclude that:

– DEM is able to obtain static and dynamic SIF values as it was shown in several examples

here presented comparing the DEM results with other results.

In the present paper we do not intend to show DEM as an alternative way to calculate the

static and dynamic SIF because DEM has hard restrictions to model complex geometries.

The field in which DEM can be competitive among other classical methods like FEM and

BEM is in the simulation of unstable crack propagation and in the simulation of the rupture

process in quasi fragile materials.
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It is possible to conclude that DEM has the capacity to measure the static and dynamic

SIF in 2 and 3 dimensions. And it also lets the stress distribution be captured in all simulated

process.
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1979.

[10] A. Dalguer, K. Irikura, and J.D. Riera. Generations of new cracks accompanied by dynamic shear rupture propagation
of the 2000 tottori (japan) earthquake. Bulletin of the Seismological Society of America, 93:2236–2252, 2003.

[11] J. Dominguez and R. Gallego. Time domain boundary element method for dynamic stress intensity factor computa-
tions. Int. J. Num. Meth. Engng, 33:635–647, 1992.

[12] P. Fedelinski, M.H. Aliabadi, and D.P. Rooke. The dual boundary element method in dynamic fracture mechanics.
Engineering Analysis with Boundary Elements, 12:203–210, 1993.

[13] Y.J. Guo and J.A. Nairn. Three-dimensional dynamic fracture analysis using the meterial point method. Tech
Science Press, CMES, 1(1):11–25, 2006.

[14] Y. Hayashi. Sobre um modelo de discretização de estruturas tridimensionais aplicado em dinâmica não linear. Master’s
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