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Abstract 

The objective of the present study is to develop a numerical formula-
tion to predict the behavior of highly deformable elastoplastic thin 
beams. Following the Euler-Bernoulli bending, the axial and shear 
effects are neglected, and the nonlinear second-order differential 
equation regarding the angle of rotation is defined based on the spe-
cific moment-curvature relationship. Although the formulation can be 
used for general materials, three constitutive models are employed: 
linear-elastic, bilinear elastoplastic, and linear-elastic with Swift 
isotropic hardening. The resultant boundary value problem is solved 
by means of the fourth-order Runge-Kutta integration procedure and 
the one-parameter nonlinear shooting method. The performance of 
the present formulation is investigated via three numerical problems 
involving finite bending of slender beams composed of elastoplastic 
materials. For these problems, numerical solutions regarding rota-
tions, displacements and strains for the loading, unloading and re-
loading phases are provided. Finally, it is shown that the present 
methodology can also be used to determine the post-buckling behav-
ior of elastoplastic thin beams. 
 
Keywords 

Finite bending deformations; thin beams; elastoplastic material; post-
buckling behavior; fourth-order Runge-Kutta integration; nonlinear 
shooting method. 

 
 
Numerical analysis of highly deformable elastoplastic beams 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
1 INTRODUCTION 

Bending of highly deformable materials is a very interesting topic. In this context, several engineer-
ing applications can be cited: transmission cables, suspension springs, aerospace vehicle wings, rotor 
blades, solar collectors, dish antennas and space stations. In general, these structures are flexible, 
i.e., may present large deflections when loaded. To describe the equilibrium of forces in finite deflec-
tions, the geometrically nonlinear analysis is imperative. To circumvent the resultant complexity, 
numerical methods are usually employed. 
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 For slender (or thin) beams, a reasonable approach is the Euler-Bernoulli hypothesis: plane cross 
sections remain plane and orthogonal to the deformed axis. Another condition usually imposed is 
the inextensibility of the beam axis. For plane beams (or two-dimensional bending), the warping is 
not considered. These three assumptions can be extended to finite deformations. Based on these 
hypotheses, the axial, torsion and shear effects are neglected and, thus, the bending moment is the 
dominant internal action. The Euler-Bernoulli bending for finite deflections has been extensively 
used in the scientific literature, since the work of Bisshopp and Drucker (1945), which have defined 
the differential equation to be solved involving the exact curvature for large displacements, since 
the assumptions from elementary beam theory are no longer valid. Based on this differential equa-
tion, various works dealing with finite Euler-Bernoulli bending have been performed (see, among 
many others, Jenkins et al. (1966); Holden (1972); Mattiasson (1981); Lee (2002); Chen (2010); Tari 
(2013)). 
 Regarding the material behavior, the deformations (or strains) may be elastic (reversible) or 
plastic (permanent). Large elastic strains are common in the context of elastomers, and large plastic 
deformations occur, for instance, in sheet-metal forming processes. Neglecting the shear effects, a 
uniaxial stress-strain relationship can be used. Even in the finite displacement analysis, the Hooke’s 
law can be used if the elastic strain level is small. For moderate elastic strains, a usual constitutive 
law is the Ludwick material model (see, for example, Lee (2002); Lewis and Monasa (1981); Monasa 
and Lewis (1983); Carrillo (2009)). This model has been firstly applied to the finite Euler-Bernoulli 
bending in the work of Lewis and Monasa (1981). In the elastoplastic regime, there are many uniax-
ial models that can be used for beams (see, for instance, Hutchinson (1972); Chan et al. (1991); 
Cimetière and Léger (1996); Durban and Zuckerman (1999)): bilinear, multi-linear, Ramberg-
Osgood, linear elastic with hardening etc. An important and very suitable model for sheet-metal 
forming processes is the Swift isotropic hardening law (Swift, 1947). 
 In solid mechanics, the bending moment is connected to the normal longitudinal stress, and the 
bending curvature is associated with the normal longitudinal strain. Combining these relations with 
the uniaxial material model, a moment-curvature relationship can be defined to analyze plane 
beams, for example. Obviously, this relationship is modified when the material exceeds the elastic 
limit and reaches the elastoplastic domain. In the work of Lewis et al. (1987), for instance, a mo-
ment-curvature relationship for partially yielded rectangular cross-section is employed. 
 In the context of finite (or nonlinear) bending, the usual procedure is to set the nonlinear sec-
ond-order differential equation regarding the angle of rotation defined as a function of the curviline-
ar coordinate. In order to solve this equation, the two most common numerical techniques are: the 
use of elliptic integrals (see, for example, the works of Bisshopp and Drucker (1945); Jenkins et al. 
(1966); Mattiasson (1981); Sinclair (1979)); and the use of numerical integration along the curvilin-
ear coordinate (see, for instance, Holden (1972); Lewis et al. (1987); Rao and Rao (1989)). In order 
to avoid the use of elliptic integrals, which are quite complicated, the second strategy has been 
adopted in this paper. Following the works of Holden (1972), Lee (2002), Lewis and Monasa (1981), 
Monasa and Lewis (1983) and Rao and Rao (1989), the differential second-order equation is ex-
pressed as a system of two first-order equations, whose numerical solution is found via the fourth-
order Runge-Kutta scheme and the nonlinear one-parameter shooting method. As the angle of rota-
tion is defined, the plane Cartesian coordinates can be found, for example, by means of the trape-
zoidal integration rule. 
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 A specific and very important related problem is the post-buckling behavior of elastoplastic thin 
beams. In this context, several works can be cited as, for example, Hutchinson (1972), Cimetière 
and Léger (1996), Kounadis and Mallis (1987), Léger and Potier-Ferry (1993) and Grognec and Le 
van (2011). However, very few papers deal with the unloading and reloading phases, which is a 
topic that can be used, for instance, in the analyses of truss-like structures composed of elastoplastic 
materials. Moreover, in most of the related papers, the perfectly elastoplastic, bilinear and Ram-
berg-Osgood elastoplastic models are employed. No Swift isotropic hardening law together with 
post-buckling behavior has been found along the bibliographic research performed. 
 The objective of this study is to develop a numerical formulation to predict the behavior of high-
ly deformable thin beams composed of elastoplastic materials, including bilinear and Swift isotropic 
hardening elastoplastic laws. As said before, this formulation can be implemented in a computer 
code developed for nonlinear analysis of lattice structures, especially for compressed elastoplastic 
members. Although the present large-deformation analysis can be performed in a general way by 
means of the Finite Element Method (FEM), the intention here is to show an alternative simple 
technique to obtain some numerical solutions for elastoplastic thin beams. 
 Besides the Introduction, this paper is organized in four sections. The formulation regarding the 
nonlinear bending is described in section 2. The numerical procedure to solve the nonlinear 
second-order differential equation is explained in section 3. The validating numerical results, as well 
as their discussion, are provided in the fourth section. Finally, the main conclusions are given in 
section 5. 
 
2 BENDING PROBLEM 

In this paper, the effects of shearing, axial deformation and warping are neglected, and the exten-
sion of the Euler-Bernoulli hypothesis to finite deflections and rotations is used: 
 

 1 d

ds




   (1) 

 
where 1   is the bending curvature;   is the angle of rotation; and s  is the curvilinear coordinate 
(see Figure 1). Adopting the inextensibility condition of the beam axis, the curvilinear coordinate s  
varies from 0 to L , where L  is initial length of the beam. Therefore, considering a rectangular cross 
section with width b  and height 2c , the longitudinal normal strain (  ) is null at the centroid and 
varies along the height, from max  at the lower edge to max  at the upper edge. According to Fig-
ure 1, if the upper edge is elongated, the value of max  is positive and the angle   decreases. Thus, 
one can associate the curvature (1) with the maximum value of the strain as follows: 
 

 maxd

ds c


    (2) 

 
From equation (2), to associate the internal bending moment (M ) with the curvature ( d ds ), one 
needs to define the constitutive law (or the stress-strain relation). Three cases are analyzed here: 
fully linear-elastic cross section; partially yielded cross section with bilinear elastoplastic material; 
and partially yielded cross section with Swift isotropic hardening model. For the three cases, the  
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Figure 1: Coordinates and angle of rotation at the current (deformed) configuration. The symbols x and y denote 

the rectangular coordinates. 
 
moment M depends on the maximum strain ( max ), which is related to the curvature via equation 
(2). So, in order to obtain the moment-curvature relationship, one needs to determine the derivative 
of M  regarding s : 
 

 
12 2

max
2 2

max max max

dd d d d d 1 d d

d d d d d dd d

M M M M M
c

s s c ss s

  
  

                  
  (3) 

 
where  maxM   is the specific function that associates the internal bending moment with the max-
imum normal strain. 
 For the first case, the uniaxial Hooke’s law is employed and, thus, a well-known relation is ob-
tained (see equation (2)): 
 

  
2

max 2 max
2

d 1 d
d d d

dd
z

zA A A

M
M Y A E Y A E Y A EI

c c EI ss

  
            (4) 

 
where   is the longitudinal normal stress; Y  is the distance along the height from the centroid (see 
Figure 1); E  is the Young modulus; and zI  is the moment of inertia regarding the z  axis, which is 
normal to the bending plane. 
 For the second and third cases, as the material exceeds the elastic limit, a central portion of the 
cross remains in elastic domain, and the extreme lower and upper portions reach the elastoplastic 
regime (see Figure 2). Considering the bilinear elastoplastic material, the stress-strain relationship 
is: 
 
 E  , for Y   or pY Y  (5) 

  Y p YE      , for Y   or pY Y  (6) 
 
where Y , Y  and pE  are, respectively, the yield strain, the yield stress and the plastic modulus, 
obtained from the uniaxial tension test. Considering (5) and (6), it is possible to show that the 
function is modified to: 
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Figure 2: Partially yielded rectangular cross section. 

 

  2 2 2
max max

2 2

3 3 3
p p YY

p Y Y Y

E EE
M bc E E E


     

                                   
  (7) 

 
Combining this expression with the result in (3): 
 

 
1

2
2 3

max2

2 2d d
2

d 3 3 3d

p p YY
Y Y

E EEM
bc

ss


  




                                 

  (8) 

 
 Finally, for the Swift isotropic hardening model, it is assumed that the elastic strains are small 
compared with the plastic strains and, thus, all the strain is plastic in the elastoplastic regime: 
 
 E  , for Y   or pY Y  (9) 

  0
n

K    , for Y   or pY Y  (10) 
 
where K , 0  and n  are the Swift coefficients. As in expression (4), the integration of the bending 
moment due to the stresses (9) and (10) leads to: 
 

 
   1 2

1 0 max 3 0 max1 2 4
2 2 2 2

maxmax max max max

n n
b ba b b

M
   

   

 
 

       (11) 
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  (13) 
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Therefore, the derivative that appears in (3) is:  
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  (17) 

 
3 NUMERICAL PROCEDURE 

For a beam with prescribed boundary conditions (loading and rotations), as showed in the last sec-
tion, one needs to solve a nonlinear second-order differential equation regarding the function  s  
(see the result of expression (3)). In general, a beam has a prescribed value at each one of the two 
ends: a rotation or a bending moment. So, the differential equation together with the two prescribed 
values is classified as a two-point boundary value problem. The procedure adopted here consists in 
dividing this equation in a system of two initial value problems (IVPs). To do this, two auxiliary 
functions are used:  1f s   and  2 d df s s . With these functions, we write the following sys-
tem of two IVPs: 
 

 1
2

d

d

f
f

s
 ,  1 00f   (18) 

 
1

2

max

d 1 d d

d d d

f M M

s c s 

       
,  2

0

d
0

d
f

s

     
 (19) 

 
where 0  and  

0
d ds  are the initial values at the end of the beam in which the origin of s is 

placed. Even in the case of nonlinear systems, if these values are known, the solution of the system 
can be found via a numerical procedure. In this study, the beam is split into a finite number of 
segments and the fourth-order Runge-Kutta method is employed to solve the system of equations 
(18) and (19). Once determined the values of   and d ds  at the extreme points of each segment, 
the rectangular coordinates x  and y  can be obtained via numerical integration. From Figure 1, 
these coordinates are determined using the trapezoidal rule: 
 

        cos d cos cos
2

s s

s

s
x x s s x s s   


               (20) 

        sin d sin sin
2

s s

s

s
y y s s y s s   


               (21) 
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where the symbol Δ denotes the finite variation of some quantity along the segment. As the equi-
librium is described at the final (deformed) configuration, x  and y  are the final rectangular coordi-
nates. 
 The problem in applying the Runge-Kutta procedure to the system of equations (18) and (19) is 
that the initial values 0  and  

0
d ds  are not simultaneously known at one of the two ends of the 

beam. For example, in a cantilever beam under a free-end shear force, the bending moment at the 
free end is zero and, hence,  

0
d d 0s  . However, the angle of rotation at this point is not pre-

scribed and, thus, the integration of equation (18) from the free end to the clamped edge depends 
on the unknown value 0 . To deal with this inconvenient, the shooting method is used. In the case 
of the above-mentioned cantilever, the sequence of IVPs (18) and (19) are solved in such a way that 
the solution converges to 0   at the clamped edge. Therefore, the objective is to find the angle of 
rotation at the free end ( 0 ) that corresponds to the null rotation at the clamped edge. As there is 
only one parameter ( 0 ) and the differential equation is nonlinear, the applied method is the one-
parameter nonlinear shooting method. Alternatively, if the integration is performed from the 
clamped edge to the free end, the objective is to determine the initial value  

0
d ds  that corre-

sponds to 0   at the clamped edge and d d 0s   at the free end. 
 During the loading phase, the solution clearly depends on the material regime. The differential 
equation is modified if the material exceeds the elastic limit (see expressions (3), (4), (8) and (17)). 
If the beam reaches the elastoplastic regime, the first task is to determine the curvilinear coordinate 
(s ) that corresponds to the threshold between the elastic and elastoplastic parts of the beam. This 
determination is done based on the yield stress limit ( Y ). In the case of a bending moment in-
creasing along the curvilinear coordinate, if the maximum stress at ns s  is lower than Y , and 
the maximum stress at 1ns s   is higher than Y , the size of interval ns s s    is updated 
until the integration from ns  provides a maximum stress sufficiently close to Y . As this threshold 
is obtained, the integration considering the elastoplastic regime is performed from s s  to s L . 
 For the unloading phase, it is assumed that the material response is purely elastic and, thus, 
equation (4) together with the solution obtained from the end of the loading can be used. To guar-
antee that the response is purely elastic for the bilinear elastoplastic material, the hardening is as-
sumed to be isotropic and, thus, the stress limit is not changed as occurs in kinematic hardening. 
Assuming that the applied forces are completely removed, the internal bending moment returns to 
zero along the entire beam. If M  is the function that describes the internal moment along the beam 
length at the last step of the loading phase, then: 
 

 max
max0 d z

zA

Mc
M M M Y A EI M

c EI


 


                (22) 

 
Of course, along the part of the beam that remained in elastic regime, the strains return to zero, 
and the permanent (or residual) strain remains even after the complete unloading for the elasto-
plastic part. 
 Along the reloading phase, if the material remains in elastic regime, the equation (4) can also be 
employed. Otherwise, one of the elastoplastic equations (8) or (17) must be solved. However, even 
in the case of a complete unloading followed by reloading, the curvature d ds  is not zero along the 
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elastoplastic part of beam. For this part, the integration along the reloading phase, after a complete 
unloading, is performed as follows: 
 

 
12 2

2 2
max

d d 1 d d

d dd d U

M M

c ss s

 


             
  (23) 

 
where 2 2d d

U
s 

   is the second derivative 2 2d ds  corresponding to the complete unloaded configu-
ration. The determination of this derivative can be done noting, from equation (22), that: 
 

  max
max max

d 1 d

d dU zU

M

s c c s EI

 
 

                  
  (24) 

 
where the subscript U  denotes the value at the end of the complete unloading phase; and the top 
bar corresponds to the value at the end of the loading phase. With the values of  d d

U
s obtained, 

the following mid-point rule is employed: 
 

 
2

112

1 1

d dd d
d 1

d dd d
2d

U UU U i ii i
U i

i i i i

s ss s
s

s s s s

  




 

                                                                                          

  (25) 

 
For the extreme points (i.e., the free ends), the following expressions are used: 
 

 
2

1 0 1 0
2

1 0 10

d d d d
d d d dd

d
U U U U

U s

s s s s

s s ss

   





                                                                                 
  (26) 

 
2

1 1
2

1 1

d d d d
d d d dd

d
U U U UN N N N

N N NU s L

s s s s

s s L ss

   

  

 

                                                                                  
  (27) 

 
4 NUMERICAL RESULTS 

In order to validate the present methodology, three cases involving bending of highly deformable 
elastoplastic beams are analyzed. For each situation, the shooting method parameter used is speci-
fied, and the numerical solutions regarding rotation, final coordinates and longitudinal normal 
strain are provided. In all the problems, the load is applied incrementally, i.e., in load steps. The 
first two tries for the shooting method parameter are very close to the last step, and the subsequent 
tries are estimated via the one-dimensional secant method: 
 

 1 2
1 1

1 2

i i
i i i

i i

X X
X X F

F F
 

 
 

         
  (28) 
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where iX  is the corresponding value of the parameter X  at the current try I ; and F  is the resi-
due related to the prescribed value of the parameter X . 
 
4.1 Cantilever beam under free-end force 

The first case is one of the most analyzed beam problems (see Figure 3). Although there is internal 
shear, only the effect of the internal bending moment is considered here. Three materials are em-
ployed: linear-elastic, bilinear elastoplastic and linear-elastic with Swift isotropic hardening. The 
first two are general materials, and the third corresponds to the mild steel DC06, whose coefficients 
have been extracted from [22]. From figure 3, one can see that the bending moment is 

  cos dsM s Px P s    and, hence, the boundary value problem in this case is: 
 

 
12

2
max

d cos d

dd

P M

cs

 


       
,    d

0 0
d

L
s


    (29) 

 
The corresponding system of IVPs is: 
 

 1
2

d

d

f
f

s
 ,  1 00f   (30) 

 
1

2 1

max

d cos d

d d

f P f M

s c 

       
,  2 0 0f   (31) 

 
The cantilever beam is divided into 50 segments, and the residue F  (see equation 28) is the value 
of the angle of rotation at the clamped edge. 
 

 
Figure 3: Cantilever beam under free-end force (loading, geometry and material coefficients). 

 
The linear-elastic results are compared to the numerical results of Mattiasson (1981) and Pai and 
Palazotto (1996). In these references, the second-order nonlinear differential equation regarding the 
angle of rotation is set, and numerical integration procedures are employed to solve the boundary 
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value problem. However, the effects of shear and extensibility are taken into account only in the 
second reference. As these effects are neglected in this study, the present solution is approximately 
the same as the first reference, and there are small differences between the present and the second 
reference solution (see Figure 4). If the material remains in elastic regime, there is no reason in ana-
lyzing the unloading and reloading phases. 
 

      
 (a) (b) 

Figure 4: Elastic results for the cantilever of figure 3 under different load levels: (a) angle of rotation; 
(b) free-end displacements xu L  and yu L . 

 
Once the beam exceeds the elastic limit, the elastoplastic part ( *s s L  ) is divided into 50 seg-
ments. The numerical results regarding the bilinear elastoplastic material are provided in Figures 5 
and 6. At the end of the loading phase, one part of the beam (defined by 0 < s < 1.575) remains in 
elastic regime, and the other part (1.575 < s < 2.0) is in elastoplastic regime. When the load is 
completely removed, the first part stays straight as the strain returns to zero. However, the dis-
placements and rotation of the free end do not return to zero due to the plastic (permanent) strains 
at the second part, which remains curved. 
 

 
Figure 5: Free-end non-dimensional displacements and angle of rotation for the bilinear elastoplastic cantilever. 

The symbol “  0 ” denotes the angle of rotation of the free end. 
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 (a) (b) 

Figure 6: Coordinates from the clamped edge, and angle of rotation along the cantilever beam composed of bilinear 
elastoplastic material: end of loading (P  50); complete unloading (P  0); and partial unloading ( P  30). 

 
The results regarding the third material (linear-elastic with Swift isotropic hardening) are given in 
Figures 7 and 8. As in the case of the bilinear elastoplastic material, when the load is completely 
removed, the free-end rotation and displacements do not return to zero, and the elastic part stays 
straight. The influence of the adopted plastic coefficients on the beam behavior can be seen by 
comparing Figure 5 to 7, and 6 to 8. One can note that the level of displacements are very close, 
but the applied force is much smaller for the third material. Besides, the difference between configu-
rations at the end of the loading and the complete unloading is much smaller for the third material. 
These facts mean that the second material is more rigid and presents higher levels of elastic strain. 

 

 
Figure 7: Free-end non-dimensional displacements and angle of rotation for the Swift-case elastoplastic cantilever. 

 
For the three materials, the maximum longitudinal normal strain occurs at the upper edge at the 
clamp. The corresponding values are provided in Tables 1-3. For the elastic material, there is no 
plastic strain and, thus, the strain at all the points returns to zero if the load is completely removed.  
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 (a) (b) 

Figure 8: Coordinates from the clamped edge, and angle of rotation along the cantilever beam composed of linear-
elastic material with Swift isotropic hardening: end of loading (P  2.0); complete unloading (P  0); 

and partial unloading (P  1.0). 

 

Phase End of loading Complete unloading 

Load level 150.0 0.0 

max (%) 7.499 0.000 

Table 1: Maximum value of the longitudinal normal strain for the cantilever composed of linear-elastic material. 

 

Phase End of loading Complete unloading Partial unloading 

Load level 50.0 0.0 30.0 
εmax (%) 9.646 6.020 8.689 

Table 2: Maximum value of the longitudinal normal strain for the cantilever 
composed of bilinear elastoplastic material. 

 

Phase End of loading Complete unloading Partial unloading 

Load level 2.0 0.0 1.0 
εmax (%) 9.696 9.513 9.380 

Table 3: Maximum value of the longitudinal normal strain for the cantilever composed of 
linear-elastic material with Swift isotropic hardening. 

 
Regarding the two elastoplastic materials, the portion of plastic strain is larger for the third materi-
al when compared to the second material. The influence of the material type on the strain levels can 
be explained by analyzing the graphs of Figure 9. One should remember that, in the case of the 
present cantilever, the maximum amount of plastic strain corresponds to the value of strain at 
which the bending moment returns to zero. 
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Figure 9: Comparison between the moment-strain functions for the cantilever of Figure 3. 

The numbers in parenthesis denote the number of the corresponding equations. 
The values of the strain and moment correspond to the values at the clamped edge. 

 
4.2 First-mode buckling of cantilever 

The second bending problem has been analyzed in order to verify the performance of the present 
method in predicting the post-buckling behavior of a cantilever under first-mode buckling. This 
problem has been widely studied and has important applications for engineering. When compared 
to the first beam problem analyzed in this paper, the only modification in Figure 3 is that the ap-
plied force is now horizontal and, thus, the bending moment along the curvilinear coordinate is 

  sin dsM s Py P s   . In this case, the corresponding boundary value problem and the system 
of IVPs are: 
 

 
12

2
max

d sin d

dd

P M

cs

 


       
,    0 0

d
L

ds


    (32) 

 1
2

d

d

f
f

s
 ,  1 00f   (33) 

 
1

2 1

max

d sin d

d d

f P f M

s c 

       
,  2 0 0f   (34) 

  
As in the first example, the cantilever has been divided into 50 segments and, in the case of reach-
ing the elastoplastic regime, the integration along the elastoplastic part is also performed with 50 
segments. For the present beam problem, only the elastic and bilinear elastoplastic materials of 
Figure 3 have been considered. 
 Considering the elastic material coefficients of Figure 3, the critical load is: 
 

 
2

2
13.1595

4
cr

EI
P

L


   or 

2

2
0.6169

4cr

P

EI L

       
 (35) 
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According to Figure 10, the results of the present method regarding the linear-elastic material are in 
good agreement with Pai and Palazotto (1996), which employed the nonlinear multiple shooting 
method in order to solve equation (32). As the differences in Figure 10 are too small, the considera-
tion of extensionality and shear effects, which leads to a more complex solution procedure, is not 
necessary. Along the pre-buckling stage, the displacements are null as the axial effects are neglected 
in the present formulation. As expected, the cantilever becomes unstable after the critical load (35), 
bending under the action of any eccentric axial force. One should remember that, even for an ap-
plied force larger than the critical load (35), if the first try for the free-end rotation 0  (see expres-
sion (33)) is very small (or close to zero), the cantilever will not bend, acting as a column under 
axial force. Thus, in order to trigger the buckling after the critical load, a sufficiently large value for 
the first θ0 must be used. To illustrate this fact, for the larger applied force used in this example 
( 2.4674P EI  ), the influence of the first try for 0  on the cantilever behavior is provided in Ta-
ble 4, in which one can see that the beam will not buckle if this first try is sufficiently small. 
 

 
Figure 10: Free-end rotation and non-dimensional displacements for the cantilever under first-mode buckling com-

posed of elastic material. 
 

First try for 0  Solution for 0  

0.100 0.000 
0.500 0.000 
1.000 0.000 
1.500 0.000 
2.000 2.788 
2.500 2.788 

Table 4: Solutions for some values of the first free-end rotation try. 
 
In the context of elastoplastic post-buckling, only the bilinear material is used, and the final results 
are compared with the elastic case (see Figure 11). One can note that, as expected, the elastoplastic 
cantilever is more flexible than the elastic one, as the rigidity regarding the stress-strain relation 
decreases along the elastoplastic regime for the bilinear material (see the coefficients of Figure 3).  
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 (a) (b) 

     
 (c) (d) 

Figure 11: Comparison of results along the cantilever ( 0.0 2.0s  ) under first-mode buckling at the last step 
( 2.4674P EI  ): (a) angle of rotation; (b) rectangular coordinate x; (c) rectangular coordinate y; (d) maximum 

cross-sectional normal strain (%). The symbols “[EL]” and “[ELP]” denote the elastic and elastoplastic regimes. 
 

      
 (a) (b) 

Figure 12: Numerical results along the complete and partial unloading phases for the cantilever under first-mode 
buckling composed of bilinear elastoplastic material: (a) angle of rotation; (b) rectangular coordinates. The number 

in parenthesis denotes the load factor /P EI . 
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Besides, the level of strain at the clamped edge reaches the value of 17,11%, which can be consid-
ered a moderate strain. Thus, further extensions to finite strain levels can be performed in future 
studies, because if the curvature becomes too large, due to Poisson effect the position of the neutral 
line is changed and, hence, the strain distribution of Figure 2 can no longer be employed. With 
respect to the unloading and reloading phases, some configurations regarding the angle of rotation 
and the rectangular coordinates along these phases are given in Figure 12. Comparing with Figure 
8, the differences among the load levels in the beam behavior are much higher for the present ex-
ample, and the elastic part also stays straight at the end of the unloading. 
 For the bilinear elastoplastic material, the unloading phase is addressed via a specific problem: 
the U-bending. The question to be answered numerically is: what is the value of the force that must 
be applied in order to make the cantilever becomes a U-shaped bar when the load is completely 
removed? Although theoretical, this problem has practical applications as in metal-forming process-
es, for instance. To solve such a problem, the value of the applied force is updated until the free-end 
rotation at the end of the complete unloading phase reaches the value of 2 rad (or 90°). The con-
vergence analysis, regarding the value of the applied force, is given in Table 5. After the two first 
tries, the one-dimensional secant method (see expression (28)) is employed to estimate the next 
values of the applied force. Finally, for the applied force solution, the angle of rotation and the 
maximum strain level at the end of the complete unloading are provided in Figure 13. Even after 
the complete unloading phase, the normal strain reaches a maximum value of 15%, which is a mod-
erate level. 
 

P EI  
0  

2.3438 1.4148 
2.8125 1.5255 
3.0041 1.5627 
3.0462 1.5703 
3.0488 1.5708 
3.0489 1.5708 

Table 5: Convergence analysis regarding the applied force for the U-bending problem. 
 

         
 (a) (b) 

Figure 13: Final results for the U-bending problem (end of the complete unloading phase): (a) angle of rotation; (b) 
maximum normal strain at the clamped edge (%). 

Latin American Journal of Solids and Structures 12 (2015) 1595-1615 
 



J.P. Pascon / Numerical analysis of highly deformable elastoplastic beams          1611 

4.3 Buckling of a cantilever under a uniform distributed force 

Another problem in which the present formulation can be evaluated is the buckling of a cantilever 
under a uniformly distributed horizontal load (see Figure 3). This bending problem is similar to the 
second example, and the only modifications are in equations (32) and (34): 
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,  2 0 0f   (37) 

 
where w  is the uniform load. Regarding the constitutive modeling, two materials are considered: 
linear-elastic with and without isotropic hardening. The elastic Young modulus adopted is 

210 GPaE  . Thus, from linear theory and using the dimensions of Figure 3, the critical buckling 
load in elastic regime is: 
 

 
3

7.837 0.9796 20.8987cr
z z crcr

wL w
w

EI EI

                 
  (38) 

 
According to Figure 14, the present elastic solution in terms of displacements is in agreement with 
the critical load (38) and also with Holden (1972). Besides displacements, the free-end rotation for 
each load level used is also given in Figure 14. 
 

 
Figure 14: Free-end rotation and non-dimensional displacements for the linear-elastic cantilever under a uniformly 

distributed buckling force. 
 

In the context of elastoplasticity, this problem has also been numerically analyzed by Lewis et al. 
(1987), which developed a formulation similar to the present study: definition of the differential 
equation regarding the angle of rotation; axial and shear effects neglected; partially yielded rectan-
gular cross section; and solution by means of variational principles. However, it is not clear if the 

Latin American Journal of Solids and Structures 12 (2015) 1595-1615 
 



1612          J.P. Pascon / Numerical analysis of highly deformable elastoplastic beams 
 

material adopted by those authors is perfectly elastoplastic or bilinear elastoplastic. Thus, compari-
son of their results with the present ones is not possible. For the present example, in order to evalu-
ate the influence of the isotropic hardening model on the beam behavior, four values for the Swift 
coefficient n  (see equation 10) have been adopted (see Table 6). In all the four cases, after the 
beam buckles ( crw w ), the uniform load reaches the value of 40.0 ( 1.914crw w  ), returns to 
zero, is increased to 60.0 ( 2.871crw w  ) and then returns to zero again. 
 Regarding the numerical results for the second material, the four cases analyzed provide similar 
behaviors and, as expected, increasing the Swift coefficient n  leads to more flexibility (see Figures 
15-17). From Table 6, one can note that, keeping the coefficients K  and 0  constant, an increase in 
the value of n  provides lower values for the yield stress and strain limits, which provides more 
flexibility for the cantilever in elastoplastic regime. Another point to be highlighted is that, along 
the first unloading and reloading phases, the behavior of the beam is purely elastic. Finally, as in 
the second example, the accordance of results with the critical load (38) means that the beam buck-
les in elastic regime. The only caveat to be taken into account is the levels of strain after the beam 
buckles, which can be considered moderate (see Figures 16 and 17). As in Figure 13, the strain val-
ues of Figure 17 correspond to the maximum plastic (or permanent) strain at the cross sections. 
 

K (GPa) 0  n Y (GPa) Y (%) 

10 0.01 

0.05 7.94 3.78 

0.10 6.31 3.00 

0.15 5.01 2.39 

0.20 3.98 1.90 

Table 6: Swift coefficients, yield stress and yield strain for the third example. 
 
5 CONCLUSIONS 

In this paper, a numerical formulation for analysis of highly deformable elastoplastic thin beams is 
presented. The following concepts are employed in the present methodology: Euler-Bernoulli bend-
ing; nonlinear second-order differential equation regarding the angle of rotation; moment-curvature 
relationship based on the uniaxial stress-strain elastoplastic model; fourth-order Runge-Kutta inte-
gration procedure; and one-parameter nonlinear shooting method. The formulation is applied to 
three flexible and thin cantilevers composed of elastoplastic material: free-end shear force; first-
mode buckling; and buckling under uniformly distributed force. For these three examples, many 
numerical solutions regarding the structural behavior are provided. The results in the context of 
elastic regime are in agreement with the corresponding reference data. Although the numerical ex-
amples are quite simple, the basic formulation can be applied to problems involving flexible elasto-
plastic beams with other boundary conditions, cross-sections and constitutive models. The proce-
dure is to define the relation of the bending moment with the maximum longitudinal strain and 
with the curvilinear coordinate. 
 One of the contributions of this paper is the development of the explicit relations between the 
internal bending moment and the maximum longitudinal strain for the bilinear elastoplastic materi-
al and the linear-elastic material with Swift isotropic hardening. Besides, the numerical results are  
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 (a) (b) 

     
 (c) (d) 

Figure 15: Free-end non-dimensional displacements and angle of rotation for the elastoplastic cantilever under a 
uniformly distributed load. The symbol “ crw ” denotes the critical load (38). 

 

      
 (a) (b) 

Figure 16: Results for the maximum load level (w  60.0) along the elastoplastic cantilever under a uniformly 
distributed load. 
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 (a) (b) 

Figure 17: Results for the last stage (complete unloading after the maximum load) along the elastoplastic cantilever 
under a uniformly distributed load. 

 
also provided in terms of the angle of rotation and the maximum strain along the length of the 
beam, not only the relation between the applied force versus free-end displacements and rotation. 
These results can be compared with future studies regarding the mechanical behavior along the 
beam. Another feature of the present study is the analysis of highly deformable elastoplastic beams 
along the unloading and reloading phases, which is a topic rarely addressed in the scientific litera-
ture. As expected, after the load is completely removed, the elastic portion of the beam stays 
straight and the elastoplastic part remains curved. In respect to buckling problems, the present 
formulation can be used to predict the instability, and numerical solutions for post-buckling behav-
ior are given. Regarding the constitutive modeling, as the levels of longitudinal normal strain reach-
es moderate values, future extensions to nonlinear finite-strain elastoplastic models can be per-
formed. It is worth saying that the application of the present technique to hyper-static beam prob-
lems can be made in future studies. Finally, due to the simplicity in solving post-buckling problems, 
the present formulation can be employed, for instance, in nonlinear analysis of truss-like structures 
composed of elastoplastic compressed members. 
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