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Two dimensional analysis of inflatable structures by
the positional FEM

Abstract

This paper presents a simple two dimensional frame formu-

lation to deal with structures undergoing large motions due

to dynamic actions including very thin inflatable structures,

balloons. The proposed methodology is based on the mini-

mum potential energy theorem written regarding nodal posi-

tions. Velocity, acceleration and strain are achieved directly

from positions, not displacements, characterizing the novelty

of the proposed technique. A non-dimensional space is cre-

ated and the deformation function (change of configuration)

is written following two independent mappings from which

the strain energy function is written. The classical New-

mark equations are used to integrate time. Dumping and

non-conservative forces are introduced into the mechanical

system by a rheonomic energy function. The final formula-

tion has the advantage of being simple and easy to teach,

when compared to classical counterparts. The behavior of a

bench-mark problem (spin-up maneuver) is solved to prove

the formulation regarding high circumferential speed appli-

cations. Other examples are dedicated to inflatable and very

thin structures, in order to test the formulation for further

analysis of three dimensional balloons.
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1 INTRODUCTION

Interesting researches had been developed regarding transient dynamic analysis of flexible struc-

tures (frames for instance) undergoing large motions. Simo and Vu Quocs paper [21] describes

various different formulations for this purpose. The authors were interested mainly in the

rotating beam stiffens due to inertial forces, proving that some previous formulations were un-

able to reproduce this important property. In that study three valid formulations were cited.

The first is the so-called co-rotational formulation, which uses a consistent linearization of the

fully non-linear beam theory. It makes use of a “floating frame” that accompanies the overall

movement of the rotating bar. The strain measure is of the second-order expansion, using the

auxiliary floating frame as a reference, see references [19, 20].
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The second one is called exact [21] and uses the fully non-linear strain measurement and

a floating frame as an intermediate reference to calculate strains. After that, the achieved

strain is rotated to the inertial reference. For both formulations the associated differential

equation is achieved and afterwards the standard Galerkin approximation is employed to solve

the problem.

The third formulation [15] employs a finite element procedure based on the theorem of

minimum potential energy assuming a centerline elongation based on curvilinear co-ordinates

and a first order distortion. It is interesting to mention that the majority of dynamic non-linear

analyses is made following a co-rotational linearized procedure, where a floating frame reference

is present [10–12, 26]. The common point of all cited formulations is the intrinsic relation

between strain and displacements, linearized or not, using a floating frame or curvilinear co-

ordinates as a reference.

The present study proposes a simple and robust formulation to deal with flexible dynamic

structures based on the principle of minimum potential energy and focus its application to

very thin structures, namely balloons. It is different from all other approaches as it is based

on position description, not displacement, and does not use a floating frame to define strain

[8, 9, 13, 14].

The adopted strain measure is commonly known as Green strain [17]. Its natural energetic

conjugate is the Second Piola Kirchhoff stress. Quadratic strain energy potential is adopted,

resulting a linear relation between stress and strain called Saint-Venant-Kirchhoff constitutive

relation. The simplicity of the proposed formulation makes possible to develop curved element

of any order of approximation.

This work is devoted to test the proposed formulation in applications regarding very thin

inflatable structures (balloons) before starting a dynamic three dimensional generalization.

This application is very important, as balloons are the vehicles most used to do researches

regarding our environment (earth) and are the ones chosen by spatial agencies as the future

vehicles to explore other planets [3]. As far as the authors’ knowledge goes, the simulation of

this kind of structures adopts membrane approach, as can be seen in several important works,

e.g. [2–4] among others. The membrane approach solves wrinkling replacing the wrinkled

region by a smooth pseudo-surface, as proposed in [18, 22, 23]. However, the consideration of

folds is avoided when adopting the membrane approach.

In this study, considering flexural stiffness, general post-buckling (geometrical non-linear

position paths) of very thin 2D structures (balloons) are analyzed. These analyzes open the

possibility for further 3D applications, including partially inflatabled balloons and folding. To

solve transient problems the Newmark time integrator [1, 9] is employed. The behavior of a

bench-mark problem (spin-up maneuver) is presented to prove the accuracy of the formulation.

Other examples: The load rate influence in the de-inflation of a free cylindrical balloon (post

buckling and folding), the slow de-inflation of a cylindrical balloon over a half-space, the fast

inflation and taking off of the same balloon with the presence of the half-space surface and the

analysis of balloons shapes depending on the internal pressure pattern.
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2 STRAIN MEASURE AND SPECIFIC STRAIN ENERGY POTENTIAL

This section summarizes simple concepts used to derive the proposed formulation. The Green

strain tensor is derived directly from the gradient of the deformation gradient, represented by

letter A, given as follows:

Aij =
∂fi
∂xj

(1)

where fi is deformation function, as depicted in figure 1, and xj is a coordinate representing

variation initial position and yi = fi(x(i)) represents current position. 
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Figure 1 Change of configuration (deformation).

In figure 1 dxi and dyi represent an infinitesimal fiber in the initial and current contin-

uum configurations, respectively. Following detailed steps given by [17] including geometrical

meanings, the Green strain can be written as:

Eij =
1

2
[AkiAkj − δij] =

1

2
[Cij − δij] (2)

In which index notation is adopted. The variables Cij and δij are the right Cauchy stretch

tensor and the Kroenecker delta, respectively. The following quadratic strain energy per unit

of initial volume is adopted,

ue =
1

2
EijCijklEkl (3)

where Cijkℓ is the forth order elastic tensor. Equation (3) results in he so called Saint-Venant

– Kirchhoff constitutive law, relating the second Piola Kirchhoff stress and the Green strain

tensor, i.e.:

Sij =
∂ue
∂Eij

= CijklEkl (4)

where

Cijkl =
2Gυ

1 − 2υ
δijδkl +G(δikδjl + δilδjk) (5)
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In which ν is the Poisson ratio. The shear modulus is given by,

G = E

2(1 + ν)
(6)

with E being the well known Young modulus.

The relation among Second Piola Kirchhof stress and the True Stress (Cauchy Stress) is

straightforward [6, 17]. For the sake of completeness one recalls that the right Cauchy-Green

stretch tensor is positive definite, symmetric and has six independent values [17].

3 KINEMATICAL APPROXIMATION AND POSITIONAL MAPPING

This section describes the proposed kinematics for frames. A complete description of the

positional technique for solids can be seen in [7]. It is important to note that expressions,

simple as presented, are general and comprise curved elements with all approximation orders.

One can approximate positions of the mid-line points of a frame element, see figure 2, by

the following mapping.

fm0
i = xmi (ξ1,Xℓi) = ϕℓ(ξ1)Xℓi (7)

fm1
i = ymi (ξ1, Yℓi) = ϕℓ(ξ1)Yℓi (8)

where xmi is the ith coordinate of a generic point in the mid-line of the frame at initial config-

uration, Xℓi is the ith coordinate of node ℓ, ymi is the ith coordinate of a generic point in the

mid-line of the frame at current configuration, Yℓi is the ith coordinate of node ℓ at current

configuration. One can see in figure 2 that fm0 is the positional mapping from the auxiliary

space to the initial configuration, fm1 is the positional mapping from the auxiliary space to

the current configuration, fm is the positional mapping from the initial configuration to the

current one (not to be written) and the values Am0, Am1, Am are their respective gradients.
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Figure 2 Mid-lines mappings.
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To complete the frame kinematics description, for both initial and current configurations,

one realizes that the difference between a point out of the mid-line and its correspondent

belonging to the mid-line generates position vectors g⃗o or g⃗1, see figure 3.
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Figure 3 Position vectors.

By the other hand, a general point of the frame can be defined by adding the position

vectors to the corresponding mid-line point, i.e.,

xi = xmi + g0i (9)

yi = ymi + g1i (10)

Following [5, 7], for constant thickness variation regarding ξ2, as x
m
i and ymi has already been

parameterized, one writes g0i and g1i as functions of non-dimensional variables and positional

rotation θ, as

g01 =
h0(ξ1)

2
cos(θ0(ξ1)) ξ2 (11)

g02 =
h0(ξ1)

2
sin(θ0(ξ1)) ξ2 (12)

g11 =
h0(ξ1)

2
cos(θ1(ξ1)) ξ2 (13)

g12 =
h0(ξ1)

2
sin(θ1(ξ1)) ξ2 (14)

where h0, θ
0 and θ1 are, respectively, the height, initial rotation and final rotation of any cross

section along the mid-line of the element.

We will assume that the height of the element is constant and that the cross section rotation

is approximated similarly to the mid line positions, as
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θ0(ξ1) = ϕℓ(ξ1)θ0ℓ (15)

θ1(ξ1) = ϕℓ(ξ1)θ1ℓ (16)

where θjℓ are the cross section rotations for nodal points ℓ for initial and current configurations

represented by letter j.

Introducing equations (15) and (16) into equations (11) trough (14) and then into equations

(9) and (10) one achieves the parametric positional mapping from the auxiliary space to the

initial configuration (f0i ) and the parametric positional mapping from the auxiliary space to

the current configuration (f1i ) as follows:

f01 = x1 = ϕℓ(ξ1)Xℓ1 +
h0
2
ξ2 cos(ϕℓ(ξ1)θ0ℓ ) (17)

f02 = x2 = ϕℓ(ξ1)Xℓ2 +
h0
2
ξ2 sin(ϕℓ(ξ1)θ0ℓ ) (18)

f11 = y1 = ϕℓ(ξ1)Yℓ1 +
h0
2
ξ2 cos(ϕℓ(ξ1)θ1ℓ ) (19)

f12 = y2 = ϕℓ(ξ1)Yℓ2 +
h0
2
ξ2 sin(ϕℓ(ξ1)θ1ℓ ) (20)

The unknown parameters per each node ℓ are three, i.e., two current positions Yℓi and

one rotation θ1ℓ . Function f0i is used to find A0 while function f1i is used to find A1 (trial).

The composition of these two values for each integration station (Gauss for instance) gives the

numerical value of the deformation gradient for any initial geometry (curved) with any order

of approximation. Forces are the energy conjugates of positions, so the natural conjugate of

rotation is the momentum.

It is worth to show the derivatives of f1i regarding the non-dimensional variables, consti-

tuting the gradient A1
ij as follows:

A1
11 = ϕℓ,1(ξ1)Y1ℓ −

h0
2
ξ2 sin(ϕℓ(ξ1)θ1ℓ )ϕℓ,1(ξ1)θ

1
ℓ (21)

A1
21 = ϕℓ,1(ξ1)Y2ℓ +

h0
2
ξ2 cos(ϕℓ(ξ1)θ1ℓ )ϕℓ,1(ξ1)θ

1
ℓ (22)

A1
12 =

h0
2

cos(ϕℓ(ξ1)θ1ℓ ) (23)

A1
22 =

h0
2

sin(ϕℓ(ξ1)θ1ℓ ) (24)

The derivatives of A1 regarding nodal parameters are used in the next section, so the non-zero

values of the first and second derivatives are given as follows:
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∂A1
11

∂Y1k
= ϕ(k),1(ξ1) (25)

∂A1
11

∂θ1k
= −h0

2
ξ2 cos(ϕℓ(ξ1)θ1ℓ )ϕk(ξ1)ϕℓ,1(ξ1)θ

1
ℓ −

h0
2
ξ2 sin(ϕℓ(ξ1)θ1ℓ )ϕk,1(ξ1) (26)

∂A1
21

∂Y2k
= ϕ(k),1(ξ1) (27)

∂A1
21

∂θ1k
= −h0

2
ξ2 sin(ϕℓ(ξ1)θ1ℓ )ϕk(ξ1)ϕℓ,1(ξ1)θ

1
ℓ +

h0
2
ξ2 cos(ϕℓ(ξ1)θ1ℓ )ϕk,1(ξ1) (28)

∂A1
12

∂θ1k
= −h0

2
sin(ϕℓ(ξ1)θ1ℓ )ϕk(ξ1) (29)

∂A1
22

∂θ1k
= h0

2
cos(ϕℓ(ξ1)θ1ℓ )ϕk(ξ1) (30)

The non-zero second derivatives are:

∂2A1
11

∂θ1
k
∂θ1

m
= h0

2 ξ2 sin(ϕℓ(ξ1)θ
1
ℓ )ϕm(ξ1)ϕk(ξ1)ϕℓ,1(ξ1)θ

1
ℓ −

h0

2 ξ2 cos(ϕℓ(ξ1)θ
1
ℓ )ϕm(ξ1)ϕk,1(ξ1)

−h0

2 ξ2 cos(ϕℓ(ξ1)θ
1
ℓ )ϕk(ξ1)ϕm,1(ξ1)

(31)

∂2A1
21

∂θ1
k
∂θ1

m
= h0

2 ξ2 cos(ϕℓ(ξ1)θ
1
ℓ )ϕm(ξ1)ϕk(ξ1)ϕℓ,1(ξ1)θ

1
ℓ −

h0

2 ξ2 sin(ϕℓ(ξ1)θ
1
ℓ )ϕk,1(ξ1)ϕm(ξ1)

−h0

2 ξ2 sin(ϕℓ(ξ1)θ
1
ℓ )ϕk(ξ1)ϕm,1(ξ1)

(32)

∂2A1
12

∂θ1k∂θ
1
m

= −h0
2

cos(ϕℓ(ξ1)θ1ℓ )ϕk(ξ1)ϕm(ξ1) (33)

∂2A1
22

∂θ1k∂θ
1
m

= −h0
2

sin(ϕℓ(ξ1)θ1ℓ )ϕk(ξ1)ϕm(ξ1) (34)

In the next section, all degrees of freedom are called simply Yℓi, with i varying from 1 to 3.

Translations are related to i = 1,2 and rotations to i = 3. When ℓ is not present in an equation

it means that the element number is omitted.
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4 DYNAMIC NONLINEAR FORMULATION WITH DUMPING AND NON-CONSER-
VATIVE FORCES

The conservation of energy in a mechanical system is guaranteed if the input and output of

energy are at balance. If there is some kind of dissipation the total energy of the system changes

along time. It can be understood writing the total potential energy of a system as follows:

Π = Π0 −Q(t, x) (35)

where Q(t, x) can be stated as the quantity of energy withdrawn from the simple conservative

idealized energy Π0 [16]. In this work the non-conservative forces will be considered as part of

this dissipative potential. As a consequence, Π is the remaining (current) mechanical energy

of the system. Equation (35) can be rewritten as:

Π0 = Π +Q(t, x) (36)

This equation can be understood as recovering the possibility of using stationary properties

for the mechanical system analysis, i.e., one can use the minimum potential energy theorem on

the energy function Π0 for equilibrium analysis.

For a structural problem associated with a fixed reference system, figure 4, the ideal poten-

tial energy function can be written as the composition of the strain energy (Ue), the potential

energy of applied conservative forces (P), the kinetic energy (K) and dissipation (Q), as follows.

Π0 = Ue −P +K +Q (37)
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Figure 4 Total Potential Energy written for a body in two different positions.

The strain energy function of the body, frame for instance, is considered stored in the initial

volume of the body (V0 ) and is written as an integral of the specific strain energy value (ue),

equation (3), as
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Ue = ∫
V0

uedV0 (38)

The strain energy is assumed to be zero in the initial position, called non-deformed. The

potential energy of the applied conservative forces is written as:

P = FiYi + ∫
s0
tiyids

0 (39)

where Fi represents forces (or moments) applied in ”i” direction and Yi is the ith current position

of the point where the load is applied, ti is the distributed force applied in “i” direction and yi
is the current position of mid line points (i = 3 is avoided for distributed forces). The symbol

ds0 represents the initial differential length of elements. The kinetic energy is written as

K = 1

2
∫
V0

ρ0ẏiẏidv0 (40)

where ẏi are velocities and ρ0 is the mass density, relative to the initial volume V0. The

dissipative term, including non conservative distributed forces, is written in its differential

form as

∂

∂yi
Q(t, y) = ∫

v0

∂

∂yi
q̄(y, t)dv0 = ∫

v0

λmρ0ẏidv0 − ∫
s0
qids0 (41)

where q̄ is the specific dissipative functional, λm is a proportionality constant, ẏi are velocities

of any point and qi are non conservative distributed forces given by:

q1 = qtsin(ϕℓ(ξi)Yℓ3) + qncos(ϕℓ(ξi)Yℓ3) (42)

q2 = qnsin(ϕℓ(ξi)Yℓ3) − qtcos(ϕℓ(ξi)Yℓ3) (43)

Where qn and qt are respectively the normal and tangential distributed forces over the element

and Yℓ3 is the rotation of nodes. For balloons analysis qn is the internal pressure, usually called

p. The integral of dissipative forces respects the direction of the current position but its integral

is performed over the initial length as the load magnitudes (qn and qt) are written regarding

initial position. The current load is easily known by multiplying these magnitudes by det(A),
for usual applications of thin unstable structures the value of det(A) ≅ 1.

Substituting equations (38), (39) and (40) in equation (37) results in

Π0 = ∫
V0

uedV0 − FiYi − ∫
s0
tiyids0 +

1

2
∫
V0

ρ0ẏiẏidV0 +Q (44)

This energy function can be evaluated substituting the exact position field by its approximation

described in section 3, i.e.:

Π0 = ∫
V0

ue(ξ1, Yi)dV0 − FiYi − ∫
s0
tiyi(ξ1, Yi)ds0 +

1

2
∫
V0

ρ0ẏiẏi(ξ1, Yi)dV0 +Q(ξ, Yi) (45)
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The minimum potential energy theorem is used in Π0 by differentiating equation (45) regarding

a generic nodal position Yℓj , which results in

∂Π0

∂Yℓj
=∫

V0

∂ue(ξ1, Yi)
∂Yℓj

dV0 + ∫
V0

ρ0ϕℓj(ξ1)ϕki(ξ1)dV0Ÿki + ∫
V0

λmρ0ϕℓj(ξ1)ϕki(ξ1)dV0Ẏki − Fℓj−

− ∫
s0
ϕℓj(ξ1)ϕki(ξ1)ds0tki − ∫

s0
qjϕℓj(ξ1)ds0 = 0

(46)

It is worth noting that this time the dissipative potential is differentiated regarding nodal

positions, differently of the described in equation (41). Equations (42) and (43) should be

introduced in the last integral of equation (46) to perform the numerical integration.

One can rewrite equation (46) in a simple vector form as

gℓj =
∂Ue

∂Yℓj
+ F inert.

ℓj + F damp.
ℓj − F c

ℓj − F
nc
ℓj = 0 (47)

or

gℓj =
∂Ue

∂Yℓj
+MŸℓj +CẎℓj − F

c
ℓj − F

nc
ℓj = 0 (48)

The involved forces are, inertial force F inert.
ℓj or MŸℓj , dumping F damp.

ℓj or CẎℓj and the external

force, divided into conservative F c
ℓj and non-conservarive Fnc

ℓj . Splitting the derivative of the

specific strain energy, one writes:

1

2

∂

∂Yℓj
(EklCk limEim) =

1

2

∂

∂Eαβ
(EklCk limEim)

∂Eαβ

∂Yℓj
= CαβimEim

∂Eαβ

∂Yℓj
= Sαβ

∂Eαβ

∂Yℓj
(49)

Consequently:

F int.
ℓj
= ∫

V0

CαβimEim
∂Eαβ

∂Yℓj
dV0 (50)

where F int
ℓj is the first gradient vector of the strain energy potential, understood as internal

force. Equation (47) means that if the internal force vector is equal to the applied one the

solid is at equilibrium. If not, vector gℓj can be understood as the unbalanced force of the

mechanical system.

The current position is the unknown of the problem, so it is necessary to solve the non-linear

equation (47) regarding Y ℓj and time. The first step is to integrate it along time using the

Newmark β method and then apply the Newton Rapson procedure, as described in the next

section.
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5 TIME MARCHING PROCESS AND PLACECITYNEWTON RAPSON PROCEDURE

From the previous developments equation (47) can be written in a simpler vector form as

g = ∂Ue

∂Y
− F c − Fnc +MŸ +CẎ = 0 (51)

Expression (51) represents the dynamic equilibrium equation at any time and has to be solved.

In order to do so the first step is to write the equilibrium for a specific instant (S+1 ), as follows:

∂Π

∂Y
∣
S+1
= ∂Ue

∂Y
∣
S+1
− FS+1 +MŸS+1 +CẎS+1 = 0 (52)

Applying the Newmark β approximations [1] for position description one has:

YS+1 = YS +∆tẎS +∆t2 [(
1

2
− β) ŸS + βŸS+1] (53)

ẎS+1 = ẎS +∆t (1 − γ) ŸS + γ∆tŸS+1 (54)

Substituting approximations (53) and (54) into equation (52) results in

g (YS+1) =
∂Π

∂Y
∣
S+1
= ∂Ue

∂Y
∣
S+1
−FS+1+

M

β∆t2
YS+1−MQS +CRS +

γC

β∆t
YS+1−γ∆tCQS = 0 (55)

where vectors Qs and Rs represent the dynamic contribution of the past, and are given by

QS =
YS
β∆t2

+ ẎS
β∆t

+ ( 1

2β
− 1) ŸS (56)

RS = ẎS +∆t (1 − γ) ŸS (57)

Equation (55) can be understood simply by g (YS+1) = 0 and is clearly non-linear in (YS+1). A
Taylor expansion to solve this non-linear equation regarding positions is necessary. It is impor-

tant to mention that the non-conservative force vector is also dependent of current positions,

however at this step it will be considered constant in order to achieve a symmetric matrix.

The rate of convergence of the resulting iterative process may suffer some prejudice; however

the overall processing time is reduced due to symmetry and less computational effort to build

matrices.

The second derivative of the total energy potential is then given by:

∂2Π

∂Y 2
∣
S+1
= ∇g (Ys+1) =

∂2Ue

∂Y 2
∣
S+1
+ M

β∆t2
+ γC

β∆t
(58)

And one builds the placeCityTaylor series of first order as:

0 = g(Y ) ≅ g (Y 0) +∇g (Y 0)∆Y (59)
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and derives the Newton-Raphson procedure to solve the non-linear equation (55), i.e.,

∇g (Y 0)∆Y = −g (Y 0) (60)

where Y 0 is a trial position (usually Ys) for Ys+1 used in equation (55) to calculate g (Y 0).
Solving ∆Y one calculates a new trial for Ys+1 as

YS+1 = Y 0 +∆Y (61)

The acceleration must be corrected by an expression obtained from equation (53), i.e.,

ŸS+1 =
YS+1
β∆t2

−QS (62)

This equation is used in equation (54) to correct velocity. The stop criterion is given in equation

(63), when a chosen tolerance (TOL) is satisfied.

∥g(Y 0)∥ ≤ TOL (63)

It must be noted that, before the first time step, the initial acceleration must be calculated as

follows

Ÿ0 =M−1 [F0 −
∂Ue

∂Y
∣
0
−CẎ0] (64)

The Newmark parameters (γ and β) can be chosen in order to achieve a stable algorithm.

For instance, using constant acceleration for a time step (γ=0.50 and β=0.25 ) the uncondi-

tional stability is obtained [9, 17].

6 THE DERIVATIVES OF THE SPECIFIC STRAIN ENERGY

In order to conclude the formulation the second derivatives of the strain energy regarding nodal

positions should be explicitly shown as it has been done for the first derivative in equation (50).

From equations (49) and (50) one writes, using index notation:

∂2Ue

∂Yk∂Yj
= ∫

V0

∂

∂Yk

⎛
⎝
CαβimEim

∂Eαβ

∂Yj

⎞
⎠
dV0 = ∫

V0

(∂Eim

∂Yk
Cαβim

∂Eαβ

∂Yj
+EimCαβim

∂2Eαβ

∂Yj∂Yk
)dV0

(65)

Finally, the first and second derivatives of the Green strain regarding current nodal positions

should be done. Firstly the necessary derivatives of the Cauchy-Green stretch tensor are

presented. Next the derivatives of strains are straightforward achieved. Recalling that the

Cauchy-Green stretch tensor is given by:

C = AtA (66)
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and omitting, for simplicity, extra indices, one applies the positional FEM mapping and writes:

C = [(A0)t]−1(A1)t(Yi)A1(Yi)(A0)−1 (67)

Remembering that A0 is constant regarding the current position, the first derivative is

performed as:

∂C

∂Yj
= [(A0)t]−1∂(A

1)t(Yi)
∂Yj

A1(Yi)(A0)−1 + [(A0)t]−1(A1)t(Yi)
∂A1(Yi)
∂Yj

(A0)−1 (68)

For which the values of
∂A1(Yi)

∂Yj
are given at the end of section 3. In this section Yj is not

represented in bold case because it follows index notation for which j represents a global

degree of freedom.

The second derivative of the Cauchy-Green stretch is given by,

∂2C
∂Yj∂Yk

= [(A0)t]−1 ∂(A
1)t(Yi)
∂Yj

∂A1(Yi)
∂Yk

(A0)−1 + [(A0)t]−1 ∂(A
1)t(Yi)
∂Yk

∂A1(Yi)
∂Yj

(A0)−1+
+[(A0)t]−1 ∂

2(A1)t(Yi)
∂Yj∂Yk

A1(Yi)(A0)−1 + [(A0)t]−1(A1)t(Yi)∂
2A1(Yi)
∂Yj∂Yk

(A0)−1
(69)

Where ∂2A1/∂Yj∂Yk is given at the end of section 3. Recalling equation (2), one achieves the

first and second derivatives of the Green strain directly as

∂E

∂Yj
= 1

2

∂C

∂Yj
;
∂2E

∂Yj∂Yk
= 1

2

∂2C

∂Yj∂Yk
(70)

It is important to mention that the present technique can be applied to any strain measure

based on the Cauchy-Green stretch. Equations (55), (58) and (60) indicate that the proposed

procedure can be operated by means of creating a Hessian matrix and global internal forces

for finite elements and composing the global matrix and internal force vector by summation of

coincident degrees of freedom, as it is done for usual FEM procedures. One should remember

that all nodal parameters follow the global system of reference, avoiding the use of rotation

schemes.

7 NUMERICAL EXAMPLES

This section provides some selected examples in order to verify the good behavior of the pro-

posed formulation when dealing with general problems, mainly very thin inflatable structures.

It is important to note that the first example is a benchmark of literature used to prove the

capability o the proposed formulation to model all the necessary inertial characteristics of large

rotation situations, proving the positional formulation able to be applied to high speed prob-

lems. The other examples are dedicated to very thin and inflatable structures, in order to test

the formulation for further three dimensional analyses of balloons.
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7.1 Spin-up maneuver

The first numerical example is a simple fixed flexible beam, a benchmark of non-linear dynamic

formulations. It has been presented in several references, see for instance [12, 13, 20]. The spin-

up-maneuver is subject to a turn function (ψ(t)), applied on the restricted node, see figure 5.
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Figure 5 Flexible spin-up maneuver input data.

The adopted non-dimensional parameters for the beam are, EI=1.4 104, EA=2.8 107, ρI=6.0

10−4, ρA=1.2. This type of turn function represents a typical helicopter blade rotation. The

structure is approximated by a mesh of 5 finite elements with quadractic approximation. The

final result is compared to an analytical value demonstrating that all effects, for this kind of

analysis, have been captured.

The expressions of the turn function are presented in equations (71) and (72).

ψ(t) = 2

5
[ t

2

2
+ ( 15

2π
)
2

(cos 2πt
15
− 1)] rad 0 ≤ t ≤ 15 (71)

ψ(t) = (6t − 45) rad t > 15 (72)

 

 

  

 

  

 

 

Figure 6 Shape configurations and local system of coordinates.
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In figure 6 the rigid body motion deformed configurations are presented. A local system of

co-ordinates is created to compare results, where the displacements U1 and U2 are measured.

From positions X and Y, and the rotation (θ) of the extreme node it is possible to calculate

the displacements U1 and U2, and the relative rotation (α) between the deformed configuration

and the rigid body motion, as follows.

S =
√
X2 + Y 2 (73)

β = γ − ψ (74)

U1 = S cosβ − 10 (75)

U2 = Ssenβ (76)

α = θ − ψ (77)

Figures 7, 8 and 9 present displacements U1 and U2, and the relative rotation α, respectively,

compared to analytical final values. The analytical value for U1 is given by U1 = ρ(dψ/dt) ∗
R3/(6E), the others are trivial.
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Figure 7 Displacement U1.

Figure 10 present the deformed shapes and the rigid body motions of the structure for some

instants during the first cycle. The achieved results are in total agreement with references

[12, 13, 20].

7.2 Column buckling

This example is introduced here just to show that the present non-linear formulation is very

accurate to capture the critical load of slender structures subjected to compressive loads. The
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Figure 8 Displacement U2.
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 Figure 9 Relative rotation angle α.
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Figure 10 Flexible beam, deformed shapes (–∎–) and rigid body motions (—-).
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Figure 11 Dimensions and loading for the column.

analyzed column has the following properties: l = 3m, E = 3.5x106kg/(s2mm), h = 2.5mm and

b = 1.0mm, see figure 11.

The applied load P = 9.9946kgmm/s2 is divided into 200 load steps and two discretizations

are used, one with 5 elements of 3 nodes (quadratic) and other with 2 elements of 6 nodes

(fifth order). The same results are achieved for both formulations. Figure 12 shows the lateral

displacement of the loaded point of the column versus the applied load and the theoretical value

of the critical load (Pcr = 4.9973kgmm/s2). As one can see these values coincide perfectly at

the load step 100.
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(a) General view
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(b) Closer view

Figure 12 Critical value definition.

7.3 Negative pressure applied in a cylindrical balloon

The folding (post-buckling behavior) of an infinitely long cylindrical balloon is analyzed assum-

ing a 2D formulation, see figure 13. Both static and dynamic formulations are used to develop

the analysis. The properties of the balloon are: R = 3m, E = 3.5x106kg/(s2mm), h = 0.04mm,

ρ = 4.7x10−7kg/mm3 and b = 100mm. The material (unless the Poisson ratio) corresponds to

a polymeric material, Kampton® [24, 25], that has great importance in aerospace engineering.

Using the static formulation the first critical load is achieved and compared to a simplified

analytical solution (sinusoidal mode). For the static analysis, double symmetry is employed

together with 61 nodes. Two different element degrees were adopted, 20 elements of third order

(4 nodes each) and 10 elements of sixth order (7 nodes each).
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The total negative pressure, see figure 13, is applied in 300 load steps and the buck-

ling occurs at step 250 for both discretizations, corresponding to a critical load of pcr =
2.50x10−9kg/(s2mm), see figure 14. The sinusoidal analytical value is psin = 2.765x10−9kg/(s2mm).
In figure 14 one can see the influence of a sinusoidal defect imposed into de radius of the ini-

tial configuration, the defect is applied correcting the initial configuration by the formulaeR =
R+D cos(2θ) in which D is the maximum defect value. One can see that the balloon behaviour

is very sensitive to the initial configuration (following the value of variable D).
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Figure 13 Initial geometry and loading.
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Figure 14 Maximum lateral displacement versus applied force, defect influence.

For the sake of completeness, figure 15 shows the sinusoidal buckling mode and the achieved

numerical mode and reveals that a maximum difference of only 1.1% in the buckling shape can

generate almost 15% of difference in the critical load determination.

The dynamic analysis is used to determine the influence of the load rate regarding time

in the path chosen by the balloon to de-inflate. This influence is a physical characteristic of

dynamic systems, i.e., to change the trajectory of a body developing a straight path with a
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(a) Buckling modes
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(b) Relative mode difference

Figure 15 Buckling modes and relative difference.

determined velocity it is necessary to apply a force component orthogonal to the pre-defined

path. In the case of the studied balloon, there is no tangential unbalanced force unless the ones

generated by the numerical error. This error is responsible for the static buckling depicted in

figure 14. In the dynamic case, it is expected that, if the de-inflation velocity is large enough

when the body is passing through the first buckling mode, the balloon will not wrinkle and

will pass trough to the next buckling mode and so on.

To test this property the rate of the applied load is varied. In figures 16 to 20 the paths

for some load rates are depicted. Symmetry is not used, as the plane of symmetry of general

modes are not the same. The adopted time step is ∆t = 0.5s, large enough to filtrate undesired

small membrane vibrations. The applied load is proportional to time, i.e., p(t) = a t, where a
is the load rate. No dumping is considered.

 

 

 

 

 

Figure 16 Applied load rate a = 0.27x10−12(Kg/(mms2))/s, load level at the deformed configuration p =
3.25x10−9Kg/(mms2).
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Figure 17 Applied load rate a = 0.27x10−11(Kg/(mms2))/s, load level at the deformed configuration p =
8.64x10−9Kg/(mms2).

 

  

 

 

 

Figure 18 Applied load rate a = 1.35x10−11(Kg/(mms2))/s, load level at the deformed configuration p =
1.89x10−8Kg/(mms2).

 

  

 

 

 

Figure 19 Applied load rate a = 0.27x10−10(Kg/(mms2))/s, load level at the deformed configuration p =
2.592x10−8Kg/(mms2). For rate a = 0.27x10−9(Kg/(mms2))/s the path is the same.
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Figure 20 Applied load rate a = 0.27x10−8(Kg/(mms2))/s, load level at the deformed configuration p =
2.43x10−7Kg/(mms2).

One can see from figures 16 to 20 that as the load rate grows the activated mode is higher.

Sometimes it is possible to find mixed modes. In figure 20, modes three and four are mixed.

From this analysis one can observe that the simulation of balloons or any other unstable

structure is a difficult task and depends on the quality of the known information. Moreover

the proposed formulation is able to capture the expected behavior of this kind of structure for

negative pressure.

7.4 De-inflating of a cylindrical balloon

The same balloon of example 6.3 is slowly de-inflated over a frictionless half-space. At the

beginning of analysis the balloon is at an initial position without self weight and internal

pressure. Constant and equal internal pressure (to inflate) and self weight values are applied,

following a linear growth regarding time. The load time rate is 2x10−9kg/(mms2)/s from time

0 to time 40s. After that, from time 40s to time 48s the self weight is maintained constant

and the internal pressure falls to 0. From time 48s to time 68s only the self weight acts and

is considered constant. The adopted time step is ∆t = 0.001s and the advantage of simple

symmetry is taken. Fifty curved elements with 4 nodes each are used to model the structure,

resulting in 151 nodes. The following figures depict some positions for selected instants. No

dumping is considered.

As one can see the presence of the self weight and the horizontal surface leads the structure

to a slow de-inflation without the occurrence of natural buckling modes.

7.5 Fast inflation and taking off of a balloon

The same balloon of the previous example is subjected to an internal pressure and self weight

allowing its’ taking off. At the beginning of analysis the balloon is at an initial position without

self weight and internal pressure. This time the self weight and the internal pressure varies

regarding time following the same rate 2x10−9kg/(mms2)/s until 40s, however the spatial

pattern of internal pressure is not constant, but follows a proportion of 1 at the bottom and

2 at the top of the balloon regarding the self weight. After 40s the self weight is maintained
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Figure 21 Position for time 40s.

 

 

 

Figure 22 Position for time 48s.

 

 

 
Figure 23 Position for time 58s.

 

 

 
Figure 24 Position for time 68s.
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constant and the internal pressure starts to grow in a rate ten times the initial rate until time

112s. A proportional dumping constant of λm = 0.01s−1 is adopted. Some stages of the balloon

taking off are shown in figure 25.

 

 

 

112s 
 
 
 
 
 
 
 
 
 
92s 
 
 
 
 
72s 
 
 
 
52s 

 

 

 

Figure 25 ???????

As one can see, during the first 52s of the analysis the balloon is de-inflating, after this it

inflates quickly and takes off. This kind of balloon, without openings and heavy weights on its

bottom tends to stabilize as a pumpkin balloon.

7.6 Natural shape balloon

This time the same material and initial position of the previous balloons is considered, but it

has been adopted different varying pressure patterns regarding vertical position. The vertical

variations are: square root, linear, quadratic and cubic from zero at the bottom to one at the

top. The self weight is neglected and no horizontal surface is considered. The Bottom of the

balloon is considered fixed and free to rotate, simulating a balloon with heavy weight and a

small opening at the bottom. The internal pressure rate is 2x10−6kg/(mms2)/s inflating. The
adopted time step is ∆t = 0.015s with dumping 1.0s−1. Figures 26 to 29 present the initial and

final (stable) configurations of the balloon for different pressure patterns. The coarse quality

(in pixels) of the adopted in house post processing shows trembling lines, however they are

quite smooth.

This example shows that the balloon shape changes as the pattern of internal pressure

changes. Therefore it is important to know the behavior of internal pressure at different

altitudes the balloon assumes in atmosphere. Moreover, for a initially spherical balloon the

stable position should be like the ones presented above, however the balloon will reduce its

hemisphere at its bottom (zero pressure region), indicating the importance of example 6.3,

where compressive stress develops. The 3D formulation to be implemented should be capable

of capturing all these effects.
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Figure 26 Shape and vertical displace-
ment for square root pressure
pattern.

 

 

 

Figure 27 Shape and vertical displace-
ment for linear pressure pat-
tern.

 

 

 

Figure 28 Shape and vertical displace-
ment for quadratic pressure
pattern.

 

  

 

 

 

Figure 29 Shape and vertical displace-
ment for cubic pressure pat-
tern.
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8 CONCLUSIONS

A new, simple and robust formulation to solve dynamic geometrical non-linear problems with

large deflections applied to very thin and inflatable 2D structures has been proposed. The

formulation is based on position description, simplifying the understanding and the implemen-

tation of large deflection analysis when compared to typical FEM formulations. The Newmark

time integration scheme has been successfully applied to integrate positions along time. The

results for benchmark structures are in good agreement with literature. The presented re-

sults show that the proposed formulation is suitable to solve dynamic geometrical nonlinear

problems with large deflection and rotations, including contact and very thin inflate structures

(balloons). The formulation is promising and should be extended to three dimensions and

further applications.
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