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Abstract 
This paper addresses the Caughey Absorbing Layer Method (CALM) 
performance in the one-dimensional problem and its implementation in 
commercial software, with possibility of direct extension to two-
dimensions. The adequacy and numerical efficiency is evaluated using 
three different error measures and five different variations of the 
damping profile. Other parameters that are subjected to evaluation are 
the length of the absorbing layer in relation to the wavelength to 
absorb, the value of the loss factor at the end of the absorbing layer, 
and the ratio of the load to layer frequency. 
The problem is firstly analysed theoretically, resulting in estimates for 
the wave reflection due to transition and truncation of the model. In 
order to confirm that no spurious waves will be present in the finite 
element solution, the numerical implementation is validated by com-
parison with the analytical solution. 
The analysis of the error measures on the numerical results obtained 
for various combinations of the model’s parameters lead to the conclu-
sion that CALM is effective at mitigating waves reflected from the 
boundaries. The optimum loss factor as a function of the ratio of the 
length of the absorbing layer to the wavelength to absorb is deter-
mined through parametric analyses. Although the optimal damping is 
frequency dependent, it was shown that the CALM’s effectiveness can 
be extended to a wider range of frequencies by increasing the smooth-
ness of the damping profile. 
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Elastic wave propagation; finite element method; absorbing boundary 
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1 INTRODUCTION 

One of the most significant difficulties in the numerical study of elastic wave propagation in solids, 
particularly when using the finite element (FE) method (see Hughes (1987)), is the difficulty to 
simulate semi-infinite or unbounded domains. 
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 For example, in the analysis of soil vibrations, the soil region is neither confined to a closed 
space nor isolated from the surroundings. This means that modelling the area of interest without 
special considerations will result in reflections of the elastic waves at the boundaries of the model. 
These reflections will become superimposed with the actual solution, making it inaccurate. As the 
waves are locked inside the finite domain, the energy is not released as it happens in reality. 
 In an analytical analysis, it is common to admit the soil as a semi-infinite medium. This ap-
proach was employed by Boussinesq, who studied the stresses on the soil due to a static load (see 
Karol (1960)). Since the domain of most numerical methods must be itself finite, various truncation 
techniques have been proposed over the last decades, such as: (i) local absorbing boundary condi-
tions (Lysmer and Kuhlemeyer, 1969; Lindman, 1975; Engquist and Majda, 1977, 1979); (ii) the 
boundary element method (Banerjee and Butterfield, 1981); (iii) the infinite element method (Bet-
tess, 1977); (iv) absorbing layers, including Perfectly Matched Layers (PML, Bérenger (1994)) and 
the Caughey Absorbing Layer Method (CALM, Semblat et al. (2011)). 
 The local absorbing boundary conditions are among the simpler methods. They are implemented 
as dampers at the boundary, whose properties are derived from changing the wave equation to ad-
mit only outgoing waves. The Lysmer-Kuhlemeyer boundary in particular uses damping coefficients 
that are proportional to the mass density of the medium and the speed of the waves to absorb. The 
rate of absorption depends on the angle of incidence of the wave, and is usually tuned to perfectly 
absorb only at normal incidence. Although effective for simple problems, absorbing boundaries may 
lead to instabilities at discontinuities (such as layers with different mechanical properties). Fur-
thermore, in order to avoid rigid body motion, these boundary conditions must be complemented 
with additional elements, like springs, whose stiffness is difficult to estimate. 
  The boundary element method changes the nature of the numerical problem, from a volume 
discretisation to a boundary discretisation. This requires a fundamental solution that satisfies the 
appropriate conditions at infinity. For dynamical problems, the Sommerfeld’s radiation condition is 
used, which states that “the energy … radiated from the sources must scatter to infinity; no energy 
may be radiated from infinity into ... the field” (Sommerfeld, 1949). Although the BEM is very ro-
bust, the computational cost is much higher than traditional FE – for many problems where the 
surface to volume ratio is high, the boundary method may be less efficient than volume-
discretisation methods (see Katsikadelis (2002)). 
 The infinite element method is closer to the traditional FE approach. It consists in modelling the 
interior domain with conventional finite elements and, at the model’s boundaries, introducing ele-
ments with special shape functions. These special shape functions grow without bound as the coor-
dinate approaches infinity, therefore simulating an infinite element. Unfortunately, only some com-
mercial FE programs include this formulation. 
 Absorbing layer methods have been widely used since the introduction of the PML by Bérenger 
(1994), based on previous absorbing layer formulations (e.g. Holland and Williams (1983)). The 
absorbing layer method applies a layer of material with some damping capability at the boundaries 
of the medium of interest. Waves behave normally inside the original medium, but decay as they 
travel inside the absorbing layer, attenuating or preventing reflections at the boundaries of the 
model. However, some reflection is expected to occur at the interface between the normal medium 
and the absorbing layers, due to the material discontinuity. 
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 The PML in particular can be implemented with a complex coordinate stretching (see Chew and 
Weedon (1994)). The analytical formulation does not introduce reflections at the interface between 
the two materials (hence perfectly matched), but this property is partially lost after discretisation. 
The main drawback of the PML is that its implementation is not straightforward, particularly in 
the time domain – it requires a split-field formulation or convolution operations. This makes it diffi-
cult to use in FE commercial software. 
 The CALM, proposed by Semblat et al. (2011), is not perfectly matched, but much simpler to 
implement than the PML. The absorbing layer has the mechanical properties of the medium of 
interest, but exhibits Caughey (or Rayleigh) damping tuned to ensure that the rate of absorption 
for the desired frequency is above an arbitrary value. It has the advantage of being intrinsically 
multi-directional, unlike local absorbing boundaries and the PML. Since it only requires manipula-
tion of the FE damping matrix, it can be easily implemented in FE commercial software. The au-
thors have found promising results in the implementation of the CALM in the commercial FE soft-
ware Ansys (see Kohnke (1999)) using an implicit dynamics formulation for one- and two-
dimensional plane-stress problems (presented in Rodrigues and Dimitrovová (2014)). 
 In the present paper, the authors implement the Rayleigh formulation of the CALM in the 
commercial FE software Ansys, using implicit time integration, for a one-dimensional plane-strain 
problem. The model is subjected to a displacement in one of its extremities, which follows a wavelet 
function with a well-defined dominant frequency, and therefore the wavelength inside the medium is 
also well-defined. The CALM’s performance is analysed using three different error measures: the 
maximum amplitude of the reflected waves, the maximum L2-norm of the reflected waves, and the 
time integration of the L2-norm of the reflected waves. 
 It is observed that the optimum properties for the absorbing layer require a compromise between 
reducing round-trip and transition reflections. In this context round-trip reflection refers to the 
waves reflected at the end of the absorbing layer and transition reflection represent the waves that 
reflect at the interface between the medium of interest and the absorbing layer. 
 Round-trip reflection can be reduced simply by increasing the damping in the layer, but this 
increases transition reflection. To mitigate this problem, the damping is introduced smoothly along 
the layer. Different variations of the damping profile are tested (constant, linear, quadratic, cubic 
and exponential) and their efficiency is compared. It is concluded that a variable damping profile 
leads to less reflections than constant damping across the absorbing layer. The linear variation is 
the most efficient for short layers, while the quadratic is best for long layers. 
 For each damping profile, a parametric optimization is performed to obtain the optimum loss 
factor at the end of the layer as a function of the dimensionless ratio of the length of the absorbing 
layer to the wavelength to absorb. From this process, empirical estimates for the optimum loss fac-
tor are proposed and shown to fit the numerical results almost perfectly for most cases. These for-
mulas can be used to tune the CALM for different problems, as long as the wavelength to absorb 
can be estimated. 
 Lastly, a sensitivity analysis is performed to determine how a difference between the frequency of 
the load and the frequency that the CALM is tuned to absorb affects the results. Unlike Semblat et 
al. (2011) suggested, the efficiency of the CALM does not increase with this difference, due to a 
higher transition reflection coefficient. However, it is seen that the higher order damping profiles are 
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less sensitive to this discrepancy, and may be a better choice for problems were a wide range of 
frequencies is present, or were the predominant frequency is not known. 
 In brief, the new contributions of this paper are: (i) previously unpublished analytical estimates 
for the effectiveness of the CALM, which support the empirical observation that a compromise be-
tween round-trip and transition reflections must be found; (ii) implementation of the CALM in 
Ansys implicit dynamics module (in particular the variable Rayleigh damping); (iii) empirical esti-
mates for the optimum loss factor as a function of the ratio of the layer’s length to the wavelength 
for various damping profiles, which can be used to tune the CALM for different problems; (iv) 
demonstration of how the CALM’s effectiveness can be extended over a wider range of frequencies 
by employing a smoother damping profile. 
 The paper is organized in the following way: in section 2, the theoretical principle behind the 
CALM is presented, theoretical values for the reflection coefficients are proposed, and the solution 
by modal superposition is discussed. Section 3 details the implementation of the CALM in the FE 
commercial software Ansys, which is then validated by comparison with the solution by modal su-
perposition; the error measures are presented and then used to perform a parametrical optimization 
of the CALM parameters; lastly, a sensitivity analysis is performed. Section 4 summarizes the re-
sults and discusses future work. 
 
2 THE CAUGHEY ABSORBING LAYER METHOD 

The Caughey Absorbing Layer Method was proposed by Semblat et al. (2011) as a simple and reli-
able alternative to the Perfectly Matched Layer (PML). 
 Like other absorbing layer methods, the CALM consists in defining an absorbing layer at the 
boundaries of the elastic medium under consideration. This absorbing layer is modelled with the 
same elastic properties as the interior medium, but damping is added to attenuate all waves that 
leave the interior domain. Unlike the classical formulation of the PML, the CALM presents multi-
directional attenuating properties. 
 To ensure that the absorbing layer exhibits the desired behaviour, the damping properties must 
be carefully chosen to apply an adequate level of attenuation to the relevant frequency. 
 
2.1 The Rayleigh damping formulation 

One of the simplest ways to define damping in FE analysis is to consider the Rayleigh formulation 
(see Liu and Gorman (1995)), where the damping matrix (C) is assumed to be a linear combination 
of the stiffness (K) and mass (M) matrixes: 
 
   C M K   (1) 
 
  and   are known as the Rayleigh coefficients. 
 This approach is convenient because FE methods already require the assembly of the mass and 
stiffness matrices. 
 It is well known (see, for example, Clough and Penzien (1993)) that the loss factor (  , the ratio 
of energy dissipated to the energy stored in the system for every oscillation) is approximately dou-
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ble the damping ratio (  , the ratio of the damping coefficient to the critical damping coefficient), 
which, for Rayleigh damping, relates to the frequency of excitation ( ) and to the Rayleigh coeffi-
cients: 
 
 2          (2) 
 
Following Semblat et al. (2011), the loss factor will reach minimum when the frequency of excita-
tion is 
 

 0
d

d

 


 
     (3) 

 
 Since this is the minimum absorption possible, if the Rayleigh coefficients is defined to get a 
desired loss factor min  for a certain frequency r , all excitations will be damped at least as much 
as the value defined. As the frequency of excitation moves away from r , the more the damping 
will be felt (see Figure 1). 
 

 
Figure 1: Loss factor curve for the Rayleigh damping (based on Semblat et al. (2011)). 

 
The Rayleigh coefficients that correspond to min  are obtained from Equations (2) and (3): 
 
 2,  2min r min r         (4) 

 
 Conversely, given a particular frequency i , the loss factor associated with it can be obtained 
from Equations (2) and (4): 
 
    min 2i i r r i          (5) 
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 Semblat’s approach is to define the frequency of minimum attenuation, r , as being equal to the 
predominant frequency of the waves to absorb. In theory, this method ensures that all waves will be 
attenuated at least by a factor proportional to min . The Rayleigh damping coefficients to adopt 
are then calculated using Equation (4) for the predominant frequency and the desired minimum 
attenuation. However, this does not take into account that when the waves travel from the medium 
into the absorbing layer, the sudden introduction of damping causes reflections, the amplitude of 
which increases with the intensity of damping. This phenomenon will be discussed over the next 
sections. 
 
2.2 Absorbing layer properties 

The CALM formulation presented above allows the application of an arbitrary minimum factor of 
attenuation to all vibrations in the selected medium. The minimum value of attenuation to apply 
( min ) and the frequency to which apply it ( r ) are choices that depend on the particular problem 
being studied and how that problem is modelled. 
 The case study presented in this paper is that of a semi-infinite rod: a one-dimensional medium 
with one free end and that extends to infinity. An excitation is applied at the free end, producing 
waves that travel along the semi-infinite medium. Since this excitation has a well-defined dominant 
frequency, f , the wavelength   can be obtained from the frequency and elastic properties of the 
medium. As usual, small displacement theory is adopted. 
 The infinite nature of this problem can be avoided by modelling a finite rod with an absorbing 
layer ending in a Dirichlet boundary, as shown in Figure 2. 
 

 
Figure 2: One-dimensional model with CALM (based on Semblat et al. (2011)). 

 
The rod is assumed to be homogeneous, with Young modulus E  and mass density  . The length of 
the medium of interest is h , and the length of the absorbing layer (L ) is defined as a multiple (a ) 
of the wavelength ( ) produced by the excitation. This wavelength is a function of the pressure 
wave speed ( Pc ) in the medium and the frequency of the excitation ( f ): 
 
 2 P fc     (6) 
 
where the pressure wave speed is defined as: 
 
 Pc E    (7) 
 
 It is not necessary for a  to be an integer, it can be any positive real number, so the length of 
the absorbing layer, L , can also be any positive real number. 

L = a λ h 

y E, ρ, η(y) E, ρ x 
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 The loss factor of the absorbing layer,  y , is a function of the distance from the interface be-
tween both media, y . This loss factor can either be constant (  y   for 0,y L    ) or increase 
monotonically along the layer, from no damping to maximum damping (  y : 0, 0,L        ). The 
Rayleigh damping is then applied according to Equation (4). 
 It has been noted (Oskooi, 2008; Oskooi et al., 2008; Oskooi and Johnson, 2011) that absorbing 
layers, like PMLs, perform better when a variable absorbing profile is defined. The smoothness of 
the variation was also found to influence their effectiveness. This is a result of the presence of two 
sources of reflection in the model: round-trip reflections and transition reflections. 
 Round-trip reflection occurs because the absorbing layer never absorbs completely the incoming 
waves. As the waves travel along the layer, their amplitude decreases exponentially according to the 
loss factor, but they still reflect of the boundary condition and travel back into the medium of in-
terest – hence the “round-trip” designation. 
 Transition reflection occurs wherever there is a change of the properties of the medium of propa-
gation. The steeper the variation, the higher the reflection will be. This is the case at the interface 
between the medium of interest and the absorbing layer when the loss factor is constant. This prob-
lem is mitigated when the loss factor increases gradually along the layer. 
 Although Semblat et al. (2011) tested the effectiveness of the CALM numerically and found that 
maximizing its effectiveness required finding a compromise between minimization of both types of 
reflections, no theoretical justification for this observation was provided. 
 
2.2.1 Analytical solution by modal superposition 

The problem of wave propagation in a single dimension due to an applied force at 0x   can be 
expressed using the following differential equation: 
 
            2 , , ,Pc u x t u x t b x u x t P t x         (8) 
 
where  ,u x t  is the displacement of the medium at the position x  at time t ,  b x  is the viscous 
damping,   is the mass per length of the medium,  P t  is the magnitude of the force over time 
and  x  is the Dirac delta function.  
 This problem can be solved by modal superposition, expressing the solution as the sum of an 
infinite number of functions:  
 

      
1

, i i
i

u x t v x q t




    (9) 

 
where  iv x  is known as the i -th undamped vibration mode and  iq t  is the corresponding gener-
alized coordinate. For the boundary conditions shown in Figure 2 (free end at 0x  , no displace-
ment at x l h L   ), the vibration modes are: 
 
      cos ,  2 1 2i i P i Pv x x c c i l       (10) 
 
where i  is the i -th undamped natural frequency. The generalized coordinates are the solutions to 
the system of equations 
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               
2

1 0

1 2
d ,  1,2,...,

l

i j i j i
j

q t q t b x v x v x x q t P t i
l


 





         (11) 

 
 If the damping is constant over the medium (  b x b ), then all equations are independent: 

 
        2

,2 2 ,  ,  2 ,  1,2,...,i i i i i i cr i cr iq t q t q t P t l b b b i               (12) 

 
 In the case of the CALM, the damping ratio i  for each frequency must be obtained from Equa-
tion (5). 
 Equation (12) allows one to obtain exact generalized coordinates for any desired mode. The sys-
tem of equations (11), on the other hand, has to be solved numerically for a finite number of modes. 
In both cases an approximate solution is obtained by modal superposition. In the first case, if fur-
ther precision is needed, one can solve Eq. (12) for higher modes and update the solution. In the 
second case, if higher modes are needed, the entire system of equations must be solved again. 
 In the case of the CALM the damping is not constant over the length of the medium, and there-
fore the system of equations (11) must be solved numerically. 
 
2.2.2 Theoretical reflection coefficients 

In the study of the phenomenon of reflection it is useful to introduce the concept of the reflection 
coefficient: the ratio between the amplitude of the reflected waves and the amplitude of the incom-
ing waves (see Chapman (2004)). Although analytical expressions for the reflection coefficients asso-
ciated with the PML have been published by Oskooi (2008), no such formulas exist yet for CALM. 
 The round-trip reflection coefficient can be approximated by considering how much damping the 
waves are subjected to while traveling through the absorbing layer. By analogy with a single degree 
of freedom oscillator, it is assumed that the amplitude of the waves decays exponentially due to 
damping. This assumption was supported by the analytical solution of a rod with constant damping 
subjected to a sinusoidal force on the free-end (solving Equation (12) for    sin fP t t ).  
 The logarithmic decrement (  ) expresses the decrease in amplitude per cycle of oscillation, and 
is a function of the damping ratio  , which is itself a function of the loss factor  (Equation (2)): 
 
 2 22 1 1 4          (13) 
 
 If the characteristics of the wave are known, it is possible to express the variation of the loga-
rithmic decrement over the length of the absorbing layer as a function of  y , since a cycle of 
oscillation occurs over the distance of a wavelength: 
 

      2d
1 4

d d yy y
y




 
     

  (14) 

 
where  d y  is the modified wavelength due to the presence of damping. This value can be ob-
tained by considering the theoretical expression for the damped frequency: 
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    221 1 4d d y y            (15) 
 
which leads to the damped wavelength:  
 

    
 2 d

1 4
dd

y

y
yy


 


      (16) 

 
 Since the waves must travel twice the length of the layer before returning to the medium of in-
terest, the total decrease in amplitude after the round trip can be obtained by integrating (16) over 

0,y L     and multiplying by two. If one expresses the variable loss factor as the product of   by a 
dimensionless damping profile  s z : 0,1 0,1        
 
    ,  y s z z y L     (17) 
 
the loss factor becomes: 
 

      

1 1

0 0
2 d 2 d

L
s z z a s z z    


     (18) 

 
 Equation (18) shows that the loss factor is proportional to the area of the damping profile. 
 A typical damping profile for absorbing layer techniques is a simple monomial equation of degree 
d  (   ds z z , 0d  ), for which the loss factor is: 
 
  2 1a d      (19) 

 
 Since the amplitude of the waves decays exponentially, the round trip reflection coefficient is 
 
 2 1a d

RTR e
     (20) 

 
 It is evident from Equation (20) that increasing both the loss factor (  ) and the relative length 
of the layer (a ) reduces the amplitude of the reflected waves (by increasing the integral of the 
damping profile). Increasing the degree d of the damping profile increases the amplitude of the re-
flected waves (it reduces the integral of the damping profile). However, increasing d  leads to a 
smoother damping profile, which reduces the transition reflection (see Oskooi (2008)). 
 Transition reflection can also be estimated theoretically. For a P-wave at normal incidence, it is 
well known (see Lowrie (2007)) that the transition reflection coefficient is: 
 
    1 ,1 2 ,2 1 ,1 2 ,2T P P P PR c c c c        (21) 

 
where 1  and 2  are the mass densities and ,1Pc  and ,2Pc  are the pressure wave velocities for the 
original medium and the new medium, respectively. This formula assumes a steep transition, and 
therefore can be only applied for  y  . 
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 For the calculation of the damped wavelength, the wave velocity was assumed to be constant. 
However, for purposes of calculating the transition reflection, the wavelength can be assumed to be 
fixed and the wave velocity expressed as a function of the loss factor instead: 
 
    2 2 2

, 1 4 1 1 4 1 1 4P d P Tc c R            (22) 

 
 For low damping, TR  increases slowly with  , but as   gets closer to 2 (critical damping), TR   
grows very rapidly to 1 (total reflection of the incident waves). For 2  , oscillatory systems pre-
sent super-critical damping, where no oscillation occurs. Therefore, Equation (21) is not valid for 

2  , and the validity of Eq. (19) cannot be guaranteed as well. 
 Unlike the round-trip reflection, the transition reflection coefficient for a damping profile with 

0d   is quite difficult to derive. Although some work has been done for linear variation (see Wolf 
(1937) and Liner and Bodmann (2010)), it is not directly applicable to the problem at hand. How-
ever, Oskooi (2008) has shown numerically that TR  decreases as both d  and L  increase. Particu-
larly, for one-dimensional waves, Oskooi observed the following relation 
 
 2 21 ,  0d

TR L d    (23) 
 
 According to Equations (20), (22) and (23), increasing   reduces RTR  but increases TR ; in-
creasing a reduces RTR  and TR  if 0d   (a longer layer results in a smoother transition); increasing 
d  increases RTR  but reduces TR . This is in accordance with the numerical results observed by 
Semblat et al. (2011): higher loss factor increases reflection at the interface, longer absorbing layers 
reduce round-trip reflection and a linear damping profile performs better than a constant one. 
 
2.3 Limitations 

In theory this methodology should work with any kind of dynamic analysis, both for time and fre-
quency domain, since the use of Rayleigh damping ensures that the modes of vibration are uncou-
pled. 
 Preliminary tests have shown that the explicit central difference time integration method used 
by the LS-Dyna software (see Hallquist (2006)) requires an unreasonable computational cost to 
solve this problem – the time-step is five to six orders of magnitude lower than what is recommend-
ed for the same problem without the desired damping. 
 It is known that the stable time-step for explicit central difference time integration in the pres-
ence of damping is: 
 
  2

max max max2 1t         (24) 
 
where max  is the frequency of the highest mode and max  is the corresponding damping ratio. As 
the damping ratio increases, the stable time-step decreases. Since Rayleigh damping is felt more 
strongly in the higher modes, it is inevitable that it will lead to very small time-steps and therefore 
to high computation times. All models are therefore implemented in Ansys’ implicit dynamics mod-
ule. 
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3 NUMERICAL IMPLEMENTATION 

To test the effectiveness of the CALM in the FEM, the one-dimensional problem presented in Fig-
ure 2 is implemented in Ansys (see Kohnke (1999)) as a mesh of quadrilateral plane-strain elements. 
This allows generalization to two-dimensional models for future work. A plane stress analysis was 
presented in previous work by the authors (Rodrigues and Dimitrovová, 2014). 
 Figure 3 shows the FE model: the rod is discretised over its length as a regular mesh and the 
length of the model is equal to four times the wavelength to absorb, plus the length of the absorb-
ing layer, which is also a multiple of the wavelength, as defined before. 
 

 
Figure 3: Discretised one-dimensional model with CALM (based on Semblat et al. (2011)). 

 
The Young modulus (E ) is 200 MPa and the mass density (  ) is 2000 kg/m3. Since the objective 
is to model a uniaxial problem, the Poisson ratio is defined as zero. Both in plane strain and plane 
stress analysis, if 0   the pressure wave speed is still given by Equation (7). This leads to 

Pc 316 m/s. 
 The excitation on the free end of the rod is an impulse displacement, with its time history equal 
to a second-order Ricker Wavelet (see Hosken (1988)): 
 

       22 222 2
2 0 2 1 s pt t t

s pR t U t t t e
        (25) 

 
where 0U  is the maximum amplitude of the wave, t  is the time coordinate, pt  is the fundamental 
period of the wavelet, st  is the time shift and t  is the time coordinate. 
 Assuming a fundamental frequency f  500 rad/s, the period of the wavelet is 
 
 2 0.012566 p ft s     (26) 

 
 The time shift was assumed to be equal to the fundamental period, and the maximum amplitude 
equal to 10-3 m. 
 Knowing the fundamental frequency of the excitation, the wavelength of the pressure waves can 
be estimated as 
 
 2 3.974 mP P f P pc c t         (27) 

  
 The size of the elements was chosen to be exactly 24 , to reduce numerical wave dispersion. 
This also means that the results obtained are independent of the wave-speed of the material and the 
frequency of the applied displacement. 

4 λ L = a λ 

η1 η2 η3 η4 η5 η6 
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 The time instant when the wave-front of the Ricker wavelet reaches the interface between the 
medium of interest and the absorbing layer ( wt ) will be necessary to analyse the efficiency of the 
CALM: 
 
 4 4w P P pt c t    (28) 
 
 The duration of the analysis is defined as the time needed for the waves to travel from the origin 
to the end of the absorbing boundary and back to the origin again: 
 
    2 4 2 4f P P pt a c a t      (29) 
 
 The duration of each time-step was assumed to be proportional to the time it takes for a wave 
point to traverse a single finite element: 
 
  24 24P P pt c t     (30) 
 
 This time step is usually considered to be the critical time-step size for explicit integration 
methods in undamped problems. Although the implicit method converges independently of the 
time-step size, Equation (30) leads to a good resolution of the solution, which will be important 
when analysing the results. Ansys’ implicit integration method automatically determines if multiple 
sub-steps are needed to ensure accuracy of the results. This definition of the time-step is also useful 
for comparison, since it depends only on the frequency of the load. 
 The discretisation of the absorbing layer is straight-forward when  y   , but for a non-
constant damping profile, there are two options: assume a constant loss factor for each element, but 
different from element to element (using the value of  y  at the middle point of the element), or 
include the variation of the loss factor in the definition of the damping matrices. Both options were 
initially implemented, but for the level of mesh refinement considered ( 24 ), the results are prac-
tically indistinguishable. Since the latter option is more complex to implement and brings no bene-
fits, all further tests were performed using constant damping inside each element. 
 It is worth noting that Ansys’ pre-packaged Rayleigh damping implementation applies the same 
a  coefficient to the whole model. To define the desired damping, six discrete damping elements 
have to be added to each quadrilateral element of the absorbing layer, connecting each pair of nodes 
in the element, as illustrated in Figure 4. The  -damping is included on the element formulation, 
so the damping coefficients to be added do not depend on the type of analysis (since the mass ma-
trix is the same for plane-stress and plane-strain analysis). 
 

 
Figure 4: Discrete damping elements for the absorbing layer. 
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3.1 Model validation 

Before testing the effectiveness of the CALM implementation on FE, it is important to validate the 
model by comparing the results with an analytical solution, to ensure no spurious reflections occur. 
To that effect, a model with relative length of the absorbing layer of 4a   is considered. The 
damping is constant inside the layer ( 0d  ), with loss factor 0.2  . 
 A force was applied on the free end, with variation in time defined by the Ricker wavelet (Equa-
tion (25)) and maximum intensity of 1 N. All other parameters are as above. 
 To solve the problem analytically, the damping profile over the whole medium must be defined. 
In this case, since 2h L l  , the damping profile is: 
 
    2b x H x l b    (31) 
 
where  H x  is the Heaviside step function (0 for 0x  , 1 for 0x  ). 
 Equation (11) can be written in matrix form for a finite number of modes: 
 
          2t t t l P t     q C V q W q 1    (32) 
 
where i  is the damping ratio for the frequency i , which for the CALM is obtained from (5), and 
1 is the unit vector. Each element in the matrices C , W  and V  is computed analytically accord-
ing to: 
 

 

       
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



   
   

 

  (33) 

 
 This system of equations is then solved using Matlab’s (see Moler (2008)) explicit integration 
tool for the first 300 modes. The solution is then assembled by modal superposition. 
 The results are compared with the solution obtained for the FE model in Ansys. Figure 5 shows 
both solutions at instants 4.0 Pt c  and 6.6 Pt c  (just before and shortly after the pulse 
enters the absorbing layer, respectively). Figure 6 shows the solution in points 2x   and 6x   
over the full analysis time (inside the medium of interest and the absorbing layer, respectively). 
 It is clear from Figures 5 and 6 that the traveling pulse is well represented by the FE model, 
particularly before it enters the absorbing layer, since until that instant the problem is linear and 
elastic, and the mesh is sufficiently discretized. The major difference is that the amplitude of the 
transition reflection is considerably lower in the FE model (less than half of what is observed in the 
analytical solution). However, since these reflections are an undesired effect of the presence of the 
absorbing layer, this difference does not compromise the accuracy of the solution. 
 It is also visible that the wavelength increases when the pulse travels inside the absorbing layer, 
as postulated in the derivation of the round-trip reflection coefficient (Equation (16)). 
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 (a) (b) 

Figure 5: Displacement across the medium at (a) 4.0 Pt c  and (b) 6.6 Pt c . 

 

        
 (a) (b) 

Figure 6: Displacement over time at (a) 2x   and (b) 6x  . 

 
3.2 Error measures for the evaluation of CALM’s effectiveness 

Since the results of the numerical model were found satisfactory, the next step is to evaluate the 
effectiveness of the CALM, which can be done by measuring the error introduced in the solution 
due to both round-trip and transition reflection. To assess the effectiveness of each implementation, 
objective measures of this error will be defined. 
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 Three different error measures are considered: the maximum amplitude of the reflected waves, 
the maximum 2L -norm of the reflected waves and the time integration of the 2L -norm of the re-
flected waves. To define any of these error measures, it is necessary to separate the vibrations that 
are due to the presence of the absorbing layer from the ones that would occur if the medium was 
truly semi-infinite. 
 Consider the numerical solution inside the medium of interest for the problem with the absorb-
ing layer for a given time instant it  to be iu . The vector iu  contains the displacement at the time-
step i  for each node inside the medium of interest, but not inside the absorbing layer. 
 The solution for a discretised semi-infinite medium can be approximated if one considers a suffi-
ciently long model with no absorbing layer. For the case-study, a model with a total length of 16  
is enough to ensure that the waves do not reflect of the Dirichlet boundary for the duration of the 
analysis ( ft ). If the solution for the long model is i

u , then the displacements due to reflection for 
the CALM model can be obtained by simple subtraction: 
 
  ,  1,2,...,i i i i m   u u u   (34) 

 
where m  is the time step corresponding to ft . Assuming 1 0t   
 
  1 48 4 193 48m a m a        (35) 

  
 The first error measure is the maximum displacement of the reflected waves, and is analogous to 
the reflection coefficient discussed in Section 2.2. It can be defined as 
 
    max 0max ,  1,2,...,ii

u U i m  u   (36) 

 
 The maximum L2-norm of the reflected waves is normalized by dividing it by the maximum L2-
norm of the waves in the long model: 
 
        2 2 2

max max max ,  1,2,...,i ii i
L L L i m  u u   (37) 

 
where the L2-norm of a vector is defined as 
 

  2 2
1 2

1

,  , , ,
n

j n
j

L u u u u


    u u    (38) 

 
 Lastly, the time integration of the L2-norm of the reflected waves is similar to Equation (37), but 
replaces the maximum of the L2-norm by an approximation to the integral of the L2-norm over the 
time interval from the instant when the wave-front of the Ricker wavelet reaches the interface ( wt ) 
to the end of the simulation ( ft ), divided by the time range to preserve dimensional consistency. 
The approximation is simply the sum of the L2-norm for all the time-steps in the range, divided by 
the number of time steps: 

Latin American Journal of Solids and Structures 12 (2015) 1540-1564 
 



1555          A. Rodrigues and Z. Dimitrovová / The Caughey absorbing layer method – implementation and validation in Ansys software    

 
    

  

 

  

   

  
 

2 22

2
2 2 2

1d

max max max

f

w

m m
t

i if wt i wf w i w
t

i i ii i i

t
L L m wL t t t t t t t

L
L L L

 
  


       

  
  u uu

u u u
  (39) 

 
where w  is the time-step corresponding to the instant wt . 

 
3.3 Parametric optimization of the loss factor 

A parametric test is then performed to find the optimum loss factor as a function of a , which var-
ies from a  0.25 to a  4 with increment a  0.25. The loss factor at the end of the absorbing 
layer initially varied from   0.1 to   2 in increments of   0.1. 
 The damping profile also varied: the monomial profile (Equation (19)) was used with d   
{0,1,2,3} (constant loss factor and linear, quadratic and cubic variation). A fifth profile, proposed 
by Oskooi et al. (2008), was tested: 
 

   1 1 z
s z e

   (40) 

 
 This profile has the property of being C  and therefore is smoother than any monomial func-
tion, which should reduce transition reflections. The theoretical round-trip reflection coefficient is  
 

 2 2.477a
RTR e

    (41) 

 
which is lower than that of a monomial profile with d  2. 
 The three error measures are computed for each combination of loss factor, damping profile and 
absorbing layer length. The optimum loss factor (   ) is the one that minimizes the selected error 
measure for a particular combination of the absorbing layer length and the damping profile. 
 It should be noted that, for very short absorbing layers, the optimum loss factor may not be in 
the range 0 <  < 2. In those cases, the range must be extended to higher values. 
 After determining    using 0.1  , a new optimization is performed in the range 0.1   < 
  < 0.1    using 0.01  , which leads to a better approximation of   . The results for 

0d   (constant loss factor) are summarized in Table 1. 
 The optimum loss factors obtained for each error measure are close to each other, and in par-
ticular, the values obtained for maxu  and 2

tL  are practically the same, save for a few exceptions. 
Table 2 presents the same information for a linear profile (d  1). 
 It is clear from Table 2 that the error for the linear profile is much lower than that of the con-
stant loss factor for any length of the absorbing layer with the exception of a  0.25. It is also evi-
dent that the optimum loss factor is considerably higher. This agrees with Equation (20), that 
shows that higher values of d require higher   to keep round-trip reflections low. 
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a     maxu     2
maxL     2

tL  

0.25 1.64 13.79% 1.67 4.17% 1.61 3.13% 
0.50 0.74 10.61% 0.90 1.83% 0.95 0.93% 
0.75 0.70 10.24% 0.79 1.17% 0.73 0.56% 
1.00 0.59 8.23% 0.69 0.86% 0.59 0.40% 
1.25 0.51 6.91% 0.59 0.60% 0.50 0.27% 
1.50 0.44 6.00% 0.51 0.44% 0.43 0.20% 
1.75 0.39 5.34% 0.44 0.34% 0.38 0.16% 
2.00 0.35 4.83% 0.40 0.28% 0.34 0.13% 
2.25 0.32 4.44% 0.36 0.23% 0.31 0.10% 
2.50 0.29 4.10% 0.34 0.19% 0.29 0.09% 
2.75 0.27 3.81% 0.31 0.17% 0.27 0.07% 
3.00 0.25 3.60% 0.29 0.14% 0.25 0.06% 
3.25 0.24 3.38% 0.27 0.13% 0.24 0.05% 
3.50 0.22 3.22% 0.25 0.11% 0.22 0.04% 
3.75 0.21 2.99% 0.22 0.09% 0.21 0.04% 
4.00 0.17 2.42% 0.18 0.06% 0.20 0.03% 

Table 1: Numerical optimum loss factor as a function of the layer’s length (d = 0). 
 

a     maxu     2
maxL     2

tL  

0.25 4.10 23.52% 3.72 8.27% 3.56 6.14% 
0.50 2.39 8.26% 2.23 1.35% 2.58 0.77% 
0.75 1.98 5.07% 1.93 0.39% 1.86 0.18% 
1.00 1.50 3.44% 1.48 0.21% 1.55 0.09% 
1.25 1.32 2.38% 1.31 0.13% 1.35 0.06% 
1.50 1.20 1.73% 1.20 0.08% 1.20 0.03% 
1.75 1.11 1.31% 1.12 0.05% 1.09 0.02% 
2.00 1.04 1.04% 1.05 0.03% 1.00 0.01% 
2.25 0.98 0.84% 1.00 0.02% 0.93 0.01% 
2.50 0.92 0.69% 0.97 0.02% 0.87 0.01% 
2.75 0.88 0.58% 0.92 0.01% 0.82 0.005% 
3.00 0.83 0.50% 0.89 0.01% 0.77 0.003% 
3.25 0.80 0.43% 0.85 0.01% 0.73 0.002% 
3.50 0.77 0.38% 0.81 0.005% 0.70 0.002% 
3.75 0.74 0.33% 0.74 0.003% 0.67 0.001% 
4.00 0.71 0.29% 0.66 0.002% 0.64 0.001% 

Table 2: Numerical optimum loss factor as a function of the layer’s length (d = 1). 
 
Figures 7 to 9 show the value of each error measure as a function of a for the corresponding opti-
mum loss factor, for all the tested damping profiles (both axes are in logarithmic scale). All figures 
show some overall trends: 
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• The constant loss factor approach improves very poorly with the increase of a . It is only the 
best choice for a very short layer (a  0.25), and even in that case the amplitude of the reflected 
waves is not negligible ( maxu  0.14); 

• For 0.5 1a  , the linear damping profile presents the best results; 
• For a > 1, the quadratic profile outperformed all other options; 
• The cubic profile behaves poorly for short absorbing layers, and even for long layers, it rarely 

outperforms the linear profile; 
• The exponential profile is very close to the quadratic one for short layers (a < 1), but does not 

keep up as a  increases. 
 

 
Figure 7: maxu  for the optimum loss factor as a function of the layer’s length. 

 

 
Figure 8: 2

maxL  for the optimum loss factor as a function of the layer’s length. 
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Figure 9: 2

tL  for the optimum loss factor as a function of the layer’s length. 

 
It is possible that the cubic damping profile performs better for longer absorbing layers, as was ob-
served by Oskooi et al. (2008), where, for some problems, the advantage of higher order profiles 
only becomes apparent for very long layers (a > 10). However, very long absorbing layers usually 
defeat the purpose of their implementation: reducing the size of the model so its solution becomes 
computationally expedite (or even feasible). 

 
3.4 Optimum loss factor as a function of the layer’s length 

Having the optimum values of the loss factor as a function of the layer’s length in proportion to the 
wavelength allows generalization of the obtained results to other material properties. Since the 
properties of the material are already taken into account in the calculation of the wave speed and 
wavelength, it seems reasonable to expect the optimum loss factor to be independent of the material 
parameters. 
 For that purpose, empirical formulas may be devised from statistical analysis of the results. Var-
ious tests show that the best fit is a power function, with a as the independent variable. The power 
function is also a good theoretical approach: as the length of the layer tends to zero, the loss factor 
needed to absorb the incident elastic waves grow to infinity; as the length grows to infinity, the loss 
factor diminishes until no damping is needed at all. 
 Table 3 presents the approximation for all the variations and the three error measures, along 
with the coefficient of determination ( 2R ) of the approximation. 
 Table 3 clearly shows that the higher order damping profiles require a higher loss factor at the 
end of the layer. The exponential variation (Equation (40)) is between d  1 and d  2 in that 
regard. The consistency between the optimum loss factor obtained using the different error 
measures is evident, which gives confidence in the results. 
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d  maxu  2R  2
maxL  2R  2

tL  2R  

0 0.736280* 0.560200a   0.98 0.735757* 0.632697a   0.98 0.754588* 0.576603a   1.00 

1 0.611658* 1.610248a   0.99 0.568420* 1.576770a   0.99 0.634278* 1.552798a   1.00 

2 0.567417* 2.535418a   0.98 0.619914* 2.400090a   0.99 0.594062* 2.427822a   0.99 

3 0.514762* 3.243109a   0.94 0.629793* 3.192484a   0.98 0.609826* 3.213432a   0.99 

e 0.560081* 1.744623a   0.97 0.568308* 1.738599a   0.98 0.579522* 1.750230a   0.99 

Table 3: Optimum loss factor as a function of the layer’s length and damping profile variation. 
 
Lastly, it is clear that there is a better approximation for the loss factor obtained using 2

tL  than 
the other two measures, particularly maxu . This suggests that 2

tL  may be a more reliable measure, 
since it is a function of the solution over the relevant time-range, instead of simply taking the max-
imum value. 
 The formulas presented in Table 3 were tested for different combinations of material parameters 
(E ,   and  , the Poisson ratio), with no noticeable effect in any of the error measures, as long as 
all dimensional relations are respected. 
 
3.5 Sensitivity analysis 

Since it is not always possible to clearly define the frequency content of the loads, or it may happen 
that a wide range of frequencies are relevant, it is important to test if misjudging the prevailing 
frequency does not lead to a drastic drop in the efficiency of the CALM. 
 To that effect, a model where the frequency of the absorbing layer ( CALM ) was changed to take 
different values from the Ricker wavelet ( R 500 rad/s), from CALM 5 rad/s to 50 000 rad/s. 
 The absorbing layer length is equal to the wavelength, and the five different damping profiles 
were tested. The loss factor used was the numerical optimum obtained in section 3.2 for a  1 and 
the various values of d . Figures 10 to 14 show the error measures as functions of the ratio of the 
load frequency to the absorbing layer frequency. 
 From the analysis of the results, one can see that the damping parameters defined in Equation 
(4) lead to maximum absorption of the selected frequency. As CALM  moves away from R , all 
three error measures increase. This is in contrast with the behaviour intended by Semblat et al. 
(2011) when they proposed the damping parameters in Equation (4). According to Equation (2), 
the waves with a frequency different from the one the CALM are subjected to a greater loss factor η, 
which decreases the round-trip reflection but increases the transition reflection. Essentially, the 
compromise between round-trip and transition reflection found in section 3.3 is no longer valid for 
the new frequency. Finding a new compromise is only possible if one knows the ratio CALMR  , in 
which case it would be possible to simply tune the CALM to the load frequency.  
 A very important trend that can be observed is that the increase in error due to an inaccurate 
estimation of the load frequency is less pronounced for smoother damping profiles. This is effect is 
particularly visible in Figure 13 (d  3), where the error measures barely change in the range 1 < 

CALMR   < 10. This results suggest that using smooth damping profiles leads to a much more 
robust implementation of the CALM, which is particularly useful for complex problems where there 
is no dominant frequency of the waves. 
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 For d  1, the efficiency of the absorbing layer is less affected when the frequency of the load is 
higher than what the absorbing layer is prepared for. Previous work (Rodrigues and Dimitrovová, 
2014) has shown that the absorbing layer is less efficient at absorbing low frequency elastic waves, 
which explains these results. It is therefore preferable to underestimate the dominating frequency of 
the loads than overestimating it. 

 

 
Figure 10: Error measures as function of the ratio of the load to layer frequency  

(d  0, a  1,    {0.59,0.69,0.59}). 

 

 
Figure 11: Error measures as function of the ratio of the load to layer frequency 

(d  1, a  1,   {1.50,1.48,1.55}). 
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Figure 12: Error measures as function of the ratio of the load to layer frequency 

(d  2, a  1,   {2.67,2.41,2.40}). 
 

 
Figure 13: Error measures as function of the ratio of the load to layer frequency  

(d  3, a  1,   {3.23,3.37,3.30}). 
 
4 CONCLUSIONS 

The Caughey Absorbing Layer Method has been shown to work effectively to mitigate the problem 
of wave reflections at the boundaries for one-dimensional models. 
 Three different error measures were used to analyse the influence of various parameters in the 
results, with good agreement between all three. The tested parameters were: the absorbing layer 
length in relation to the wavelength to be absorbed (a ), the loss factor at the end of the layer (  ), 
the damping profile variation (constant, linear, quadratic, cubic and exponential) and the ratio be-
tween the frequency of the load and that of the absorbing layer ( CALMR  ).  
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Figure 14: Error measures as function of the ratio of the load to layer frequency  

(   1 1 z
s z e

 , a  1,   {1.83,1.74,1.75}). 
 
It was shown that the linear damping profile led to better results when the absorbing layer is rela-
tively short ( a ≤ 1), but for longer layers the quadratic damping profile performed better 
(1 4a  ). It is possible that the cubic variation performs better for longer layers. 
 The exponential damping profile did not perform as well for the CALM as Oskooi (2008) has 
reported for the PML. It was as effective as the quadratic profile for short layers (a < 1), where the 
linear profile was already a better choice, but for longer layers it was outperformed by all the tested 
profiles except for the constant loss factor. 
 For situations where the frequency of the load is incorrectly estimated, it was seen that increas-
ing the smoothness of the damping profile increased the range of frequencies for which it was effec-
tive. Although the cubic profile performed worse than the linear and the quadratic ones for tuned 
absorbing layers ( CALMR  ), it showed a higher tolerance for detuned damping coefficients 
( R  CALM ). This may make the cubic (or higher order) damping profile a better choice for prob-
lems with a wide range of frequencies to absorb, or when it is difficult to estimate the predominant 
frequency. 
 Empirical formulas for the optimum loss factor (   ) as a function of the length of the layer in 
relation to the wavelength to absorb (a ) were proposed. Each combination of error measure and 
damping profile variation resulted in a different formula, with an average coefficient of determina-
tion 2 0.98R  . 
 
4.1 Future work 

The CALM was tested for two-dimensional problems with success by Semblat et al. (2011). The 
authors of this paper have already published results for the plain-stress two-dimensional problem 
(Rodrigues and Dimitrovová, 2014), where the method was shown to be more efficient than the 
Lysmer viscous boundaries. The plane-strain two-dimensional problem is currently being studied, 
with promising results. 
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 The empirical approximations of the optimum loss factor will be tested in two-dimensional prob-
lems, to validate their applicability and verify if they are independent of the properties of the prob-
lem (except for the damping profile and length of the absorbing layer in relation to the wavelength). 
 An important development to pursue would be to implement the finite elements with independ-
ent Rayleigh damping in the Ansys software, so the method could be applied to more complex 
problems, including three-dimensional models. 
 Lastly, the theoretical analysis of the CALM must be further developed. In first place, the as-
sumption that the decay in amplitude of the reflected waves is minimal for the desired frequency 
was not verified for the case study. Second, the theoretical prediction of the coefficients of reflection 
provided a reasonable approximation, but without the accuracy required to propose a theoretical 
optimum loss factor. 
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