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Abstract 

Free vibration of a magnetoelectroelastic rectangular plate is in-

vestigated based on the Reddy’s third-order shear deformation 

theory. The plate rests on an elastic foundation and it is consid-

ered to have different boundary conditions. Gauss’s laws for elec-

trostatics and magnetostatics are used to model the electric and 

magnetic behavior. The partial differential equations of motion are 

reduced to a single partial differential equation and then by using 

the Galerkin method, the ordinary differential equation of motion 

as well as an analytical relation for the natural frequency of the 

plate is obtained. Some numerical examples are presented to vali-

date the proposed model and to investigate the effects of several 

parameters on the vibration frequency of the considered smart 

plate.  
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1 INTRODUCTION 

Magnetoelectroelastic composite materials are a new class of smart materials which exhibit a cou-

pling between mechanical, electric and magnetic fields and are capable of converting energy among 

these three energy forms. These materials have direct application in sensors and actuators, control 

of vibrations in structures, energy harvesting, etc.  

 Static and dynamic responses of piezoelectric plates have been investigated extensively in the 

past years (Alibeigloo and Kani, 2010; Behjatet al., 2011; Rezaiee-Pajand and Sadeghi, 2013; 

Ghashochi-Bargh and Sadr, 2014; Rafiee et al., 2014; Padoina et al., 2015). Moon et al. (2007) de-

signed a linear magnetostrictive actuator using Terfenol-D to control structural vibration. Hong 

(2007) studied the thermal vibration of magnetostrictive material embedded in laminated plate by 

using the generalized differential quadrature method. Later, the same author (2010)used the gener-

alized differential quadrature method to compute the transient response of the laminated 

magnetostrictive plates under thermal vibration. 
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 Pan (2001) studied multilayered magnetoelectroelastic plates analytically for the first time and 

derived exact solutions for three-dimensional magnetoelectroelastic plates. Pan and Heyliger (2002) 

derived analytical solutions for free vibrations of these smart plates. Pan and Heyliger (2003) stud-

ied the response of multilayered magnetoelectroelastic plates under cylindrical bending. Ramirez et 

al. (2006a) presented an approximate solution for the free vibration problem of two-dimensional 

magnetoelectroelastic laminated plates. Ramirez et al. (2006b) also determined natural frequencies 

of orthotropic magnetoelectroelastic graded composite plates by using a discrete layer model. Liu 

and Chang (2010) derived a closed form expression for the transverse vibration of a 

magnetoelectroelastic thin plate and obtained the exact solution for the free vibration of a two-

layered BaTiO3-CoFe2O4 composite. Single-layer approaches to static and free vibration analysis of 

magnetoelectroelastic laminated plates have also been introduced (Milazzo 2012, 2014a, 2014b; 

Milazzo and Orlando, 2012). Chen et al. (2014) studied the free vibration of multilayered 

magnetoelectroelastic plates under combined clamped/free boundary conditions. Moita et al. (2009) 

presented a higher-order finite element model for static and free vibration analyses of 

magnetoelectroelastic plates. Based on the nonlocal Love’s shell theory, Ke et al. (2014) developed 

an embedded magnetoelectroelastic cylindrical nanoshell model to study the vibration response of 

these structures. Razavi and Shooshtari (2014) used Donnell shell theory to analyze the free vibra-

tion of magnetoelectroelastic curved panels.Li and Zhang (2014) studied the free vibration of a 

magnetoelectroelastic plate resting on a Pasternak foundation based on the Mindlin theory. Piovan 

and Salazar (2015) presented a one-dimensional model for dynamic analysis of magnetoelectroelastic 

curved beams. Based on three-dimensional elasticity theory, Xin and Hu (2015) derived semi-

analytical solutions for free vibration of simply supported and multilayered magnetoelectroelastic 

plates. Nonlinear free and forced vibration of one-layered and multilayered magnetoelectroelastic 

rectangular plates based on the classical and first order shear deformation theory have also been 

investigated (Shooshtari and Razavi 2015a, 2015b; Razavi and Shooshtari, 2015). Li et al. 

(2014,2015) investigated dynamic response of magnetoelectroelastic nanoplate and nanobeam based 

on nonlocal Mindlin theory and nonlocal and Timoshenko beam theories, respectively. Ansari et al. 

(2015) developed a nonlocal geometrically nonlinear beam model for magnetoelectroelastic 

nanobeams subjected to external electric voltage, external magnetic potential and uniform tempera-

ture rise. Recently, Shooshtari and Razavi (2015c) investigated large amplitude vibration of lami-

nated magnetoelectroelastic doubly-curved panels. 

 According to the published articles, there is not any study dealing with analytical study of free 

vibration of these smart plates based on a higher-order shear deformation theory. So, this study fills 

the gap in the analysis of magnetoelectroelastic rectangular plates. In this paper, free vibration of 

simply-supported, clamped and simply-supported/clamped magnetoelectroelastic rectangular plates 

resting on an elastic foundation is investigated based on the Reddy’s third-order shear deformation 

theory. The Galerkin method is implemented to reduce the partial differential equation of motion to 

anordinary differential equation and then an analytical relation is obtained for the natural frequen-

cy. Some numerical examples are presented to validate the proposed model and to investigate the 

effects of several parameters such as foundation parameters, plate geometry, and the applied electric 

and magnetic potentials on the natural frequency of the considered smart plate.  
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2 THEORETICAL FORMULATION 

Consider a rectangular plate resting on an elastic foundation with dimensions of a ×b ×h as shown 

in Figure 1.  

Figure 1: Schematic of a magnetoelectroelastic plate on an elastic foundation. 

Based on the Reddy’s third-order shear deformation theory, the displacement field of a composite 

plate is given as (Reddy, 2004): 
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Whereu0,v0, andw0 are the displacements of the mid-surface alongx,y, andz directions, respectively, 

andθx andθy are the rotations of a transverse normal about they andx directions, respectively. 

 The linear strain-displacement relations based on the displacement field given in Eq. (1) are 

(Reddy, 2004): 
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 (2) 

Assuming that the electric and magnetic fields are applied alongz-direction, the constitutive equa-

tions of a magnetoelectroelastic material can be written in the following form (Pan, 2001; Li and 

Zhang, 2014): 
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(5) 

where { }T

x y xz yz xyσ σ σ σ σ  is stress vector; { }T

x y zD D D  and{ }T

x y zB B B  are the electric 

displacement and magnetic flux vectors, respectively; 
ijC   , 

ijη    and 
ijµ    are the elastic, dielec-

tric and magnetic permeability coefficient matrices, respectively; 
ije   , 

ijq    and 
ijd    are the 

piezoelectric, piezomagnetic and magnetoelectric coefficient matrices, respectively; and ϕand ψare 

electric and magnetic potentials. 

 By neglecting in-plane inertia effects (i.e., 
0 0

0u v= =ɺɺ ɺɺ ) and assuming a constant value for the 

density of the plate, the equations of motion of a rectangular plate can be expressed in the following 

form (Reddy, 2004): 
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where kw and ks are spring and shear coefficients of the elastic foundation, respectively and: 
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in which ρ0 is the density of the material of the plate and the force and moment resultants are 

obtained by: 
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 To express Eqs. (6) - (10) in terms of displacements and rotations, the resultants must be cal-

culated from Eq. (12). To this end, σαβ and σαz can be substituted from Eq. (3). However, since ϕ,z 

and ψ,zare unknown parameters, Eqs. (4) and(5) along with Gauss’s laws for electrostatics and 

magnetostatics, i.e., 
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are used which results in:  
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 Integrating the relations of Eq. (14) with respect to z, one obtains: 
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Whereϕ0, ϕ1, ψ0 and ψ1 are constants of the integration and are obtained by using the 

magnetoelectric boundary conditions on the two surfaces of the plate. 

 The magnetoelectroelastic body is poled along the z direction and subjected to an electric po-

tential V0 and a magnetic potential Ω0 between the upper and lower surfaces of the plate. So, the 

magnetoelectric boundary conditions are stated as: 
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 Eqs. (17) and (18) give 0 0V hφ =  and 0 0 hψ = Ω . Then the gradients of electric and magnetic 

potentials are obtained from Eq. (16): 
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 Now, the resultants are obtained by Eqs. (3), (12) and (19): 
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Substituting Eqs. (20) – (23) into Eqs. (6) – (10) yield: 
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where Li (i=1,2,…,37) are constant coefficients which are functions of applied electric and mag-

netic potentials, foundation parameters, and material and geometrical properties of the plate and 

are given in Appendix A. 

 It can be seen that Eqs. (24) and (25) are decoupled from Eqs. (26) – (28). So, to study the 

transverse motion ofthe plate, it is sufficient to consider only Eqs. (26) – (28).Eqs. (27) and (28) 

constitute a set of linear equations in terms ofθx andθy. Algebraic solution of this equations re-

sults in: 
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whereAi(i=1,…,6) are partial differential operators and are defined in Appendix B. 

 Substituting Eq. (29) into (26) one obtains the following partial differential equation for the 

transverse motion of the magnetoelectroelastic plate: 
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which is expressed in terms of w0. 

 Three boundary conditions are considered in the present study, which are simply-supported, 

clamped and combination of simply-supported and clamped edges, that is: 
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The transverse displacement for each of these boundary conditions can be obtained by: 

( ) ( ) ( )0 sin sinw hW t m x a n y bπ π= for SSSS boundary condition (32a) 
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( ) ( ) ( )
( ) ( )

2 1 sin sinh
, ,

2 cos cosh

2 1 sin sinh
, ,

2 cos cosh

m m

m m

m m

n n

n n

n n

m

n

π α α
α ζ

α α

π α α
α ζ

α α

+ −
= =

−

+ −
= =

−

 (33) 

where (m,n) denotes the mode of vibration and W(t) is unknown function in terms of time (t). 

 Substituting Eqs. (32a) – (32c)into Eq. (30) and employing the orthogonality of trigonometric 

functions, the following ordinary differential equationis obtained for each boundary condition: 

eq eq 0M W K W+ =ɺɺ  (34) 

in which the terms containing d4W/dt4 and d6W/dt6 are neglected. In this equation, Meq and Keq 

are the equivalent mass and stiffness of the system, respectively. 

 
3 RESULTS 

To validate the present study, some numerical examples are presentedand the results are compared 

with the published ones. As a first comparison, an isotropic simply-supportedsquare plate is consid-

ered and the dimensionless frequencies for different length-to-thickness ratios are obtained. The 

dimensionless frequencies are obtained by using ( )2

0 0a h Eω ω ρ= , where E is the Young’s 

modulusof the plate and ω0 = (Keq/Meq)
1/2 is the circular natural frequency.The results are shown 

in Table 1 and compared with the results of Vel and Batra (2004) based on the three-dimensional 

approach, Hosseini-Hashemiet al. (2011) based on the third-order shear deformation plate theory, 

and Kianiet al. (2012) based on the first-order shear deformation theory. It is seen that there is 

acceptable accuracy for the thick case ( 10a h = ) and perfect agreements for the relatively thick 

(a/h = 10) and the thin (a/h = 50) plates areobserved.  

 

Method 
a/h  

10  10 50 

Vel and Batra (2004) 

Hosseini-Hashemiet al. (2011) 

Kianiet al. (2012) 

Present study 

4.6582 

4.6225 

- 

4.4473 

5.7769 

5.7694 

5.7693 

5.7646 

- 

- 

5.9647 

5.9647 
 

Table 1: Comparison of dimensionless fundamental frequency of asimply-supportedsquare plate (ν = 0.3). 
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As a second comparison, a simply-supported isotropic thin plate with different aspect ratios is con-

sidered. The dimensionless frequencies are obtained by 2

0 0a h Dω ω ρ=  in which D is the flexural 

rigidity and D=Eh3/(12(1-ν2)). Table 2 shows the results. 

 

Method 
a/b 

0.4 2/3 1.0 1.5 2.5 
 

Leissa (1973) 
 

Present study 

 

11.4487 
 

11.4487 

 

14.2561 
 

14.2561 

 

19.7392 
 

19.7391 

 

32.0762 
 

32.0760 

 

71.5564 
 

71.5537 
 

Table 2: Comparison of dimensionless fundamental frequency 

of a simply-supportedrectangular plate (ν = 0.3, a/h=1000). 

 

Table 3 shows first four dimensionless frequencies of clamped (CCCC) and simply-

supported/clamped (SCSC) square thin plates. The frequencies are obtained by 

( )2 2

0 0a h Dω ω π ρ=  and compared with the values reported by various authors. It is seen that 

the proposed model predicts the frequencies precisely. 

 

Method 
SCSC CCCC 

1
ω  

2
ω  

3
ω  

4
ω  

1
ω  

2
ω  

3
ω  

4
ω  

Kim et al. (1993) 

Woo et al. (2003) 

Eftekhari and Jafari (2013) 

Present study 

2.9333 

2.9306 

2.9333 

2.9219 

5.5466 

5.5469 

5.5466 

5.5643 

7.0242 

7.0208 

7.0242 

7.0282 

9.5833 

9.5831 

9.5833 

9.6122 

3.6460 

3.6448 

3.6460 

3.6315 

7.4362 

7.4373 

7.4362 

7.4615 

7.4362 

7.4374 

7.4362 

7.4615 

10.9644 

10.9650 

10.9643 

11.0383 

 

Table 3: First four dimensionless frequencies of square plates 

with different boundary conditions (ν = 0.3, a/h=1000). 

 
Table 4 shows the dimensionless fundamental frequencies 2

0 0a h Dω ω ρ=  of a square isotropic 

plate with a/h = 100 resting on an elastic foundation. The dimensionless parameters of the founda-

tion are defined as 4

w wK k a D= and 2

s sK k a D= .It is observed that the results are in good agree-

ment with the accurate results reported by Hasani Baferani et al. (2011).It is worth noting that the 

dimensionless shear coefficient (Ks) has more effect on the natural frequency.Moreover, it is ob-

served from Tables 3 and 4 that clamped edges increase natural frequencies. 
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(Kw,Ks) 
Boundary 

condition 

Method 

Lam et al. 

(2000) 

Hasani Baferani 

et al. (2011) 

Present study 

(0,0) 
SSSS 19.74 19.7374 19.7320 

SCSC 28.95 28.9441 28.8274 

(0,100) 
SSSS 41.62 48.6149 48.6101 

SCSC 54.68 54.6742 55.1384 

(100,0) 
SSSS 22.13 22.1261 22.1209 

SCSC 30.63 30.6229 30.5123 

(100,100) 
SSSS 49.63 49.6327 49.6279 

SCSC 55.59 55.5811 56.0377 
 

Table 4: Dimensionless fundamental frequency of square isotropic 

plates resting on elastic foundation (ν = 0.3). 

 

As the last comparison, three piezoelectric, piezomagnetic and isotropic square plates with simply-

supported boundary condition are considered and two firstdimensionlessfrequencies of these plates 

are obtained. Table 5 shows the results. The considered piezoelectric, piezomagnetic and isotropic 

plates are of BaTiO3, CoFe2O4 and aluminum materials, respectively. The BaTiO3 (shown with B) 

and CoFe2O4(shown with F) plates are thick with a = b = 1 m and h = 0.3 m and their material 

properties are given by Wu and Lu (2009). However, the aluminum plate (shown with Al) is thin 

with a = b = 300 mm and h = 1 mm.The dimensionless frequencies of BaTiO3 and CoFe2O4 are 

calculated by using 
0 0 maxa Cω ω ρ=  where Cmax is the maximum value of the stiffness coefficient 

of the plate, whereas The dimensionless frequencies of aluminum plate are obtained by 
2

0 0a h Dω ω ρ= .Again, there is a good agreement between the results. 

 

Method 

Mode (m,n) 

(1,1) (2,1) 

B F Al B F Al 

Ribeiro (2005) 

Wu and Lu (2009) 

Moita et al. (2009) 

Present study 

- 

1.2523 

1.2629 

1.2349 

- 

1.0212 

1.1358 

1.1048 

19.7392 

- 

- 

19.7384 

- 

2.3003 

2.4649 

2.2857 

- 

1.9747 

2.1075 

1.9571 

49.3480 

- 

- 

49.3430 

 

Table 5: Dimensionless frequencies of several square plates. 

 

Effects of aspect ratio, and the applied electric and magnetic potentials on the dimensionless fun-

damental frequencies of a magnetoelectroelastic plate with different boundary conditions are studied 

and the results are shown in Table 6. The dimensionless frequencies are obtained by 
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0 0 maxa Cω ω ρ= . The material properties of the magnetoelectroelastic plate are (Li and Zhang, 

2014): C11 = 226×109 Nm-2, C12 = 124×109 Nm-2, C22 = 216×109 Nm-2, C44 = C55 = 44×109 Nm-2, 

C66 = 51×109 Nm-2, e32 = e31 = -2.2 Cm-2, q32 = q31 = 290.2 NA-1m-1, η33 = 6.35×10-9 C2N-1m-2,d33 

= 2737.5×10-12 NsV-1C-1, μ33 = 83.5×10-6 Ns2C-2, and ρ0 = 5500 kgm-3. 

 

Boundary 

Condition 
a/b 

V0 (10
8 V) Ω0 (10

6 A) 

0 +1 0 +1 

SSSS 

0.5 0.343322939 0.343322938 0.343322939 0.343322939 

1.0 0.535860885 0.535860883 0.535860885 0.535860887 

2.0 1.233226423 1.233226400 1.233226423 1.233226453 

SCSC 

0.5 0.380853054 0.380853053 0.380853054 0.380853055 

1.0 0.774485196 0.774485191 0.774485196 0.774485204 

2.0 2.270502531 2.270502390 2.270502531 2.270502717 

CCCC 

0.5 0.675570089 0.675570085 0.675570089 0.675570094 

1.0 0.962062272 0.962062261 0.962062272 0.962062287 

2.0 2.342843729 2.342843576 2.342843729 2.342843931 

 

Table 6: Dimensionless fundamental frequencies of a magnetoelectroelastic rectangular plate(h = 1 mm, a/h = 10). 

 
It is noticed that increasingthe aspect ratio increases the dimensionless frequency of the 

magnetoelectroelastic plate. Moreover, Table 6 shows that increasing the electric potential decreases 

the dimensionless frequency of the magnetoelectroelastic plate whereas magnetic potential increases 

the dimensionless frequency. It is also noticeable that potentials effects on dimensionless frequency 

are more significant in plates with higher aspect ratios and plates with clamped edges. 

Table 7 shows the effects of a/h ratio and foundation parameters on the dimensionless frequencies 

of a magnetoelectroelastic square plate. In this table, the dimensionless frequencies are obtained by 

0 0 maxa Cω ω ρ=  and dimensionless foundation parameters are obtained by ( )4 3

maxw wK k a C h=

and ( )2 3

maxs sK k a C h= . The magnetoelectric boundary condition is considered to be closed-circuit 

meaning that in Eq. (18),
0 0

0V = Ω =  is substituted. It is seen that a/h ratio tends to decrease the 

dimensionless frequency.  Foundation parameters increase the natural frequencies because the pres-

ence of elastic foundation results in the increase of the stiffness of the system. It is also obvious that 

the dimensionless shear coefficient (
sK ) has more effect on the natural frequencies.In addition, it is 

observed that similar to the results of Tables 3 and 4, clamped edges increase the dimensionless 

frequencies. 
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Boundary 

condition 
( ),w sK K  a/h 

Mode (m,n) 

(1,1) (1,2) (2,2) 

SSSS 

(0,0) 
50 

100 

0.1131 

0.0566 

0.2792 

0.1402 

0.4492 

0.2261 

(10,0) 
50 

100 

0.1295 

0.0649 

0.2863 

0.1437 

0.4536 

0.2283 

(0,10) 
50 

100 

0.3028 

0.1515 

0.5244 

0.2627 

0.7188 

0.3606 

(10,10) 
50 

100 

0.3093 

0.1547 

0.5282 

0.2646 

0.7216 

0.3620 

SCSC 

(0,0) 
50 

100 

0.1639 

0.0821 

0.3909 

0.1964 

0.5374 

0.2706 

(10,0) 
50 

100 

0.1757 

0.0880 

0.3960 

0.1989 

0.5411 

0.2725 

(0,10) 
50 

100 

0.3398 

0.1698 

0.6146 

0.3075 

0.7946 

0.3985 

(10,10) 
50 

100 

0.3456 

0.1727 

0.6178 

0.3092 

0.7971 

0.3998 

CCCC 

(0,0) 
50 

100 

0.2046 

0.1025 

0.4158 

0.2089 

0.6187 

0.3114 

(10,0) 
50 

100 

0.2142 

0.1073 

0.4206 

0.2113 

0.6285 

0.3156 

(0,10) 
50 

100 

0.3744 

0.1870 

0.6383 

0.3194 

0.8631 

0.4369 

(10,10) 
50 

100 

0.3797 

0.1897 

0.6415 

0.3210 

0.8831 

0.4404 

 

Table 7: Dimensionless frequencies of a magnetoelectroelastic square plate (h = 1 mm). 

 

Figures 2 and 3 show the effects of shear coefficient of foundation and a/h ratio on the natural fre-

quencies of magnetoelectroelastic plates, respectively. It can be seen that for fixed material and 

geometric properties, clamped plate has the most natural frequency among the considered plates. 

Moreover, as it was also shown above, foundation parameter increases the natural frequency where-

as the a/h ratio decreases it.  
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Figure 2: Effect of shear coefficient of foundation on the fundamental natural frequency 

of closed-circuit magnetoelectroelastic square plates (a/h = 25, 0
w

K = ). 

 

 

Figure 3: Effect of length-to-thickness on the fundamental natural frequency 

of closed-circuit magnetoelectroelastic square plates (h = 1 mm, 0
w s

K K= = ). 
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4 CONCLUSIONS 

In this study, free vibration of a magnetoelectroelastic rectangular plate with different edge sup-

ports was investigated analytically. To this end, Reddy’s third-order shear deformation theory and 

Gauss’s laws for electrostatics and magnetostatics were used to model the considered smart plate. 

Galerkin method was applied to the partial differential equation of motion to reduce it to an ordi-

nary differential equation and then an analytical relation was obtained for the natural frequency. 

Some numerical examples were presented and it was shown that: (a) electric potential decreases the 

dimensionless natural frequency of the magnetoelectroelastic plate while the magnetic potential 

increases it, (b) clamped edges increase the dimensionless frequencies of magnetoelectroelastic plate 

so that the clamped plate has the most dimensionless frequency whereas the simply-supported plate 

has the least one, and (c) elastic foundation increases the stiffness of the system and consequently 

increases the natural frequency of the magnetoelectroelastic plate.   

 

 

Appendix A 

 

1 55
8 15L hC= , 3

2 11 44 315L h C β= + , 
3 1

L β= , ( )3

4 12 66 11
4 2 315L h C C β= + + , 

5 8
L β=  (A.1) 

 

 

6 44
8 15L hC= , 3

7 22 104 315L h C β= + , ( )3

8 12 66 3
4 2 315L h C C β= + + , 

9 9
L β= , 

10 2
L β=  (A.2) 

 

 

( )

3

11 55 31 0 31 0 12 44 32 0 32 0 13 11 6

3 3

14 22 12 15 12 66 13 16 7 17 14

8 15 , 8 15 , 252

252 , 2 126 , ,

β

β β β β

= + + + Ω = + + + Ω = − +

= − + = − + + = =
s sL hC k e V q L hC k e V q L h C

L h C L h C C L L
 (A.3) 

 

 

( )
( )

3 3

18 11 4 19 66 20 1 21 55 22 2

3 3

23 12 66 3 24 11 6 25 7

3

26 12 66 5 27 55

17 315 , 17 315, , 8 15, ,

17 315 , 4 315 , ,

4 2 315 , 8 15

α α α

α α α

α

= + = = = − =

= + + = − = −

= + − =

L h C L h C L L hC L

L h C C L h C L

L h C C L hC

 (A.4) 

 

 

( )

( )

3 3

28 8 29 12 66 11 30 66

3

31 22 10 32 9 33 44

3 3

34 22 12 35 12 66 13 36 14 37 44

, 17 315 , 17 315,

17 315 , , 8 15,

4 315 , 4 2 315 , , 8 15

α α

α α

α α α

= = + + =

= + = = −

= − = + − = − =

L L h C C L h C

L h C L L hC

L h C L h C C L L hC

 (A.5) 
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where 

 

( )
( )
( )

3

1 2 24 31 1 24 31 31 24 3 24 31

3

2 2 15 31 1 15 31 31 15 3 15 31

3

3 2 31 32 1 31 32 32 31 3 31 32

3 2 2

4 2 31 1 31 31 3 31

3

5 2 31 32 1

17 315,

17 315,

17 315,

17 2 315,

4

α λ λ λ

α λ λ λ

α λ λ λ

α λ λ λ

α λ λ

 = + + + 

 = + + + 

 = + + + 

 = + + 

= − +

h e e e q e q q q

h e e e q e q q q

h e e e q e q q q

h e e q q

h e e ( )

( ) ( ) ( )
( )

31 32 32 31 3 31 32

3 2 2

6 2 31 1 31 31 3 31

3

7 2 15 31 24 31 1 15 31 31 15 24 31 31 24 3 15 31 24 31

3

8 2 24 32 1 24 32 32 24 3 24 32

3

9

315,

4 2 315,

17 315,

17 315,

17

λ

α λ λ λ

α λ λ λ

α λ λ λ

α λ

 + + 

 = − + + 

 = + + + + + + + 

 = + + + 

=

e q e q q q

h e e q q

h e e e e e q e q e q e q q q q q

h e e e q e q q q

h ( )

( )

( )

2 15 32 1 15 32 32 15 3 15 32

3 2 2

10 2 32 1 32 32 3 32

3

11 2 31 32 1 31 32 32 31 3 31 32

3 2 2

12 2 32 1 32 32 3 32

3

13 2 31 32 1 31 32 32 31

315,

17 2 315,

17 315,

4 2 315,

4

λ λ

α λ λ λ

α λ λ λ

α λ λ λ

α λ λ

 + + + 

 = + + 

 = + + + 

 = − + + 

= − + + +

e e e q e q q q

h e e q q

h e e e q e q q q

h e e q q

h e e e q e q

( ) ( ) ( )
3 31 32

3

14 2 15 32 24 32 1 15 32 32 15 24 32 32 24 3 15 32 24 32

315,

17 315

λ

α λ λ λ
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q q

h e e e e e q e q e q e q q q q q  

(A.6) 
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1 2 24 31 1 24 31 31 24 3 24 31
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2 105,
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Appendix B 

2 2 2 2

1 18 19 20 2 212 2 2
A L L L K L

x yx y t
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 (B.1) 

 
2 2
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A L L
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3 3 3 3
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