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Abstract 

A transition element is developed for the local global analysis of 
laminated composite beams. It bridges one part of the domain 
modelled with a higher order theory and other with a 2D mixed 
layerwise theory (LWT) used at critical zone of the domain. The use 
of developed transition element makes the analysis for interlaminar 
stresses possible with significant accuracy. The mixed 2D model 
incorporates the transverse normal and shear stresses as nodal 
degrees of freedom (DOF) which inherently ensures continuity of 
these stresses. Non critical zones are modelled with higher order 
equivalent single layer (ESL) theory leading to the global mesh with 
multiple models applied simultaneously. Use of higher order ESL in 
non critical zones reduces the total number of elements required to 
map the domain. A substantial reduction in DOF as compared to a 
complete 2D mixed model is obvious. This computationally 
economical multiple modelling scheme using the transition element 
is applied to static and free vibration analyses of laminated 
composite beams. Results obtained are in good agreement with 
benchmarks available in literature. 
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1 INTRODUCTION 

Laminated composites are finding varied engineering applications as these materials possess a good 
environmental resistance, strength and are light in weight. Failure modes of laminated composites 
include the delamination failure leading to separation of the layers and loss of integrity of the 
structure. Due to the heterogeneous material properties of the different layers of the composite 
laminate high interlaminar stresses develop at the interfaces. For the kinetic equilibrium in the 
thickness direction, these interlaminar stresses need to be continuous between the layers. Pipes and 
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Pagano (1970); Rybicki (1971) brought out that delamination failure can be attributed to the 
interlaminar transverse shear and normal stresses. For a sound design, an accurate evaluation of 
the interlaminar stresses becomes inevitable. Different analytical and finite element equivalent 
single layer (ESL) and layerwise (LW) models have been proposed for analysis of composites. The 
ESL models in the literature predict the global parameters with a reasonable accuracy but fail to 
predict the continuity of interlaminar stresses. The displacement based LW models also fail to 
predict continuity of transverse stresses. These are more accurate relative to ESL models for global 
parameters but need higher computational effort. For estimation of the transverse stresses, a 
separate stress function or integration of stress equilibrium equations is essential. LW mixed model 
with transverse stresses as nodal DOF are accurate for global parameters and also for local 
interlaminar stresses. 

 Accurate elastic analysis of interlaminar stresses in composite laminates was presented by 
Srinivas and Rao (1970); Pagano (1969, 1970); Pagano and Hatfield (1972). As an offshoot of the 
plate formulation, many researchers have presented theories for analysis of composite laminated 
beams. Kant (1982) presented a comprehensive higher order theory for analysis of thick plates. 
Kant et al. (1997) applied the fully cubic theory for the dynamic analysis of beams. Various forms 
of higher order sub-theories were evolved by eliminating some terms from the comprehensive cubic 
theory (Marur and Kant, 1996; Manjunatha and Kant, 1993a; 1993b). Reddy (1987) presented 
higher order ESL as well as displacement based LW formulations. Contributions were also made 
by Lo et al. (1978); Spilker (1982), and others in the form of higher order theories. The formulation 
of Spilker had a stress based hybrid element having separate through thickness distributions for 
stress and displacements. To overcome the limitation of displacement based ESL, Rao et al. (2001) 
proposed an analytical solution based on mixed formulation in which the transverse stresses are 
invoked as DOF ensuring their continuity. This model has been employed for static and dynamic 
analyses of laminated plates and beams. Shimpi and Ghugal (1999) presented a trigonometric shear 
deformable LW theory capable of maintaining the continuity of transverse stresses. Desai and 
Ramtekkar (2002) presented a mixed finite element LW model with transverse stresses also included 
in the set of nodal DOF. The issue of continuity is inherently resolved and the results are seen to 
be in good agreement with the exact solutions. The formulation was applied to static analysis of 
composite beams. Ramtekkar et al. (2002) extended the mixed formulation for free vibration 
analysis of beams. Adyodgu (2006) presented a pair of shear deformable beam theories by employing 
parabolic and exponential shape functions respectively in conjunction with the classical beam theory 
for free vibration analysis of angle ply beams. Marur and Kant (2007) presented a higher order 
theory for free vibration analysis of angle ply beams. 

 Literature indicates that LW approach is the most suitable finite element formulation for 
accurate estimation of the interlaminar stresses. Within the LW models reported in literature, it is 
observed that the mixed formulation (Desai and Ramtekkar, 2002) yields very accurate solution 
and also satisfies the continuity requirements. However, such formulation is computationally 
expensive. Thus, layerwise formulation may not be suitable at all locations in the domain of a 
laminate. Amongst the ESL formulations the higher order theory (Kant et al., 1997) with 8 
DOF(HOSTB8) has been reported to be comprehensive and computationally economical for the 
estimation of global parameters. 
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 In this work, the positive traits of the higher order ESL theory and the mixed LWT are used 
together to obtain global as well as the local transverse stress parameters with a good accuracy. 
Laminate is modelled using a stack of 2D elements having mixed DOF in the zone where the 
transverse stresses are critical. Remaining zone is modelled using higher order ESL (HOSTB8). A 
unique transition element is developed to bridge the interface of ESL and mixed LWT based 
elements. 

 

2 THEORETICAL FORMULATION FOR BEAM ANALYSIS  

Three models have been formulated for analysis of transversely loaded laminated composite beams 
consisting of several orthotropic layers each having different properties; 

(a) Model 1: This model adopts a cubic displacement field in the thickness direction for 
displacements (U , W ) and has 8DOF per node. The theory has been identified as HOSTB8. 
The model is based on the plane stress  state of stresses and strains. 

(b) Model 2: In this model, mixed finite element LWT which has two  displacements  (U , W ) 
and the transverse stresses ( , xz zτ σ ) as the nodal DOF is used. The theory is based on elasticity 
relationships. Therefore, requirement of any additional parameters/stress variation functions are 
advantageously avoided. 

(c) Model 3: This model is based on a local global finite element procedure to take advantage of 
computational efficiency of higher order ESL theory and accuracy of the LW mixed model. 

 

2.1 Model 1:  Development of ESL based theory (HOSTB8) 

Displacements in two principal directions of the laminated beam as a fully cubic function of the 
thickness co-ordinate are 

 

 
2 * 3 *

0 0

2 * 3 *
0 0

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

x x

z z

u x z t u x z t z x z t z u x z t z x z t

w x z t w x z t z x z t z w x z t z x z t

θ θ

θ θ

= + + +

= + + +
  (1) 

 

 The above displacement field eliminates any requirement of shear correction factor and chances 
of shear locking. Here ( 0u  and 0w ) are deformations in X , Z  (laminate co-ordinate) directions at 
the mid-plane. ( xθ  and zθ ) are rotations at mid-plane about principal directions of laminated beam 
and ( *

0u , *
xθ , *

0w  and *
zθ ) are higher order terms from Taylor’s series. By using material property, 

strain displacement relationship and the principle of minimum potential energy, the stiffness matrix 
for the laminate is developed. By using shape functions similar to those used for stiffness evaluation, 
the mass matrix is also developed. Detailed formulation can be seen in Kant et al. (1997). A four-
node isoparametric line element of Lagrange family is used to discretize a laminated beam.  

 Integration is performed by employing 5x5 Gauss quadrature rule for the extension, bending, 

mass component and  3x3 Gauss rule for the shear part. 
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2.2 Model 2: Development of mixed LW model 

A 6-node two-dimensional plane stress element based on mixed formulation is used by considering 
displacement fields ( ),u x z , and ( ),w x z  having quadratic variation along the length of beam and 
cubic variation in the transverse direction. The cubic variation has been adopted to invoke the 
transverse stresses as the nodal parameters in addition to the nodal deformations. The displacement 
field is expressed as 
 

 
3 3 3 3

2 3
0 1 2 3

1 1 1 1

( , )k i ik i ik i ik i ik
i i i i

u x z g a z g a z g a z g a
= = = =

= + + +∑ ∑ ∑ ∑   (2) 

where 

 ( ) ( )2
1 2 31 , 1 , 1

2 2
g g g

ξ ξ
ξ ξ ξ= − = − = + , xx Lξ =   (3) 

k = 1, 2 and 1u u= ; 2u w= ; 
 
Further, mika  (m = 0, 1, 2, 3; i = 1, 2, 3) are the generalized coordinates. 
 Variation of displacement fields has been assumed to be cubic through the thickness of element, 
although there are only two nodes along ‘ z ’ axis of an element. Derivative of displacement with 
respect to the thickness coordinate has also been included in the displacement field. Such a inclusion 
is required for invoking transverse stress components zσ , and xzτ  as nodal DOF in the formulation. 
Further, it also ensures parabolic variation of the transverse stresses through the thickness of an 
element.  
 By making use of the elasticity relationship, displacement field ( ),ku x z  in Eq. (2) can be shown 
to be 
 

 ( ) ( )
6

1

,k i q kn p kn
n

u x z g f u f u
=

= +∑
⌢   (4) 

 
Here, i = 1, 2, 3 for the nodes with 1ξ = − , 0ξ =  and 1ξ = , respectively; 
q =1, 2 and p = 3, 4 for the nodes with 1η = −  and 1η = , respectively for node numbers 1 to 6 
and; 
 

( ) ( ) ( ) ( )3 3 2 3 2 3
1 2 3 4

1 1
2 3 ; 2 3 ; 1 ;  1

4 4 4 4
z zL L

f f f fη η η η η η η η η η= − + = + − = − − + = − − + +  

 

3f  and 4f  correspond to derivative of displacements with respect to thickness co-ordinate, whereas, 

1f  and 2f  correspond to the displacement DOF, knu  (k = 1, 2 and n = 1, 2, 3, ...6) are nodal 
displacement variables, whereas knu

⌢  (
knu z= ∂ ∂ ) contains the nodal transverse stress variables. 

Application of principle of minimum potential energy is used to develop element property matrix. 
Detailed formulation can be seen in Desai and Ramtekkar (2002). 

 Numerical integration of system matrices (Stiffness property matrix, Mass property matrix and 
load vector) has been performed by using a 3x3 integration scheme in the length and 5x5 integration 
scheme in the thickness direction. 
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2.3 Model 3: Development of transition between ESL (HOSTB8) and 2D mixed LW model 

Compatibility between two differently modelled sub-domains (by using Model 1 and Model 2) is 
enforced by degenerating a 2D mixed element through kinematic constraints compatible with 
deformations predicted by ESL HOSTB8 element. Cook et al. (2003) has presented a methodology 
to connect dissimilar elements. 
 A 2D-to-1D transition element has one or two edges of 2D element that are kinematically 
restrained to enforce compatibility with adjacent ESL elements. Such a edge is denoted as a 
transition edge in the sequel. The 2D element on the transition edge is conditioned for compatibility 
with the DOF of the ESL (HOSTB8) element to ensure continuity of the combined model. Such an 
element acts as a transition element to connect two independently modelled sub-domains. 
Transition is achieved by placing a stack of such transition elements used in different layers of a 
laminate at the transition edge. 
 A pair of incompatible mesh formulations is shown in Fig. 1 wherein a four-node ESL element 
with eight DOF per node (node numbers denoted with a prime) is connected to a stack of 2D mixed 
elements with four DOF per node (two translations and two transverse stresses). 
 

 

Figure 1: The configuration of connection between 2D mixed and HOSTB8 elements. 

 
Kinematics of any point at a distance ‘

kjd ’ from the reference plane of the laminate on the transition 
face is completely described by displacement field for the ESL. Because ESL and stack of 2D 
elements represent the same laminate, motion of the corner 2D node (node 1) (refer Fig. 1) is 
entirely prescribed by the two translations, two rotations and the higher order terms of its 
corresponding ESL node (node 4). Consequently, the DOF associated with nodes 1 and 4 are 
followers to the DOF associated with ESL leader node 4’, and hence must be restrained. The node 
of the ESL on the transition edge form 2D elements' transition node. This node represents transition 
edge of 2D element stack. An indicative impression of the change in configuration of the 2D element 
on imposition of the restraint is shown in Fig. 2. 
 By using the displacement field of HOSTB8 in Eq. (3), kinematics { }

2
ˆ

D

k
q  of any ‘ thk ’ node of 

2D element on the transition surface and corresponding to the ESL leader ‘ thj ’ node can be 
completely prescribed as 
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ESL HOST B8

2D MIXED

ESL HOST B8

2D MIXED
TRANSITION ELEMENTS

 
 (a) (b) 

Figure 2: An indicative impression of unidirectional transition (a) before implementation of restraint 

(b) after implementation of restraint. 

 

 
{ }
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2
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where 

k

jkj kj kj

D
kj kj kjD

T

x z x zD

u d d d
q

w d d d

q u w u wθ θ θ θ

       =          

 =   

  (5) 

or 

 { } { }
2 1

ˆ
k j

D Dkj
q R q =     (6) 

 
 By developing the restraint sub-matrices 

kj
R    for all pairs of ESL and 2D nodes, the 

transformation matrix R    for the entire element can be formulated by appropriately populating 
sub-matrices 

kj
R    corresponding to every pair. Finite element stiffness property, mass property 

matrices and internal force vector for the transition element are obtained by matrix transformations 
using the constructed stiffness property matrix, force vector ,mass matrix of 2D element and 
associated transformation matrix as follows, 

 

 { } { }

2

2

2

T

e eTr D

T

e Tr D

T

e eTr D

K R K R

F R F

M R M R

       =       

 =  

       =       

  (7) 

 
 Similar transformation can be performed for mass matrix of an element. The transformation in 
Eq. (9) degenerates the transition edge of the 2D element which becomes follower to the 
corresponding HOSTB8 leader node. All elements in the interior of the local transition edge are 6-
node elements with all the nodes modelled with the mixed formulation. The stress DOF at the 2D 
nodes on the transition edge are condensed prior to imposition of the restraint for complete 
compatibility. Considering the stiffness matrices of the ESL elements, transition elements and the 
interior LW mixed elements the global equation can be obtained in the following form after 
assembly. 
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G j l
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Here 
[ ]

G
K , [ ]

G
M  are the global stiffness property and mass matrices, respectively; 

[ ]i
eK , [ ]i

eM  are the element property and mass property matrices of thi  element, respectively, 
 formed by using mixed LWT; 

j
e Tr

K 
  , j

e Tr
M 
   are the element property and mass matrices of thj  transition element, respectively; 

[ ]l
eK , [ ]l

eM  are the element stiffness and mass matrices of thl ESL element, respectively; 
m , n  and k  in Eq. (10) represent number of LWT, transition and ESL elements. 
 The displacement vector of the transition element t̂rq  is composed of the DOF of the ESL node 
on the transition edge, and the DOF of the 2D nodes on the interior of element. The transition 
element that is developed by the application of the restraints consists of 5 nodes and 24DOF in 
case of an one edge transition. 
 
2.4 Analysis of plate under static loading and vibration analysis 

Standard finite element procedures are used to assemble and formulate global system matrices.  For 
the static analysis the load deformation relationship is 
 

 { } { }
G

K D F  =    (9) 

 
 Gauss elimination method is used for determination of DOF in Eq. (9).  
 By using Hamilton’s variational principle as brought out in Bathe (1997) and solution to the 
equation of motion of laminate, the characteristic equation of the eigenvalue problem is formed 
 

 ( ){ }2 ˆ 0
G G

K M Dω   − =      (10) 

 
 Here global mass matrix 

G
M    and stiffness property matrix 

G
K    are as defined in Eq. (8).  

{ }F , { }D  are global nodal load and DOF vectors respectively. { }D̂  is the modal vector and ω  
is natural frequency of laminate. 
 Solution of Eq. (10) after imposition of boundary conditions yield natural frequency ω  and 
corresponding modal eigenvector { }D̂ . Sub-space iteration technique is used in the current work 
for solution of eigenvalue problem. 

 

3 ILLUSTRATIVE EXAMPLES AND DISCUSSIONS 

Following two mesh patterns are possible for a symmetrically loaded simply supported laminated 
beams; 
(a) Peak xzτ  is estimated through Mesh 1 by using a stack of 2D elements with mixed DOF at 
 and in the vicinity of ( )0x =  and the remaining part of the laminate meshed with ESL 
 elements.  
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(b) Peak zσ is estimated through Mesh 2 by using a stack of 2D elements with mixed DOF at 
 and in the vicinity of ( )2x a=  and the remaining part of the laminate meshed with ESL 
 elements. 
 
 For the static and free vibration analyses, symmetrical loading on the beam and simply 
supported end conditions are assumed. An example with different boundary conditions (Example 
6) for an four layered angle ply beam is also considered for free vibration analysis. However, the 
same meshing patterns are used for discretization. Implementation of this novel hybrid finite 
element mesh is done on full length of beam. Free vibration analysis is also performed for two 
meshing arrangements to further validate the soundness and efficacy of the combined model. Stress 
estimation in static analysis for transverse stresses has been done by using selective meshing pattern 
according to suitability. Results obtained for static and free vibration analyses are compared with 
those from higher order ESL theories and LW mixed and displacement based finite element 
formulations available in literature. 

 A combined mesh size of (10)/(2x30) implies that full length of beam is discretized with 10 
elements and out of which a portion of 2 elements is modelled with 30 2D elements with mixed 
DOF in the thickness direction. The remaining domain is modelled with ESL (HOSTB8) elements. 
Thus, there will be 68 elements (8#HOSTB8+60#2D) in the entire domain. If the same laminate 
is modelled using only 2D elements, the total number of elements for a mesh (10x30) will be 300. 
Proposed combined mesh reduces total number of DOF due to reduction in number of elements 
required to model the domain and also ensures continuity of transverse stresses. 

 Beams with different layups, span to thickness ratios (S), and material properties with various 
end conditions have been considered for static and free vibration analyses. Boundary conditions are 
listed in Table 1. Material properties and normalisation factors used for static and free vibration 
analyses are mentioned with the results. 

 

3.1 Static analysis 

3.1.1 Example 1 

A simply supported cross ply (0°/90°) beam with layers of equal thickness and subjected to 
unidirectional sinusoidal loading is considered. The beam is analysed using both combined mesh 
patterns for stresses ( xzτ  and zσ ), longitudinal and transverse displacements (u  and w ). The 
transverse shear and transverse normal stresses has been selectively estimated by using Mesh 1 and 
Mesh 2 respectively. The results for S = 4 and 10 are compared in  Table 2. Exact elasticity solution 
by Pagano (1969), and FE results obtained by Desai and Ramtekkar (2002), Liou and Sun (1987), 
Lu and Liu (1992), Manjunatha and Kant (1993b), and Shimpi and Ghugal (1999) have been 
presented for proper comparison. Results from the present analysis have been found to be in 
agreement with the established results. The variation of normalized longitudinal normal stress ( xσ ), 
transverse normal and shear stresses ( zσ  and xzτ ) through the thickness of the beam with S = 4, 
have been shown in Fig. 3. Proximity of present results with the benchmarks validate the suitability 
of the combined model. Essential requirement of continuity of transverse stresses is also fulfilled 
with a substantial reduction in the computational effort. 
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 Description Location Degree-of-freedom 

u  W  
xz
τ  z

σ  

1. Simple support (S) (Mixed LW Elements) 

0X =  

2Z h= +  

2Z h= −  

- 

- 

- 

0 

- 

- 

- 

0 

0 

- 

0q * 

0 

2. 
Clamped support (C) (Mixed LW 
Elements)  

0X =  

2Z h= +  

2Z h= −  

- 

- 

- 

0 

- 

- 

- 

0 

0 

- 

0q * 

0 

3. Free end (F) (Mixed LW Elements)  

0X =  

2Z h= +  

2Z h= −  

- 

- 

- 

- 

- 

- 

- 

0 

0 

- 

0q * 

0 

4. 
Simply supported beams (SS) (with ESL 
HOSTB8 Elements at ends in Mesh 2) 

0X =  

Simple support 
* *

0 0 0z zw w θ θ= = = =

 

X a=  

Simple support 
* * *

0 0 0 0 0z zu u w w θ θ= = = = = =

5. 
Clamped support (C) (ESL HOSTB8 
Elements) 

* *
0 0

* *
0 0       0

x x

z z

u u

w w

θ θ

θ θ

= = = =

= = = =
 

6. Free end (F) (ESL HOSTB8 Elements) 

* *
0 0

* *
0 0       unrestrained

x x

z z

u u

w w

θ θ

θ θ

= = = =

= = = =
 

Note:  ‘−’ indicates no boundary condition imposed on that degree-of-freedom at that location 

         '*' 0 0q =  for free vibration analysis 

Table 1: Boundary conditions for composite beams. 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.0

0.2

0.4  Fully Mixed 10X90

 Present 10/(3X90)

z
 /
 h

τ
xz    

 (a) (b) (c) 

Figure 3: Through thickness variation of stresses in a 0°/90° 

laminated beam subjected to sinusoidal load (S = 4); 

( ) ( ) ( ) ( )(a) 0, , (b) 2, ,  c  2,xz z xz a z a zτ σ σ  
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S Source 
Xσ ( )2, 2a h  Xσ ( )2, 2a h−  XZτ (max.) W ( )2,0a  

4 

Pagano (1969) 3.8359 -29.9745 2.7300 4.7675 

Desai and Ramtekkar (2002) 3.8247 -29.9383 2.7500 4.7636 

Liou and Sun (1987) - - - 4.5950 

Lu and Liu (1992) 3.5714 -30.0000 - 4.7773 

Manjunatha & Kant (1993b) HOSTB7 3.7500 -26.9700 2.823 4.2839 

Manjunatha & Kant (1993b) HOSTB8 3.7680 -26.9200 2.822 4.2903 

Shimpi and Ghugal (1999) 3.9650 -30.2980 - 4.7431 

Present Analysis Mesh 1(10/(3X90)) 3.678 -29.08 2.748 4.700 

Present Analysis Mesh 2(10/(4X90)) 3.651 -31.11 - 4.844 

10 

Pagano (1969) - - - 2.9568 

Desai and Ramtekkar (2002) 19.7709 -175.995 7.5670 2.9540 

Liou and Sun (1987) - - - 2.9520 

Lu andLiu (1992) 20.0000 -175.000 - 3.0000 

Manjunatha & Kant (1993b) HOSTB7 19.6700 -173.100 7.2850 2.8947 

Manjunatha & Kant (1993b) HOSTB8 19.7300 -173.000 7.2840 2.8965 

Shimpi and Ghugal (1999) 19.8999 -176.870 - 2.9743 

Present Analysis Mesh 1(10/(3X90)) 19.53 -175.8 7.650 2.956 

Present Analysis Mesh 2(10/(4X90)) 19.77 -179.3 - 2.956 

Note: (i) ‘−’ represents result not available. 

Table 2: Comparison of the maximum transverse displacement, the in-plane normal and the transverse shear 

stresses for simply supported laminated beam under sinusoial  loading (lamination scheme: 0°/90°) 

1 2 3 12 13 23 12 13 23( 172.4 GPa, 6.89 GPa, 3.45 GPa, 1.378 GPa, 0.25)E E E G G G ν ν ν= = = = = = = = =
 

( )
( )

( )
( )23

2

4 2
00 0

100
'    ;  W     ;       ;  x xz

x xz

h hE hz
z w

h q aq a q a

σ τ
σ τ

   = = = =    
 

 
3.1.2 Example 2 

Static analysis of a three-layered cross-ply (0°/90°/0°) simply supported beam with equal thickness 
of each layer, has been considered in this example. The beam is subjected to uni-directional 
sinusoidal loading applied at top edge. The transverse shear and transverse normal stresses has 
been selectively estimated by using Mesh 1 and Mesh 2 respectively. Normalized maximum 
transverse displacement (w ), in-plane normal stress ( xσ ) and transverse shear stress ( xzτ ) for the 
simply supported laminated beam (with S = 4 and 10) have been presented in Table 3. Results 
obtained through present analysis are compared with elasticity solution by Pagano (1969) and 
various analytical/ FE solutions given by Desai and Ramtekkar (2002); Lo et al. (1978); Spilker 
(1982); Engblom and Ochoa (1985); Toledano and Murakami (1987); Manjunatha and Kant 
(1993b). Present results shows good agreement with  the elasticity solutions, which underlines the 
usefulness of the present model. Variation of normalized longitudinal normal stress ( xσ ) and 
transverse stresses ( zσ  and xzτ ) through thickness of beam with S = 4 is presented in Fig. 3. It is 
observed that the results from the present multi-model scheme are in very good agreement with 
the elasticity solution (Pagano, 1969). It is also noted that the displacement based models (Lo et 
al., 1978; Engblom and Ochoa, 1985), have not been able to predict the in-plane and the transverse 
stresses. The continuity of the transverse stresses is ensured and the integration of equilibrium 
equations is advantageously avoided. 
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S Source 
Xσ ( )2, 2a h  

Xσ ( )2, 2a h−  
XZτ (max) W ( )2,0a  

4 

Pagano (1969) 18.6102 -18.0023 1.5974 2.8600 

Desai and Ramtekkar (2002) 18.7523 -18.0497 1.6000 2.8400 

Lo et al. (1978) - - 1.5555 - 

Spilker (1982) - - 1.5636 2.8410 

Engblom  and Ochoa (1985) 10.0090 -10.1081 1.7734 - 

Toledano and Murakami (1987) - - - 2.8810 

Manjunatha & Kant (1993b) HOSTB3 13.8900 -13.8900 1.6630 1.9705 

Manjunatha & Kant (1993b) HOSTB4 13.940 -13.960 1.662 1.960 

Present Analysis Mesh 1(10/(3X90)) 18.58 -17.95 1.662 2.758 

Present Analysis Mesh 2(10/(4X90)) 17.74 -17.37 - 2.828 

10 

Pagano (1969) 73.6000 -73.2000 4.2346 0.9568 

Desai and Ramtekkar (2002) 73.4453 -73.4042 4.2510 0.9336 

Spilker (1982) - - 4.5292 0.9312 

Engblom  and Ochoa (1985) 63.7344 -63.4025 4.4590 - 

Manjunatha & Kant (1993b) HOSTB3 67.4000 -67.4000 4.3950 0.7491 

Manjunatha & Kant (1993b) HOSTB4 67.410 -67.420 4.395 0.7479 

Present Analysis Mesh 1(10/(3X90)) 72.520 -72.480 4.264 0.8986 

Present Analysis Mesh 2(10/(4X90)) 72.98 -73.520 - 0.8856 

    Note: (i) ‘−’ represents result not available 

Table 3: Comparison of maximum transverse displacement, in-plane normal and transverse shear stresses for 

simply supported laminated beam under sinusoial  loading (lamination scheme: 0°/90°/0°) 

1 2 3 12 13 23 12 13 23( 172.4 GPa, 6.89 GPa, 3.45 GPa, 1.378 GPa, 0.25)E E E G G G ν ν ν= = = = = = = = =
 

( )
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Figure 4: Through thickness variation of stresses  in a 0°/90°/0° 

laminated beam subjected to sinusoidal load (S = 4) 

( ) ( ) ( ) ( )(a) 0, , (b) 2, ,  c  2,xz z xz a z a zτ σ σ  

 
3.2 Free vibration analysis 

3.2.1 Example 3    

A six-layer symmetric cross-ply (0°/0°/90°/90°/0°/0°) thick beam under simple support is 
considered in this example. The non-dimensional frequencies in different modes obtained through 
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the present model are compared in Table 4 with FOBT, HOBT by Marur and Kant (1996), mixed 
theory by Rao et al. (2001) and FEM solution by Ramtekkar et al. (2002). The through thickness 
variation of non dimensional inplane displacements, transverse normal and shear stresses for first 
three modes is shown Fig. 5. It can be observed that the results from the present studies are in 
good agreement with HOBT and the mixed theory with a substantial reduction in the total DOF. 

 

Mode Marur and Kant(1996) Rao et al. 
(2001) 

Ramtekkar 
et.al (2002) 

Present 

Mesh 1 

10/(2X90) 

Present 

Mesh 2 

10/(2X90) FOBT HOBT 

1 1.639 1.6540 1.655 1.657 1.656  1.655 

2 3.810 3.9160 1.879 3.910 3.918 3.919 

3 5.912 6.1800 3.908 6.138 6.180 6.187 

4 7.988 8.4460 6.146 8.323 6.422 8.440 

5 10.100 10.7110 8.400 10.440 8.447 10.725 

6 11.181 12.9690 10.694 12.469 10.716 11.109 

7 12.188 15.2220 11.107 14.385 11.109 12.531 

8 12.953 17.4690 12.616 16.161 12.987 12.970 

9 14.392 19.7120 13.061 17.771 15.261 15.290 

10 16.732 - 15.510 - 17.524 17.494 

11 19.088 - 17.404 - 17.808 18.875 

12 19.205 - 18.837 - 18.900 19.980 

13 - - 20.168 - 19.765 22.104 

14 25.910 - 21.639 - 22.093 22.988 

15 - - - - 24.338 24.857 

Table 4: Comparison of non-dimensional natural frequencies ( )2
1a h Eω ω ρ= × ×  

of (0/0/90/90/0/0) simply supported beam 

( 1E = 525 GPa, 2E = 21 GPa, 12G = 10.50 GPa, 12ν = 0.3, Density ( ρ )= 800 Ns2/m4, Length = 762 mm, 

Breadth = 25.4 mm, Depth = 152.4 mm) 

 

 

 (a) (b) (c)  

Figure 5: Through thickness variation of (a) Normal displacement, (b) transverse normal stress, 

(c) transverse shear stress, for first three modes of vibration. 
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3.2.2 Example 4 

A six-layer un-symmetric cross-ply (0°/90°/0°/90°/0°/90°) thick beam under simple support 
condition is considered in this example. The non-dimensional natural frequencies (ω ) for different 
modes have been presented in Table 5. Comparison of frequencies with the available results from 
FOBT, HOBT (4a, 4b, 5) by Marur and Kant (1996), mixed theory by Rao et al. (2001) and FEM 
solution by Ramtekkar et al. (2002) has been done.  The results show good agreement with the 
earlier reported results in the literature. 

 
Mode Ramtekkar et al. 

(2002) 
Marur and Kant 

(1996) 
HOBT5 Present 

Mesh 1 

Present 

Mesh 2 

10/(4X90) FOBT HOBT4a HOBT4b 

1 1.376 1.432 1.483 1.434 1.416 1.384 1.415 

2 2.791 3.597 3.806 3.614 3.531 3.509 3.522 

3 3.480 5.750 6.153 5.870 5.675 5.431 5.667 

4 5.577 7.856 8.457 8.114 7.795 5.687 7.766 

5 7.696 9.994 10.809 10.462 10.021 7.759 9.934 

6 9.887 10.932 10.935 10.762 10.668 9.897 10.646 

7 11.107 11.181 12.248 11.110 11.110 11.109 11.109 

8 11.597 12.104 13.132 12.807 12.285 12.067 12.109 

9 12.189 14.319 15.575 15.253 14.633 14.254 14.324 

10 14.062 15.868 16.468 15.839 15.663 15.1055 15.632 

11 15.871 16.673 18.166 17.873 17.244 16.463 16.467 

12 16.178 19.147 20.889 20.611 19.981 16.686 18.924 

13 19.294 - 21.709 21.430 21.108 18.677 21.011 

14 20.314 21.855 - - - 20.991 21.022 

15 - - - - - 22.069 22.746 

Table 5: Comparison of non-dimensional natural frequencies ( )2
1a h Eω ω ρ= × ×  of a simply supported 

thick un-symmetrically laminated composite beam (0o/90o/0o/90o/0o/90o) 

( 1E = 525 GPa, 2E = 21 GPa, 12G = 10.50 GPa, 12ν = 0.3, Density ( ρ )= 800 Ns2/m4, Length = 762 mm, 

Breadth = 25.4 mm, Depth = 152.4 mm) 

 
3.2.3 Example 5 

A symmetric cross-ply (0°/90°/90°/0°) thin beam under simple support condition is considered for 
free vibration analysis. The non-dimensional natural frequencies (ω ) obtained from the present 
investigation are compared in Table 6, with the first order beam theory FOBT (4a) by Marur and 
Kant (1996), HOBT by Kant et al. (1998) and the mixed theory by Rao et al. (2001) and FEM 
solution by Ramtekkar et al. (2002). Results have been observed to be in very good agreement with 
the HOBT and the mixed theory. 

 
3.2.4 Example 6 

A four layered angle ply beam with layup ( θ °/- θ °/- θ °/ θ °) is considered in this example. To 
study the influence of ply angle, fundamental natural frequencies of laminated beam are determined  
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Mode Marur and Kant (1996)  
FOBT 

Kant et al. (1998)  
HOBT 

Rao et al. 
(2001) 

Ramtekkar et al. 
(2002) 

Present 

Mesh 1 

Present 

Mesh 2 

1 2.512 2.516 2.513 2.516 2.519 2.518 
2 8.589 8.669 8.660 8.673 8.682 8.683 
3 16.045 16.320 16.330 11.439 16.378 16.3803 
4 23.795 24.371 24.436 16.383 17.199 24.529 
5 - - - 24.613 24.537 32.846 
6 - - - 33.087 32.829 34.272 
7 - - - 39.493 41.138 41.009 
8 - - - 41.827 49.328 49.911 
9 - - - 50.869 51.110 57.709 
10 - - - 57.907 57.692 67.783 
11 - - - 70.367 66.216 67.979 
12 - - - 73.415 75.743 74.927 
13 - - - 85.748 83.753 87.663 
14 - - - 99.837 86.072 94.738 
15 - - - 100.101 97.077 98.978 
16 - - - 116.524 108.294 108.598 
17 - - - 119.522 114.234 118.252 
18 - - - 125.950 118.106 119.548 
19 - - - 127.136 119.547 124.985 
20 - - - - 125.742 127.233 

Table 6: Comparison of non-dimensional natural frequencies ( )2
1a h Eω ω ρ= × ×  of a simply supported 

thick un-symmetrically laminated composite beam (0o/90o/90o/0o) 

( 1E = 1.448x108 kN/mm2, 2E = 9.65x106 kN/mm2, 12G = 4.14x106 kN/mm2,, 12ν = 0.3, Density ( ρ )=  

1839.23 Ns2/m4, Length = 15 m, Breadth = Depth = 1 m) 

 

BC Source 
Ply angle ' θ °' 

0° 15° 30° 45° 60° 75° 90° 

SS Adyodgu (2006) 2.651 1.896 1.141 0.804 0.736 0.725 0.729 

 Present Mesh 1 (10/(3x60)) 2.615 1.386 0.749 0.721 0.731 0.705 0.731 

 Present Mesh 2 (10/(2x60)) 2.614 1.386 0.749 0.720 0.730 0.705 0.730 

CC Adyodgu (2006) 4.973 4.294 2.195 1.929 1.669 1.612 1.619 

 Present Mesh 1 (10/(3x60)) 4.676 2.906 1.662 1.604 1.628 1.577 1.632 

 Present Mesh 2 (10/(2x60)) 4.670 2.903 1.659 1.601 1.624 1.573 1.628 

CF Adyodgu (2006) 0.981 0.676 0.414 0.288 0.262 0.258 0.260 

 Present Mesh 1 (10/(3x60)) 0.973 0.500 0.268 0.258 0.261 0.252 0.261 

 Present Mesh 2 (10/(2x60)) 0.973 0.500 0.268 0.257 0.261 0.252 0.261 

FC Present Mesh 1 0.973 0.500 0.268 0.258 0.261 0.252 0.261   

Table 7: Variation of non-dimensional fundamental frequency ( )2
1a h Eω ω ρ= × ×  of a four layer angle ply 

laminated beam ( θ °/ θ− °/ θ− °/ θ °) under different boundary conditions (BC). 

( 1E = 144.8 GPa, 2 3E E= = 9.65 GPa, 12 13G G= = 4.14 GPa, 23G = 3.45 GPa, 12 13 23ν ν ν= = = 0.3, 

Density ( ρ )= 1389.23 Ns2/m4, Length = 381 mm, Breadth = 25.4 mm, Depth = 25.4 mm) 



U.N. Band and Y.M. Desai / Multi-model finite element scheme for static and free vibration analyses of composite laminated beams         2075 

Latin American Journal of Solids and Structures 12 (2015) 2061-2077 

 

for θ = 0°, 15°, 30°, 45°, 60°, 75°, 90°. Simply supported at both ends (SS), clamped at both ends 
(CC) and clamped free (CF) boundary conditions are considered. CF condition with Mesh 1 
meshing pattern has a stack of 2D mixed elements at the clamped end and remaining domain is 
modelled with HOSTB8 elements. An end condition, free clamped (FC) is also considered with 
Mesh 1 meshing pattern having the stack of 2D mixed elements at the free end. The non-dimensional 
fundamental frequencies are compared with those presented by Adyodgu (2006) in Table 7. 
Variation of the fundamental frequency with the ply angle for  boundary condition (SS) is shown 
in Fig 6. Except for θ = 15° and 30°, natural frequencies for all other orientation of plies are in 
close proximity of those presented by Adyodgu (2006). The consistency between results of the two 
meshing patterns under all boundary conditions strengthens the efficacy of the combined mesh 
model. 

 

 
Figure 6: Variation of non-dimensional fundamental frequency of a four layer angle ply SS beam 

( θ °/- θ °/- θ °/ θ °) with ply angle. 

 
The results of above examples illustrate that the present multi-modelling scheme is apt for complete 
analysis of laminated beams. The accuracy requirements are fulfilled without sacrificing the 
computational efficiency. Continuity of transverse stresses is also ensured. It is observed that 
Ramtekkar et al. (2002) presented few frequencies which were not reported earlier in the literature. 
Present combined mesh model misses out on few of those additional frequencies reported in 
Ramtekkar et al. (2002) but on the other hand some new frequencies are encountered. The 
genuineness of these new frequencies is under investigation by the authors. 

 

4 CONCLUSION 

A finite element formulation is presented which combines the higher order ESL sub-domain to 2D 
mixed LW sub-domain using a transition element. It is observed that a reasonably good accuracy 
is achieved in the estimation of the deformations, stresses.and natural frequencies. Parallely a 
substantial reduction in the global DOF can be observed as compared to full 2D LWT model due 
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to reduction in number of elements rquired for the entire domain. This makes the procedure 
computationally economical. Increase in the size of the local LW mixed sub-domain would make 
the mesh to tend towards full LW modeling and the methodology may loose its advantage. An 
accuracy above 90% in comparison with elasticity solution is seen to be achieved by using LW 
mixed model on 25% to 40% of the entire domain. The present combined formulation overcome the 
shortcoming of ESL in prediction of continuity of the transverse stresses. The method suggested is 
confirming to the elasticity principles as both the models used on the sub-domains are derived from 
the elasticity equations and two dimensional state of stress and strain. The results given by the 
developed model show reasonably good accuracy as compared with the benchmarks from the 
literature. 
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