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Abstract 
The conventional Timoshenko piezoelectric beam finite elements 
based on First-order Shear Deformation Theory (FSDT) do not 
maintain the accuracy and convergence consistently over the ap-
plicable range of material and geometric properties. In these ele-
ments, the inaccuracy arises due to the induced potential effects in 
the transverse direction and inefficiency arises due to the use of 
independently assumed linear polynomial interpolation of the field 
variables in the longitudinal direction. In this work, a novel 
FSDT-based piezoelectric beam finite element is proposed which is 
devoid of these deficiencies. A variational formulation with con-
sistent through-thickness potential is developed. The governing 
equilibrium equations are used to derive the coupled field rela-
tions. These relations are used to develop a polynomial interpola-
tion scheme which properly accommodates the bending-extension, 
bending-shear and induced potential couplings to produce accurate 
results in an efficient manner. It is noteworthy that this consist-
ently accurate and efficient beam finite element uses the same 
nodal variables as of conventional FSDT formulations available in 
the literature. Comparison of numerical results proves the con-
sistent accuracy and efficiency of the proposed formulation irre-
spective of geometric and material configurations, unlike the con-
ventional formulations.    
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1 INTRODUCTION 

Beam formulations are widely used for the numerical analysis of one dimensional piezoelectric struc-
ture (Marinkovic and Marinkovic, 2012). Analytical formulations (Crawley and de Luis, 1987; 
Abramovich and Pletner, 1997; Crawley and Anderson, 1990) and finite elements (Bendary et al., 
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2010; Kumar and Narayanan, 2008; Sulbhewar and Raveendranath, 2014a) based on the Euler-
Bernoulli beam theory can be effectively used for the analysis of thin and slender piezoelectric smart 
beams. However, Euler-Bernoulli theory neglects the deformation due to shear and hence not suita-
ble for thick and short beams. Sandwich Beam Theory (SBT) based analytical formulation (Zhang 
and Sun, 1996) and finite element formulations (Benjeddou et al., 1997, 2000; Raja et al., 2002) 
considered the thicker core as a Timoshenko beam and the relatively thinner faces as Euler-
Bernoulli beams. However, SBT is not suitable for short beams with thick piezoelectric layers. Ti-
moshenko beam formulations based on the First-order Shear Deformation Theory (FSDT) consider 
constant shear strain across the beam cross-section. Analytical formulations (Abramovich, 1998; 
Aldraihem and Khdeir, 2000; Khdeir and Aldraihem, 2001) and finite elements (Robbins and Red-
dy, 1991; Shen, 1995; Narayanan and Balamurugan, 2003; Ray and Mallik, 2004; Neto et al., 2009) 
based on FSDT are widely used in the literature for the analysis of piezoelectric smart structures. 

Accuracy of the conventional FSDT-based piezoelectric beam finite elements (Shen, 1995; Nara-
yanan and Balamurugan, 2003; Ray and Malik, 2004; Neto et al., 2009) is adversely affected by the 
induced potential effects. These elements consider linear through-thickness distribution of electric 
potential which is actually nonlinear by virtue of the induced potential. The accuracy can be im-
proved using assumed higher-order approximation of through-thickness electric potential (Jiang and 
Li, 2007; Kapuria and Hagedorn, 2007; Wang et al., 2007; Beheshti-Aval and Lezgy-Nazargah, 2012, 
2013). However, assumed higher-order potential distribution in the formulation introduces addition-
al nodal electrical degrees of freedom in the transverse direction and hence increases the computa-
tional cost. An alternate efficient way to include the higher-order induced potential in FSDT-based 
formulation is to use the consistent through-thickness potential distribution derived from the elec-
trostatic equilibrium equation (Sulbhewar and Raveendranath, 2014b).   

Also, convergence of the conventional two-noded isoparametric FSDT-based piezoelectric beam 
element (Narayanan and Balamurugan, 2003) depends on the extent of the extension-bending and 
bending-shear couplings. Recently, Sulbhewar and Raveendranath (2015) proposed a novel FSDT 
piezoelectric beam finite element based on coupled polynomials for field variables which showed 
improved convergence. However, this element is not consistently accurate as the governing equa-
tions used to define coupled shape functions in this formulation are based on the assumed linear 
through-thickness potential. The associate errors are prominent for beams with piezoelectrically 
dominant cross-sections and/or with higher piezoelectric coefficients. An ideal FSDT-based formula-
tion which is accurate and efficient over all geometric and material configurations of the piezoelec-
tric beam should incorporate the induced potential coupling along with other mechanical couplings 
at the field interpolation level itself. 

In the present work, an attempt is made to develop a novel FSDT piezoelectric beam formula-
tion which is consistently accurate and efficient throughout the applicable range of geometric and 
material properties. The governing equations are derived using the variational formulation based on 
FSDT in conjunction with the consistent through-thickness potential. The relations established 
tween field variables are used to define coupled quadratic polynomials for axial displacement ( 0u ) 

and section rotation ( ), having contributions from the assumed cubic polynomial for transverse 
displacement ( 0w ) and assumed linear polynomials for layerwise electric potential variables ( i ). 

The shape functions based on these polynomials efficiently handle change in stiffness due to the 
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induced potential along with bending-extension and bending-shear couplings, in an efficient manner. 
Comparison of results from the present and the conventional formulations against ANSYS 2D 
benchmark simulation results proves the improved accuracy of the present formulation over the 
conventional formulations. Convergence studies are carried out to prove the improved convergence 
characteristics of the present FSDT element over the conventional isoparametric FSDT beam ele-
ments.  It is noteworthy that owing to the fully coupled polynomial representation for section rota-
tion and coupled quadratic term in the interpolation polynomial for axial displacement and trans-
verse electric potential, the improved performance has been achieved with the same number of nod-
al degrees of freedom as of conventional two-noded isoparametric FSDT-based piezoelectric beam 
element.   
 
2 THEORETICAL FORMULATION 

An equivalent single layer (ESL) FSDT model for mechanical fields and a layerwise model for elec-
tric potential ( ) are employed for the proposed formulation. Consider a general multilayered ex-

tension mode piezoelectric smart beam with total number of layers n, as shown in Figure 1. The 
layers can be host layer(s) of conventional material or bonded/embedded layers of piezoelectric 
material. The beam layers are assumed to be made up of isotropic or specially orthotropic materials 
with perfect bonding among them. Top and bottom faces of piezoelectric layers are fully covered 
with electrodes. Mechanical and electrical quantities are assumed to be small enough to apply linear 
theories of elasticity and piezoelectricity and assumptions of beam theory apply. 
 
 

 

Figure 1: Geometry of a general multilayered piezoelectric smart beam. 
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2.1 Reduced Constitutive Relations 

For a general piezoelectric smart structure, the elastic ( , 1.....6)ijC i j  , piezoelectric  

( 1,2,3; 1.....6)kje k j   and dielectric ( 1,2,3)k k  constants relate the mechanical and electrical vari-

ables through the three-dimensional constitutive relations. An extension mode piezoelectric smart 
beam with axes of material symmetry parallel to the beam axes is considered here. For extension 
mode, the transversely poled piezoelectric material is subjected to the transverse electric field. For 
such a beam, the general constitutive relations are reduced according to beam theory, which are 
given as (Sulbhewar and Raveendranath 2014 b): 
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 (1) 

 

where ( i=1….number of piezoelectric layers), ( k =1…..n). , , , , D     and E  denote the axial 

stress ( 2N m ), shear stress ( 2N m ), normal strain, shear strain, electric displacement ( 2C m ) and 

electric field (V m ), respectively. The constants ( 1,5),iiQ i e   and   denote reduced elastic ( 2N m ), 

piezoelectric ( 2C m ) and dielectric ( F m ) properties, respectively. 

 
2.2 Mechanical Displacements and Strains 

The mechanical displacement fields in the longitudinal and transverse directions for FSDT are given 
as (Narayanan and Balamurugan, 2003): 
 

0( , ) ( ) ( )u x z u x z x   (2) 
 

0( , ) ( )w x z w x  (3)
 

0( )u x  and 0 ( )w x  are the centroidal axial and transverse displacements, respectively.   is the sec-

tion rotation of the beam. Dimensions , ,L b h  denote the length, width and the total thickness of the 

beam, respectively.  
Axial and shear strain fields are derived using usual strain-displacement relations as: 
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where () '  denotes derivative with respect to x . 
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2.3 Electric Potential and Electric Field 

The layerwise two dimensional electric potential ( , )i x z  takes the values of 1( )i x   and ( )i x  at 

the top and bottom faces of thi  piezolayer, respectively as shown in Figure 1. The through-thickness 
distribution of electric potential ( , )i x z  consistent with FSDT is used (Sulbhewar and 

Raveendranath, 2014b): 
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where 
 

 1 1 1/ 2; ; ( ) / 2i i i i i i i i iz z z            
 

 

The first two terms of expression (6) describe the conventional linear part in which i  and i  

are the mean and difference, respectively, of the top and bottom surface potentials of the thi  piezoe-
lectric layer. The quadratic term represents the coupling between curvature strain and electric po-
tential which constitutes induced potential.  

The layerwise electric field ( i
zE ) is obtained from equation (6) as (Sulbhewar and 

Raveendranath, 2014b): 
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3 VARIATIONAL FORMULATION 

The formulation is based on Hamilton’s principle which implicitly takes care of natural boundary 
conditions. It is expressed as (Chee et al., 1999): 
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where, K =kinetic energy, H =electric enthalpy density function for piezoelectric material and 
mechanical strain energy for the linear elastic material and W =external work done. 
 
3.1 Variation of Electromechanical/Strain Energy 

The electromechanical/strain energy variation of the piezoelectric smart beam is given as (Chee et 
al., 1999): 
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Substituting values of axial strain ( x ), shear strain ( xz ), electric field ( i
zE ) from equations 

(4), (5), (7) and using them along with constitutive relations given by equation (1) in expression 
(9); the total variation on the potential energy of the smart beam is given as: 
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where    
 
3.2 Variation of Kinetic Energy 

Total kinetic energy of the beam is given as (Chee et al., 1999): 
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where k  is the mass density of thk  layer in 3kgm  and ( k =1…n).  Substituting values of u  and 

w  from equations (2) and (3) and applying variation, to derive at: 
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where 
.

() denotes t  . 

 
3.3 Variation of Work of External Forces 

Total virtual work of the structure can be defined as the product of virtual displacements with forc-
es for the mechanical work and the product of the virtual electric potential with the charges for the 
electrical work. The variation of total work done by external mechanical and electrical loading is 
given by (Chee et al., 1999): 
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in which , ,V S Cf f f  are volume, surface and point forces, respectively. 0q  and S  are the charge 

density and area on which charge is applied. 
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4 DERIVATION OF COUPLED FIELD RELATIONS  

The relationship between the field variables is established here using static governing equations. For 
static conditions without any external loading, the variational principle given in equation (8) reduc-
es to (Sulbhewar and Raveendranath, 2015): 
 

0H  (14)
 

Applying variation to the basic variables in equation (10), the static governing equations are 
obtained as: 
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Assuming that the higher order continuous derivatives of variables appearing in the governing 
equation (17) exist, we can write: 
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Using equations (15) and (18), we can write the relationship of axial displacement ( 0u ) with 

transverse displacement ( 0w ) and electric potential variable ( i ) as: 
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From equations (16)-(19), we can write the relationship of section rotation ( ) with transverse 
displacement ( 0w ) and electric potential variable ( i ) as: 
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These equations for ''
0u  and   are used in the next Section to derive coupled polynomial ex-

pressions for the field variables. It is clear that the coupling coefficients ( 1,2,3,4)j j   which de-

pend on geometric and material properties of the beam, relate all the field variables by properly 
accommodating bending-extension, bending-shear and induced potential couplings. It is noteworthy 

that the constants ( 1,2,3,4) ( , , )n
mA m n u w   appearing in equations (15)-(17), which are used to 

define the coupling coefficients ( 1,2,3,4)j j   are different from those given in the Sulbhewar and 

Raveendranath (2015). The constants 
n
mA  in the present formulation contain additional stiffness 

terms (shown in curly braces) due to the induced potential effects. It may be noted that this in-

duced stiffness is proportional to 2
31 3( )i ie    which bears the same unit (N/m2) as of elastic modulus 

11Q . Hence, the quantity 2
31 3( )i ie    may be termed as ‘induced modulus’. 

 
5 FINITE ELEMENT FORMULATION 

Using the variational formulation described above, a finite element model is developed here. The 
two-noded beam element considered here is based on FSDT with layerwise electric potential in the 
transverse direction. There are three mechanical variables in the formulation namely, 0 0,u w and 

 and layerwise electric potential variables i  where ( i  =1.....number of piezoelectric layers in the 

beam). 
The equations (19) and (20), derived using the governing equilibrium equations, demand con-

tinuous third order derivative of 0w  and first order derivative of i . Hence, in terms of the natural 

coordinate  , a cubic polynomial for transverse displacement 0w  and linear polynomials for layer-

wise electric potential variable i  are assumed as given in equations (21 a) and (21 b), respectively.  

The transformation between the local coordinate and the global coordinate x along the length of 

the beam is given as  1 2 12( ) / ( ) 1x x x x      and 2 1( )x x l  , length of the beam element. 
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Using equations (21 a) and (21 b) in equation (19) and integrating with respect to  , we get 

the coupled polynomial for axial displacement 0u as: 
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It is noted that the coupled quadratic term in equation (22) contains contributions from 0w  and 

i  fields and does not bring in any additional generalized degree of freedom.  

Substituting equations (21 a) and (21 b) in equation (20), the coupled polynomial expression for 
the section rotation   is derived as: 
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Equation (23) interpolates   by purely coupled terms with contributions from 0w  and i  

fields. 
It is noteworthy that equations (22) and (23) take care of extension-bending, bending-shear and 

induced potential couplings in a variationally consistent manner with the help of coupled terms 
present in the description of axial displacement and section rotation.  

Using equations (21)-(23), the coupled shape functions [ ] ( 1..8)u
mN m  , [ ] ( 1..6)w

mN m  , 

[ ] ( 1..6)mN m   and [ ] ( 1,2)i
mN m   which relate the field variables to their nodal values as given in 

equation (24) are derived by usual method. The expressions for shape functions are given in Appen-
dix. 
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As noted from the equation (24), while employing quadratic polynomials for axial displacement 

0u and section rotation   in the present FSDT formulation, the number and type of nodal variables 

are maintained the same as of the conventional isoparametric FSDT formulation.  
The variation on basic mechanical and electrical variables can now be transferred to nodal de-

grees of freedom. Substituting equation (24) in equations (10), (12), (13) and using them in equa-
tion (8), the following discretized form of the model is obtained: 
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 (25)

 

where M  is mass matrix, , , ,uu u uK K K K    are global stiffness sub-matrices. ,U   are the global 

nodal mechanical displacement and electric potential degrees of freedom vectors, respectively. F  
and Q  are global nodal mechanical and electrical force vectors, respectively.  The matrix equations 

are now solved according to electrical conditions (open/closed circuit), configuration (actua-
tor/sensor) and type of analysis (static/dynamic).  
 
6 NUMERICAL EXAMPLES AND DISCUSSIONS 

The software implementation of the present formulation has been carried out in MATLAB envi-
ronment.  The accuracy and efficiency of the proposed FSDT finite element are tested here for stat-
ic (actuation/sensing) and modal (open/closed circuit) analyses and its performance is compared 
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against the conventional two-noded isoparametric FSDT piezoelectric beam finite element available 
in the literature. The following designations are used: 

 FSDT-Coupled: The present formulation which uses  the coupled polynomials (cubic for 

0w  given by equation (21 a), coupled quadratic for 0u  given by equation (22), coupled 

quadratic for   given by equation (23) and linear for i  given by equation (21 b)) for inter-

polation of field variables and layerwise consistent through-thickness potential ( coupled 
quadratic approximation in z direction given by equation (6)).  

 FSDT: The conventional FSDT formulation of Narayanan and Balamurugan (2003) which 
uses independent polynomials for field interpolation (linear for 0 0, ,u w   and i ) and layer-

wise assumed linear through-thickness potential.  
 ANSYS 2D: For a comparative evaluation of the above FSDT formulations, benchmark 

solutions have been obtained from a refined two-dimensional analysis using ANSYS finite el-
ement software, for which PLANE 183 elements are used to mesh conventional material lay-
ers, while PLANE 223 elements are used to mesh piezoelectric material layers.   

 
6.1 Example 1: A Symmetric Bimorph Beam 

A bimorph cantilever beam with oppositely poled piezoelectric layers as shown in Figure 2 is con-
sidered here.  In order to study the effect of material properties on the performance of the FSDT 
elements, the following materials are used while the geometry is fixed ( 10 , 100h mm L mm  ).  

PVDF (Sun and Huang, 2000): 
2 9 1 32 , 0.29, 0.046 , 0.1062 10 , 1800E Gpa e Cm Fm kgm          . 

PZT 2 (EFunda.com, 2014) 
   
       

11 12 13 22 23 33 44 55 66
2 9 1

31 32 33 1 2 3
3

, , , , , , , , 134.87,67.89,68.09,134.87,68.09,113.30,22.22,22.22,33.44

, , 1.8160, 1.8160,9.0506 , , 8.7655,8.7655,3.9843 10

7600

C C C C C C C C C GPa

e e e Cm Fm

kgm

  





       

  

PZT 4 (EFunda.com, 2014) 
   
       

11 12 13 22 23 33 44 55 66
2 8 1

31 32 33 1 2 3
3

, , , , , , , , 139,77.84,74.28,139,74.28,115.41,25.64,25.64,30.58

, , 5.2028, 5.2028,15.0804 , , 1.3060,1.3060,1.1510 10

7500

C C C C C C C C C GPa

e e e Cm Fm

kgm

  





       

  

PZT-5H (Kapuria and Hagedorn, 2007): 
   
       

11 12 13 22 23 33 44 55 66
2 8 1 3

31 32 33 1 2 3

, , , , , , , , 126,79.5,84.1,126,84.1,117,23,23,23.25

, , 6.5, 6.5,23.3 , , 1.503,1.503,1.3 10 7500

C C C C C C C C C GPa

e e e Cm Fm kgm   



          

PZT 5A (EFunda.com, 2014) 
   
       

11 12 13 22 23 33 44 55 66
2 8 1

31 32 33 1 2 3
3

, , , , , , , , 120.35,75.18,75.09,120.35,75.09,110.87,21.05,21.05,22.57

, , 5.3512, 5.3512,15.7835 , , 1.5317,1.5317,1.5052 10

7750

C C C C C C C C C GPa

e e e Cm Fm

kgm

  





       

  
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PZT 8 (EFunda.com, 2014) 
   
       

11 12 13 22 23 33 44 55 66
2 8 1

31 32 33 1 2 3
3

, , , , , , , , 146.88,81.09,81.05,146.88,81.05,131.71,31.35,31.35,32.89

, , 3.8754, 3.8754,13.9108 , , 1.1422,1.1422,0.8854 10

7600

C C C C C C C C C GPa

e e e Cm Fm

kgm

  





       

  

G1195N (Peng et al., 1998): 12 1 2
31 31 3163 , 0.3, 254 10 , ,E GPa d mV e E d Cm          

9 1 3
3 15 10 , 7600Fm kgm      . 

 

 

Figure 2: Example 1: Geometry of a bimorph cantilever beam. 

 
For a comparative evaluation of accuracy of various FSDT-based formulations, converged re-

sults from a refined mesh of 40 elements have been used. Converged results from an ANSYS 2D 
simulation with a mesh of 100 10 elements are used as a benchmark.  

Static Analysis-Actuator Configuration: In this configuration, the interface of the bimorph is 
grounded and the voltages of 10volts  are applied on the free surfaces. Table 1 and 2 show the 

results for the tip deflection and the maximum axial stress developed in the bimorphs of different 
materials, respectively. Also, the associated absolute errors calculated with respect to ANSYS 2D 
benchmark solutions are presented in brackets. As seen from the tables, the conventional FSDT 
formulation (Narayanan and Balamurugan, 2003) fails to produce consistently accurate results. The 

percentage errors increase with the modulus ratio  2
31 3 11/e Q    (the ratio of induced modulus to 

elastic modulus) of the material. The present FSDT-Coupled element predicts accurate results for 
all the bimorphs, irrespective of the modulus ratio. This consistent performance of the present for-
mulation can be attributed to the accommodation of induced potential effects through the coupled 
interpolation polynomials.  

Static Analysis-Sensor Configuration: Here, the beam shown in Figure 2 is subjected to a tip 
load of 1000 N. The results for the tip deflection, potential developed at the mid-span and the max-
imum axial stress developed at the root of the bimorphs of different materials are tabulated in the 
Tables 3, 4 and 5, respectively. The associated absolute errors (in percentage) with respect to AN-
SYS 2D benchmark solutions are presented in brackets. As seen from the tables, the present FSDT-
Coupled consistently reproduces the ANSYS 2D simulation results for all the bimorphs, unlike the 
conventional formulation.  The accuracy of the present FSDT-Coupled formulation is practically 
insensitive to the material properties of the beam. 
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Materials Modulus ratio 
FSDT (Narayanan and 
Balamurugan, 2003) 

ANSYS 2D FSDT-Coupled 

PVDF 0.0100 0.0690 (0.291 %) 0.0688 0.0688 (0.000 %) 

PZT-2 0.0589 0.1800 (1.408 %) 0.1775 0.1774 (0.056 %) 

PZT-8 0.0687 0.2910 (1.677 %) 0.2862 0.2861 (0.035 %) 

PZT-4 0.0773 0.3690 (1.906 %) 0.3621 0.3620 (0.028 %) 

PZT-5A 0.0849 0.5130 (2.090 %) 0.5025 0.5023 (0.040 %) 

PZT-5H 0.1751 0.8244 (4.328 %) 0.7902 0.7899 (0.038 %) 

G1195N 0.2710 0.7620 (6.723 %) 0.7140 0.7137 (0.042 %) 

Table 1: Example 1: Absolute tip deflection ( m ) of the bimorph cantilever beams of  

different piezoelectric materials actuated by ±10 volts. (The absolute errors in  
percentage are given with respect to ANSYS 2D simulation.) 

 

Materials Modulus ratio 
FSDT (Narayanan and 
Balamurugan, 2003) 

ANSYS 2D FSDT-Coupled 

PVDF 0.0100 0.0460 (0.648 %) 0.0463 0.0463 (0.000 %) 

PZT-2 0.0589 5.1724 (4.174 %) 5.3977 5.3977 (0.000 %) 

PZT-8 0.0687 8.4348 (4.810 %) 8.8610 8.8618 (0.009 %) 

PZT-4 0.0773 10.000 (5.366 %) 10.567 10.569 (0.019 %) 

PZT-5A 0.0849 10.427 (5.868 %) 11.077 11.077 (0.000 %) 

PZT-5H 0.1751 16.492 (11.18 %) 18.567 18.567 (0.000 %) 

G1195N 0.2710 16.002 (15.99 %) 19.048 19.048 (0.000 %) 

Table 2: Example 1: Absolute maximum axial stress developed (kPa) in the bimorph cantilever  
beams of different piezoelectric materials actuated by ±10 volts. (The absolute errors in  

percentage are given with respect to ANSYS 2D simulation.) 

 

Materials Modulus ratio 
FSDT (Narayanan and 
Balamurugan, 2003) 

ANSYS 2D FSDT-Coupled 

PVDF 0.0100 2000.0 (0.090 %) 1998.2 2000.0 (0.090 %) 

PZT-2 0.0589 44.885 (1.456 %) 44.241 44.268 (0.061 %) 

PZT-8 0.0687 44.065 (1.373 %) 43.468 43.364 (0.239 %) 

PZT-4 0.0773 46.894 (1.661 %) 46.128 46.061 (0.145 %) 

PZT-5A 0.0849 62.147 (1.752 %) 61.077 60.942 (0.221 %) 

PZT-5H 0.1751 59.349 (3.757 %) 57.200 57.156 (0.077 %) 

G1195N 0.2710 53.180 (5.247 %) 50.529 50.368 (0.319 %) 

Table 3: Example 1: Absolute tip deflection ( m ) of the bimorph cantilever beams of  

different piezoelectric materials subjected to a tip load of 1000 N. (The absolute errors in  
percentage are given with respect to ANSYS 2D simulation.) 
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Materials Modulus ratio 
FSDT (Narayanan and 
Balamurugan, 2003) 

ANSYS 2D FSDT-Coupled 

PVDF 0.0100 1612.2 (0.261 %) 1608.0 1608.3 (0.019 %) 

PZT-2 0.0589 81.813 (1.411 %) 80.675 80.675 (0.000 %) 

PZT-8 0.0687 58.055 (1.642 %) 57.117 57.123 (0.011 %) 

PZT-4 0.0773 54.778 (1.835 %) 53.791 53.795 (0.007 %) 

PZT-5A 0.0849 57.410 (2.001 %) 56.284 56.287 (0.005 %) 

PZT-5H 0.1751 70.381 (3.871 %) 67.758 67.758 (0.000 %) 

G1195N 0.2710 105.55 (5.628 %) 99.926 99.924 (0.002 %) 

Table 4: Example 1: Potential developed (volts) at the mid-span of the bimorph cantilever  
beams of different piezoelectric materials subjected to a tip load of 1000 N. (The absolute  

errors in percentage are given with respect to ANSYS 2D simulation.) 

 
 

Materials Modulus ratio 
FSDT (Narayanan and 
Balamurugan, 2003) 

ANSYS 2D FSDT-Coupled 

PVDF 0.0100 5.955 (0.750 %) 6.000 5.993 (0.117 %) 

PZT-2 0.0589 5.886 (2.517 %) 6.038 5.993 (0.745 %) 

PZT-8 0.0687 5.873 (2.861 %) 6.046 5.994 (0.860 %) 

PZT-4 0.0773 5.862 (3.011 %) 6.044 5.994 (0.827 %) 

PZT-5A 0.0849 5.852 (3.305 %) 6.052 5.994 (0.958 %) 

PZT-5H 0.1751 5.741 (5.076 %) 6.048 5.994 (0.893 %) 

G1195N 0.2710 5.636 (6.812 %) 6.048 5.994 (0.893 %) 

Table 5: Example 1: Absolute maximum axial stress developed (MPa) at the root of the bimorph  
cantilever beams of different piezoelectric materials subjected to a tip load of 1000 N.  
(The absolute errors in percentage are given with respect to ANSYS 2D simulation.) 

 
 

The convergence graphs plotted in Figures 3 and 4 for the tip deflection and potential devel-
oped at the root, respectively, compare the efficiency of the FSDT-based piezoelectric beam finite 
elements. The G1195N bimorph which has the highest modulus ratio among the chosen materials is 
taken as a particular example for this study. The FSDT-Coupled shows single-element convergence, 
closely reproducing the ANSYS-2D solutions for both the tip deflection and the potential developed. 
The conventional FSDT (Narayanan and Balamurugan, 2003) overestimates the response as it ne-
glects induced potential effects. 
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Figure 3: Example 1: Sensor configuration: Convergence characteristics of the FSDT-based piezoelectric beam finite  

elements to predict the tip deflection of the G1195N bimorph cantilever beam subjected to a tip load of 1000 N. 

 

 

Figure 4: Example 1: Sensor configuration: Convergence characteristics of the FSDT-based piezoelectric  

beam finite elements to predict the potential developed at the root of the G1195N bimorph cantilever  

beam subjected to a tip load of 1000 N. 

 
Modal Analysis: The accuracy and efficiency of the FSDT elements in predicting the natural 

frequencies of the bimorph cantilever beam shown in Figure 2 are compared here. The natural fre-
quencies are evaluated for closed and open circuit electrical boundary conditions, with different 
materials. For open circuit, only the interface of the bimorph is grounded while, for closed circuit all 
the faces of bimorph are grounded. The results tabulated in Table 6 reveal the inability of conven-
tional FSDT formulation to maintain the accuracy over the different bimorph materials. The con-
sistent accuracy of the present FSDT-Coupled results validates the use of coupled polynomial shape 
functions in generating the element mass matrix consistent with the element stiffness matrix. 
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Materials Modulus ratio 
FSDT (Narayanan and 
Balamurugan, 2003) 

ANSYS 2D FSDT-Coupled 

Open circuit 

PVDF 0.0100 169.74 (0.135 %) 169.97 169.94 (0.018 %) 

PZT-2 0.0589 550.61 (0.736 %) 554.69 554.41 (0.051 %) 

PZT-8 0.0687 556.12 (0.822 %) 560.73 560.59 (0.025 %) 

PZT-4 0.0773 542.14 (0.852 %) 546.80 547.38 (0.106 %) 

PZT-5A 0.0849 463.68 (1.012 %) 468.42 468.22 (0.043 %) 

PZT-5H 0.1751 482.37 (1.814 %) 491.28 491.50 (0.045 %) 

G1195N 0.2710 506.16 (2.628 %) 519.82 520.03 (0.040 %) 

Closed circuit 

PVDF 0.0100 169.11 (0.142 %) 169.35 169.32 (0.018 %) 

PZT-2 0.0589 539.01 (0.739 %) 543.02 542.90 (0.022 %) 

PZT-8 0.0687 542.48 (0.960 %) 547.74 547.06 (0.124 %) 

PZT-4 0.0773 527.63 (0.991 %) 532.91 532.63 (0.053 %) 

PZT-5A 0.0849 449.75 (1.189 %) 455.16 454.44 (0.158 %) 

PZT-5H 0.1751 453.81 (2.270 %) 464.35 463.53 (0.177 %) 

G1195N 0.2710 461.90 (3.206 %) 477.20 477.12 (0.017 %) 

Table 6: Example 1: First natural frequency (Hz) of the bimorph cantilever beams of different  
piezoelectric materials with open and closed circuit electrical boundary conditions.  

(The absolute errors in percentage are given with respect to ANSYS 2D simulation.) 

 
Figures 5 and 6 show the comparison of convergence characteristics of FSDT-based piezoelectric 

beam finite element formulations to predict the first natural frequency of the G1195N bimorph in 
open and closed circuit conditions, respectively. FSDT-Coupled shows quick convergence, closely 
reproducing the ANSYS-2D solutions for both open and closed circuit conditions. The conventional 
FSDT (Narayanan and Balamurugan, 2003) model underestimates the response as it neglects in-
duced potential effects. 
 

 

Figure 5: Example 1: Modal analysis: Convergence characteristics of the FSDT-based piezoelectric  

beam finite elements to predict the first natural frequency of the G1195N bimorph cantilever  

beam in open circuit electrical boundary condition. 
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Figure 6: Example 1: Modal analysis: Convergence characteristics of the FSDT-based piezoelectric beam  

finite elements to predict the first natural frequency of the G1195N bimorph cantilever beam in  

closed circuit electrical boundary condition. 

 

6.2 Example 2: A Two-Layer Asymmetric Piezoelectric Beam 

A two-layer asymmetric piezoelectric cantilever beam having a steel host layer with a surface bond-
ed piezoelectric layer of G1195N at the top, as shown in Figure 7 is considered here. The material 
properties used are:  

Steel (Carrera and Brischetto, 2008): 3210 , 0.3, 7850E GPa kgm      

G1195N (Peng et al., 1998): 12 1 2
31 31 3163 , 0.3, 254 10 , ,E GPa d mV e E d Cm          

9 1 3
3 15 10 , 7600Fm kgm      . 

 

Figure 7: Example 2: Geometry of a two-layer asymmetric piezoelectric cantilever beam. 

 
The length and total height of the beam are fixed ( 100 ,L mm 5h mm ), while thicknesses of 

the piezoelectric layer ( ph ) and the host layer ( ch ) are varied. The performance of the FSDT-based 

piezoelectric beam finite elements is evaluated over a wide range of the piezoelectric material pro-
portion in the total beam thickness (thickness ratio: /pr h h ). For a comparative evaluation of ac-

curacy of various FSDT based formulations, converged results from a refined mesh of 40 elements 
have been used. The converged results from an ANSYS 2D simulation with a mesh of 200 20 ele-
ments are used as a benchmark.  
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Static Analysis-Sensor Configuration: In this configuration, the beam shown in Figure 7 is sub-
jected to a tip load of -1000 N. The results for transverse tip deflection, axial tip deflection and 
potential developed across the piezoelectric layer at the mid-span of the beam for various thickness 
ratios are tabulated in Tables 7, 8 and 9, respectively. The present FSDT-Coupled formulation 
proves its versatility, yielding consistently accurate predictions over the entire range of thickness 
ratio.  The conventional FSDT formulation (Narayanan and Balamurugan, 2003) does not maintain 
the consistent accuracy, as it neglects the induced potential coupling. The associated error increases 
rapidly in the higher thickness ratio regimes.  
 

Thickness ratio (r) ANSYS 2D FSDT-Coupled 
FSDT (Narayanan and  
Balamurugan, 2003) 

0.05 -0.1671 -0.1671 (0.000 %) -0.1671 (0.000 %) 

0.1 -0.1819 -0.1819 (0.000 %) -0.1819 (0.000 %) 

0.2 -0.2109 -0.2108 (0.047 %) -0.2110 (0.047 %) 

0.3 -0.2355 -0.2354 (0.042 %) -0.2362 (0.297 %) 

0.4 -0.2523 -0.2521 (0.079 %) -0.2543 (0.793 %) 

0.5 -0.2604 -0.2601 (0.115 %) -0.2647 (1.651 %) 

0.6 -0.2622 -0.2618 (0.153 %) -0.2699 (2.937 %) 

0.7 -0.2630 -0.2625 (0.190 %) -0.2757 (4.829 %) 

0.8 -0.2704 -0.2700 (0.148 %) -0.2914 (7.766 %) 

0.9 -0.2990 -0.2987 (0.100 %) -0.3378 (12.98 %) 

1.0 -0.4008 -0.4005 (0.075 %) -0.5088 (26.95 %) 

Table 7: Example 2: Transverse tip deflection ( mm ) of the asymmetric piezoelectric cantilever beam (Steel/G1195N) 
subjected to a tip load of -1000 N. (The absolute errors in percentage are given with respect to ANSYS 2D simulation.) 

 

Thickness ratio (r) ANSYS 2D FSDT-Coupled 
FSDT (Narayanan and  
Balamurugan, 2003) 

0.05 0.1896 0.1897 (0.053 %) 0.1897 (0.053 %) 

0.1 0.4040 0.4042 (0.050 %) 0.4043 (0.074 %) 

0.2 0.8915 0.8918 (0.034 %) 0.8926 (0.123 %) 

0.3 1.4065 1.4063 (0.014 %) 1.4111 (0.327 %) 

0.4 1.8648 1.8631 (0.091 %) 1.8792 (0.772 %) 

0.5 2.1898 2.1812 (0.393 %) 2.2197 (1.365 %) 

0.6 2.3170 2.3148 (0.095 %) 2.3867 (3.008 %) 

0.7 2.2523 2.2522 (0.004 %) 2.3656 (5.030 %) 

0.8 1.9790 1.9803 (0.065 %) 2.1376 (8.014 %) 

0.9 1.4033 1.4044 (0.078 %) 1.5885 (13.20 %) 

1.0 0.0000 0.0000 (0.000 %) 0.0000 (0.000 %) 

Table 8: Example 2: Axial tip deflection ( m ) of the asymmetric piezoelectric cantilever beam (Steel/G1195N)  

subjected to a tip load of -1000 N. (The absolute errors in percentage are given with respect to ANSYS 2D simulation.) 
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Thickness ratio (r) ANSYS 2D FSDT-Coupled 
FSDT (Narayanan and  
Balamurugan, 2003) 

0.05 16.356 16.355 (0.006 %) 16.355 (0.006 %) 

0.1 34.840 34.848 (0.023 %) 34.851 (0.032 %) 

0.2 76.880 76.880 (0.000 %) 76.950 (0.091 %) 

0.3 121.25 121.24 (0.008 %) 121.66 (0.338 %) 

0.4 160.62 160.62 (0.000 %) 162.01 (0.865 %) 

0.5 188.05 188.05 (0.000 %) 191.36 (1.761 %) 

0.6 199.57 199.57 (0.000 %) 205.76 (3.102 %) 

0.7 194.17 194.16 (0.005 %) 203.94 (5.032 %) 

0.8 170.73 170.72 (0.006 %) 184.29 (7.942 %) 

0.9 121.08 121.07 (0.008 %) 136.95 (13.11 %) 

1.0 000.00  000.00 (0.000 %) 000.00 (0.000 %) 

Table 9: Example 2: Potential developed (volts) at the mid-span of the asymmetric piezoelectric  
cantilever beam (Steel/G1195N) subjected to a tip load of -1000 N. (The absolute  

errors in percentage are given with respect to ANSYS 2D simulation.) 

 
The convergence graphs plotted in Figures 8 and 9 for the transverse tip deflection and the po-

tential developed at the root, respectively, prove the consistent efficiency of the present FSDT-
Coupled formulation, which exhibits single-element convergence to ANSYS-2D solutions. FSDT 
(Narayanan and Balamurugan, 2003) model shows very slow convergence to the inaccurate results, 
due to induced potential effects. 
 

 

Figure 8: Example 2: Sensor configuration: Convergence characteristics of FSDT-based  

formulations to predict the transverse tip deflection of the two-layer asymmetric  

piezoelectric cantilever beam (r=0.5) subjected to a tip load of -1000 N. 
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Figure 9: Example 2: Sensor configuration: Convergence characteristics of FSDT-based  

formulations to predict the potential developed at root of the two-layer asymmetric  

piezoelectric cantilever beam (r=0.5) subjected to a tip load of -1000 N. 

 
Static Analysis-Actuator Configuration:  Here, the beam shown in Figure 7 is actuated by 100 

volts. The variations of transverse and axial deflections at the tip, with thickness ratio are tabulat-
ed in Tables 10 and 11, respectively. The FSDT-Coupled formulation consistently gives accurate 
predictions of results over the entire range of thickness ratio as given by ANSYS 2D simulation. 
The conventional FSDT formulation (Narayanan and Balamurugan, 2003) does not yield consist-
ently accurate results.  
 

Thickness ratio (r) ANSYS 2D FSDT-Coupled 
FSDT (Narayanan and  
Balamurugan, 2003) 

0.05 9.9834 9.9843 (0.009 %) 9.9846 (0.012 %) 

0.1 10.839 10.838 (0.009 %) 10.842 (0.028 %) 

0.2 12.463 12.463 (0.000 %) 12.475 (0.096 %) 

0.3 13.673 13.674 (0.007 %) 13.725 (0.380 %) 

0.4 14.099 14.101 (0.014 %) 14.238 (0.986 %) 

0.5 13.557 13.558 (0.007 %) 13.828 (1.999 %) 

0.6 12.156 12.156 (0.000 %) 12.582 (3.504 %) 

0.7 10.180 10.180 (0.000 %) 10.747 (5.570 %) 

0.8 7.8347 7.8349 (0.002 %) 8.5019 (8.516 %) 

0.9 4.9635 4.9638 (0.006 %) 5.6344 (13.52 %) 

1.0 0.0000 0.0000 (0.000 %) 0.0000 (0.000 %) 

Table 10: Example 2: Transverse tip deflection ( m ) of the asymmetric piezoelectric  

cantilever beam (Steel/G1195N) actuated by 100 volts. (The absolute errors in  
percentage are given with respect to ANSYS 2D simulation.) 
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Thickness ratio (r) ANSYS 2D FSDT-Coupled 
FSDT (Narayanan and  
Balamurugan, 2003) 

0.05 -0.1752 -0.1752 (0.000 %) -0.1752 (0.000 %) 

0.1 -0.2004 -0.2005 (0.049 %) -0.2005 (0.049 %) 

0.2 -0.2583 -0.2584 (0.039 %) -0.2585 (0.077 %) 

0.3 -0.3198 -0.3201 (0.094 %) -0.3206 (0.250 %) 

0.4 -0.3763 -0.3762 (0.027 %) -0.3778 (0.399 %) 

0.5 -0.4168 -0.4170 (0.048 %) -0.4206 (0.912 %) 

0.6 -0.4378 -0.4388 (0.228 %) -0.4450 (1.645 %) 

0.7 -0.4445 -0.4455 (0.225 %) -0.4537 (2.069 %) 

0.8 -0.4459 -0.4461 (0.045 %) -0.4546 (1.951 %) 

0.9 -0.4535 -0.4542 (0.154 %) -0.4599 (1.411 %) 

1.0 -0.5080 -0.5080 (0.000 %) -0.5080 (0.000 %) 

Table 11: Example 2: Axial tip deflection ( m ) of the asymmetric piezoelectric cantilever beam (Steel/G1195N)  

actuated by 100 volts. (The absolute errors in percentage are given with respect to ANSYS 2D simulation.) 
 

Modal Analysis: The FSDT-Coupled formulation is evaluated here for its accuracy and efficien-
cy to predict the natural frequencies of the asymmetric piezoelectric smart beam. The first natural 
frequency of the asymmetric Steel/G1195N beam shown in Figure 7 is computed for both open and 
closed circuit electrical boundary conditions. Table 12 shows the variation of first natural frequen-
cies with thickness ratio. The results of FSDT-Coupled formulation agree very well with the ANSYS 
2D simulation results. The results of the conventional FSDT formulation (Narayanan and Bal-
amurugan, 2003), show significant deviation in the higher thickness ratio regimes where the induced 
potential effects are predominant.  

The consistent efficiency of the present FSDT-Coupled is revealed by the convergence graphs 
for first natural frequency in both open and closed circuit electrical boundary conditions plotted in 
Figures 10 and 11, respectively. As seen from the figures, the FSDT-Coupled gives fast convergence, 
while FSDT (Narayanan and Balamurugan, 2003) model shows very slow convergence to the inac-
curate results, due to induced potential effects. 
 

 

Figure 10: Example 2: Modal Analysis: Convergence characteristics of FSDT-based formulations to  

predict the first natural frequency of the two-layer asymmetric piezoelectric  

cantilever beam (r=0.5) in open circuit electrical boundary condition. 
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Thickness ratio (r) ANSYS 2D FSDT-Coupled 
FSDT (Narayanan and  
Balamurugan, 2003) 

Open circuit 
0.05 399.07 398.93 (0.035 %) 398.93 (0.035 %) 
0.1 382.81 382.67 (0.037 %) 382.66 (0.039 %) 
0.2 356.16 356.03 (0.037 %) 355.87 (0.081 %) 
0.3 337.57 337.45 (0.036 %) 336.89 (0.201 %) 
0.4 326.64 326.57 (0.021 %) 325.17 (0.450 %) 
0.5 322.02 322.03 (0.003 %) 319.24 (0.863 %) 
0.6 321.37 321.48 (0.034 %) 316.61 (1.481 %) 
0.7 321.38 321.54 (0.050 %) 313.76 (2.371 %) 
0.8 317.72 317.58 (0.044 %) 305.71 (3.780 %) 
0.9 302.33 302.41 (0.026 %) 284.40 (5.931 %) 
1.0 261.63 261.62 (0.003 %) 232.14 (11.27 %) 

Closed circuit 
0.05 396.50 396.36 (0.035 %) 396.36 (0.035 %) 
0.1 377.63 377.49 (0.037 %) 377.47 (0.042 %) 
0.2 345.86 345.71 (0.043 %) 345.55 (0.090 %) 
0.3 322.79 322.65 (0.043 %) 322.06 (0.226 %) 
0.4 308.73 308.62 (0.035 %) 307.13 (0.518 %) 
0.5 302.91 302.86 (0.016 %) 299.88 (1.000 %) 
0.6 303.27 303.30 (0.010 %) 298.13 (1.695 %) 
0.7 306.43 306.53 (0.033 %) 298.35 (2.637 %) 
0.8 307.46 307.59 (0.042 %) 295.31 (3.952 %) 
0.9 298.35 298.43 (0.027 %) 280.17 (6.094 %) 
1.0 261.63 261.62 (0.003 %) 232.14 (11.27 %) 

Table 12: Example 2: Natural frequencies of the asymmetric piezoelectric cantilever beam  
(Steel/G1195N) in open and closed circuit electrical boundary conditions. (The absolute  

errors in percentage are given with respect to ANSYS 2D simulation.) 

 

 

Figure 11: Example 2: Modal Analysis: Convergence characteristics of FSDT-based formulations  

to predict the first natural frequency of the two-layer asymmetric piezoelectric  

cantilever beam (r=0.5) in closed circuit electrical boundary condition. 
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7 CONCLUSIONS 

Based on coupled polynomial field interpolations in conjunction with a consistent through-thickness 
electric potential, a novel FSDT based extension mode piezoelectric beam finite element has been 
presented.  The derived set of coupled shape functions handles bending-extension, bending-shear 
and induced potential couplings in a variationally consistent manner. Numerical evaluation has 
proven the merits of the present formulation over the conventional formulations available in the 
literature, in terms of accuracy and efficiency. From the numerical analysis, it was found that: 

 The performance of the conventional FSDT piezoelectric beam finite elements depends on 
the geometric and material parameters of the beam. The accuracy depends on the propor-
tion of piezoelectric material in the total beam thickness (thickness ratio) and the ratio of 
induced modulus to the elastic modulus (modulus ratio). The convergence rate of conven-
tional FSDT elements is deteriorated by the presence of bending-shear and bending-
extension couplings.   

 The performance of the proposed FSDT-Coupled formulation proves to be insensitive to the 
material and geometric configuration of the beam cross-section. It consistently maintains the 
level of accuracy and efficiency for all modulus and thickness ratios.  
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Appendix: Coupled Shape Functions 

32
2 2 22 1 4 2 31 1

1 2 3 42 2 2
3 3 3

32
2 2 22 1 4 2 31 1

5 6 7 82 2 2
3 3 3

12 ( )3 3(1 ) ; (1 ); ( 1); ( 1);
2 24 2 48 4 96 8

12 ( )3 3(1 ) ; ( 1); ( 1); (1 );
2 24 2 48 4 96 8

i i i
u u u ui

i i i
u u u ui

l ll lN N N N
l l l

l ll lN N N N
l l l

        
  

        
  

 
      

  

 
      

  
2 3 2 23

2 23 4
1 2 32 2 2

3 3 3

2 3 2 23
2 23 4

4 5 62 2 2
3 3 3

(24 3 )1 ; ( 1); ( 1);
2 848 4 96 8 48 4

(24 3 )1 ; (1 ); (1 );
2 848 4 96 8 48 4

i
w w wi

i
w w wi

l l ll lN N N
l l l

l l ll lN N N
l l l

      
  

      
  

  
       

    
  

       
      

 

2 2
2 23 4

1 2 32 2 2
3 3 3

2 2
2 23 4

4 5 62 2 2
3 3 3

1 2

24 (1 3 ) 33 ( 1); ; (1 );
224 2 48 4 24 2

24 (1 3 ) 33 (1 ); ; ( 1);
224 2 48 4 24 2

(1 ) (1 ); ;
2 2

i
i

i
i

i i

l llN N N
l l l

l llN N N
l l l

N N

  

  

 

   
  

   
  
 

 
     

  

 
     

  

 
 

 


