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Vibration Analysis of a Magnetoelectroelastic Rectangular Plate
Based on a Higher-Order Shear Deformation Theory

Abstract Alireza Shooshtari °

Free vibration of a magnetoelectroelastic rectangular plate is in- Soheil Razavi °
vestigated based on the Reddy’s third-order shear deformation
theory. The plate rests on an elastic foundation and it is consid-
ered to have different boundary conditions. Gauss’s laws for elec-

trostatics and magnetostatics are used to model the electric and | ® Mechanical Engineering Department,

magnetic behavior. The partial differential equations of motion are
reduced to a single partial differential equation and then by using
the Galerkin method, the ordinary differential equation of motion
as well as an analytical relation for the natural frequency of the
plate is obtained. Some numerical examples are presented to vali-
date the proposed model and to investigate the effects of several
parameters on the vibration frequency of the considered smart
plate.
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1 INTRODUCTION

Magnetoelectroelastic composite materials are a new class of smart materials which exhibit a cou-
pling between mechanical, electric and magnetic fields and are capable of converting energy among
these three energy forms. These materials have direct application in sensors and actuators, control
of vibrations in structures, energy harvesting, etc.

Static and dynamic responses of piezoelectric plates have been investigated extensively in the
past years (Alibeigloo and Kani, 2010; Behjatet al., 2011; Rezaiee-Pajand and Sadeghi, 2013;
Ghashochi-Bargh and Sadr, 2014; Rafiee et al., 2014; Padoina et al., 2015). Moon et al. (2007) de-
signed a linear magnetostrictive actuator using Terfenol-D to control structural vibration. Hong
(2007) studied the thermal vibration of magnetostrictive material embedded in laminated plate by
using the generalized differential quadrature method. Later, the same author (2010)used the gener-
alized differential quadrature method to compute the transient response of the laminated
magnetostrictive plates under thermal vibration.
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Pan (2001) studied multilayered magnetoelectroelastic plates analytically for the first time and
derived exact solutions for three-dimensional magnetoelectroelastic plates. Pan and Heyliger (2002)
derived analytical solutions for free vibrations of these smart plates. Pan and Heyliger (2003) stud-
ied the response of multilayered magnetoelectroelastic plates under cylindrical bending. Ramirez et
al. (2006a) presented an approximate solution for the free vibration problem of two-dimensional
magnetoelectroelastic laminated plates. Ramirez et al. (2006b) also determined natural frequencies
of orthotropic magnetoelectroelastic graded composite plates by using a discrete layer model. Liu
and Chang (2010) derived a closed form expression for the transverse vibration of a
magnetoelectroelastic thin plate and obtained the exact solution for the free vibration of a two-
layered BaTiO3-CoFeyO,4 composite. Single-layer approaches to static and free vibration analysis of
magnetoelectroelastic laminated plates have also been introduced (Milazzo 2012, 2014a, 2014b;
Milazzo and Orlando, 2012). Chen et al. (2014) studied the free vibration of multilayered
magnetoelectroelastic plates under combined clamped/free boundary conditions. Moita et al. (2009)
presented a higher-order finite element model for static and free vibration analyses of
magnetoelectroelastic plates. Based on the nonlocal Love’s shell theory, Ke et al. (2014) developed
an embedded magnetoelectroelastic cylindrical nanoshell model to study the vibration response of
these structures. Razavi and Shooshtari (2014) used Donnell shell theory to analyze the free vibra-
tion of magnetoelectroelastic curved panels.Li and Zhang (2014) studied the free vibration of a
magnetoelectroelastic plate resting on a Pasternak foundation based on the Mindlin theory. Piovan
and Salazar (2015) presented a one-dimensional model for dynamic analysis of magnetoelectroelastic
curved beams. Based on three-dimensional elasticity theory, Xin and Hu (2015) derived semi-
analytical solutions for free vibration of simply supported and multilayered magnetoelectroelastic
plates. Nonlinear free and forced vibration of one-layered and multilayered magnetoelectroelastic
rectangular plates based on the classical and first order shear deformation theory have also been
investigated (Shooshtari and Razavi 2015a, 2015b; Razavi and Shooshtari, 2015). Li et al.
(2014,2015) investigated dynamic response of magnetoelectroelastic nanoplate and nanobeam based
on nonlocal Mindlin theory and nonlocal and Timoshenko beam theories, respectively. Ansari et al.
(2015) developed a nonlocal geometrically nonlinear beam model for magnetoelectroelastic
nanobeams subjected to external electric voltage, external magnetic potential and uniform tempera-
ture rise. Recently, Shooshtari and Razavi (2015¢) investigated large amplitude vibration of lami-
nated magnetoelectroelastic doubly-curved panels.

According to the published articles, there is not any study dealing with analytical study of free
vibration of these smart plates based on a higher-order shear deformation theory. So, this study fills
the gap in the analysis of magnetoelectroelastic rectangular plates. In this paper, free vibration of
simply-supported, clamped and simply-supported/clamped magnetoelectroelastic rectangular plates
resting on an elastic foundation is investigated based on the Reddy’s third-order shear deformation
theory. The Galerkin method is implemented to reduce the partial differential equation of motion to
anordinary differential equation and then an analytical relation is obtained for the natural frequen-
cy. Some numerical examples are presented to validate the proposed model and to investigate the
effects of several parameters such as foundation parameters, plate geometry, and the applied electric
and magnetic potentials on the natural frequency of the considered smart plate.
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2 THEORETICAL FORMULATION

Consider a rectangular plate resting on an elastic foundation with dimensions of a xb Xh as shown
in Figure 1.

ViTEeesss

Figure 1: Schematic of a magnetoelectroelastic plate on an elastic foundation.

Based on the Reddy’s third-order shear deformation theory, the displacement field of a composite
plate is given as (Reddy, 2004):

4

u(x,y,z,t):uo(x,y,t)+zt9x (x,y,t)—}}l—zz3(ﬁx +w0,x)

v(x,y,z,t)zvo(x,y,t)-rzé?y (x,y,t)—y;izﬁ(ﬁy +wo,y) (1)
w (x,y,z,t)zwo(x,y,t)

Whereuy,wy, anduy are the displacements of the mid-surface alongz,y, andz directions, respectively,
and#, andg, are the rotations of a transverse normal about they andz directions, respectively.

The linear strain-displacement relations based on the displacement field given in Eq. (1) are
(Reddy, 2004):

&, U, 0, 0 O +W g

g, Yoy V.y 4 0 4 9“ W

T e Bt et I )
Ve | |6 tWa, 0 0, +w,, 0

Vol Moy +Vou 0., +0,, 0 0., +0, +w,,

Assuming that the electric and magnetic fields are applied alongzdirection, the constitutive equa-
tions of a magnetoelectroelastic material can be written in the following form (Pan, 2001; Li and
Zhang, 2014):

o, Cy Cp O 0 0 |]e [0 0 ey (0 0 gy

o, c, C, 0 0 0 ||e, 0 0 e,][|l0 0 0 g¢q,||0

o.r={0 0 Cy4 0 0 RVeg¢+ 0 ey, 030 ;+] 0 g, 00 (3)
o, 0 0 0 C,u 0|7, es 0 0|4, gs 0 0 ||y,

o,] [0 0 0 0 Cqll7e] LO 0 0] 0 0 0]
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gx
D, 0 0 0 e Offs n, 0 01]0 d, 0 0 0
D,t=10 0 e, 0 037.¢—|0 7, 0300 d,, O 0 (4)
D, ey ey 00 0]y, 0 0 7ny]|0. 0 0 dy]|vy.
J/Xy
B, 0 0 0 g¢q5 0]|¢ d, 0 0 4y 0 0 0
B, t=10 0 ¢q,, 0 01377 —| 0 dyy 0 30¢=10 x, 010 (5)
B, g5 49 0 0 0|y, 0 0 dy]|4. 0 0 uy]ly.
}/xy

where {0}- o, 0. 0, O, }T is stress vector; {Dx D, D, }T and{Bx B, B, }T are the electric
displacement and magnetic flux vectors, respectively; [Cij ], [n{.}.] and [ yi]} are the elastic, dielec-
tric and magnetic permeability coefficient matrices, respectively; [el.j], [qy} and [d,,] are the

piezoelectric, piezomagnetic and magnetoelectric coefficient matrices, respectively; and ¢gand yare

electric and magnetic potentials.
By neglecting in-plane inertia effects (i.e., &, =V, =0) and assuming a constant value for the

density of the plate, the equations of motion of a rectangular plate can be expressed in the following
form (Reddy, 2004):

N, +N,, =0 (6)

0,,+0, + 3%(& w 2P, P, N+ (Now, N W, ) +(N wo, +N w,, )’y

) .. 16 .. ..
_kao"rkSVWo:IoWo_WI(,(Wo,xx+Wo,y}) EYEl (49 +9 )
- — 4
MX,X‘FM _Q KH h I W, 9)
— — 4
M, +M,, —Q KH EYEl I W, (10)

where k, and k, are spring and shear coefficients of the elastic foundation, respectively and:
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4 _ 4 _ 4

M= Mo gyzbe My =M gz Moy =My =
4 hl
0. =0, ——Rw 0, =0, — R Lo=phs L=p (11)
h’® h’ 4 8 16
le=pgy le=pigy H=limgple Kamhimgalorg ol

in which pg is the density of the material of the plate and the force and moment resultants are
obtained by:

N
Q.| 1
il Bl e
Paﬂ z

To express Egs. (6) - (10) in terms of displacements and rotations, the resultants must be cal-
culated from Eq. (12). To this end, 0,4 and o0y, can be substituted from Eq. (3). However, since ¢ .
and y.are unknown parameters, Eqgs. (4) and(5) along with Gauss’s laws for electrostatics and
magnetostatics, i.e.,

D..+D,  +D._ =0, B, . +B, +B._=0 (13)
are used which results in:
.. :[%A3+22A1]Zz+21A4+ﬂ2A23 V.. :[%A1+%A3]22+%A2+23A4 (14)

where

A4 =d33/(d323 _7733/”33)9 A, = _ﬂn/(d}zs _7733:U33)9 A= _7733/<d323 _7733ﬂ33) (15a)

=

A, =—?[e24 Ly W )+e31 (6’ W )+e15 (6’ W )+e32 (0 W, )],
(

m

o +w0”)+e15(6’ +w0u)+e316’ +e,,0

24 X,y

Y.y

(15b)
h2

_4[(]24 0., +W,, )4—q31 (Qm W )+q15 (HJ;,X W )+q32 (6’);,); Wy, )],
= (0w )+ (0, +w,, ) +45,0,, +a3,0,,

Integrating the relations of Eq. (14) with respect to z, one obtains:

:é(ﬂqASMzAl)ﬁ +(A4, +4A4,)z + 4y, v, =%(11A1 + 4A)z7 + (A4, + KA,z +y, (16)
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(AA +4A,)z 4= (/11A +4,d4,)z° +z + 4,
(17)
(ﬂlA +A,)zt + = (ﬂlA +4,4,)2° ez +y,

Wheregy, @1, yw and g are constants of the integration and are obtained by using the
magnetoelectric boundary conditions on the two surfaces of the plate.

The magnetoelectroelastic body is poled along the z direction and subjected to an electric po-
tential 1 and a magnetic potential )y between the upper and lower surfaces of the plate. So, the
magnetoelectric boundary conditions are stated as:

$=0, w=0 (z =-h/2) s
p=V, v=Q (Z=h/2) 18)

Eqgs. (17) and (18) give ¢, =V,/h and y, =Q,/h . Then the gradients of electric and magnetic
potentials are obtained from Eq. (16):

:é(qusm,zAl)zH(ﬂqAﬁ@Az)z 420

Loy = 22 (A 24 ) + 5 (1)

Now, the resultants are obtained by Egs. (3), (12) and (19):

N, = h(C“uOX +Cy, -)+e31Vo +45,£2,

N, =h (Clzum +C Vo, )+e32V +43,), (20)
N, =hCq(u,, +v,, ).
2h h’
Qx =_C55 (WO,X +9x )’ Rx =_Qx’
3 20
Qy :?C‘M (W 0,y +9y )’ Ry :%Qy ’
h3
M, :E[Cllex,x +C120y.y +e31(ﬂ,1A4 +ﬂzA2)+CI31(ﬂ1A2 +/13A4)]+
h_s _izcu (ax,x Wi )_izclz (Hy,y W )+le31 (%A3 +ﬂ2A1)+lq31 (ﬂ'lAl +A3A3) >
80| 3h 3h 3 3
M, [clze +C 0, , +ey (Ad, + AA,) +q5, (A, + 4A,) |+ (22)

80 3hn’ 3h

h’ h’
M = EC66 (HA .y + Hy X )_%C66W 0,xy

h’ 4 4 1 1
_|:__C12 (Hr x TWo )__2C22 (Hv W, )+§e32 (AIA3 + 4,4, ) +§q32 (ilAl + 44, )}

Xy
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hS
P, :%[Cn‘gx,x +C0,, +e5 (Ad, + 44, ) +q5 (A4, +ﬂ?A4)]+

h’ 4 4 1 1
{ Cll(‘gx,x +W0,xx)_ C12 (ey,y +w0,yy)+§e3l(ﬂ'lA3 +2‘2A1)+§%1(ﬂ1‘41 +/13A3):|,

448| 3h* 3%
hS
P, = %[CIQHX L TCR0, , +ey (2'1144 + 4,4, ) +4q; (A‘IAZ + /13‘44)] + (23)
" _izclz (ax,x W )_izczz (Hy,y W, )+1632 (AIA3 + 4,4, ) +1¢132 (/11‘41 + %A3) )
448 3h 3h 3 3
h® h’
Pry EC% (er y Hy X ) - ﬁcﬁw 0,xy

Substituting Eqgs. (20) — (23) into Egs. (6) — (10) yield:

Ciu +C66u0,yy +(C12 +C )V 0xy — 0 (24)

0,xx

C66v0,xx +C22V0,yy +(C12 +C66)u0,xy =0 (25)

3 3 3 3
L1i+Lza—3+L3 62 +L, 0 B +L56—3 0. +
ox ox Oox “0y Ox Oy oy ’

3 3 3 3
L6i+L7a—3+L8 62 +L, 0 2+L106—3 0 +
oy oy Ox “0y 0Ox Oy ox’|
2 2 4 4 4 4 4 (26)
L116_2+L126_2+L13a_4+l'14a_4+l'15 ? 2 +L 63 +L, d 3 _kw Wy =
Ox oy Ox oy Ox "0y Ox 0y Ox Oy
2 2
I,—-cl, 6_2+6_2 W, e, iér +iéy
ox~ Oy ox © 0oy
o’ o’ o’ o’ o’ o’
{L18W+L19W+LZOH_K2¥+LZI}Qx +{Lzzy+Lzsﬁ 0, =
63 83 83 8 63 (27)
{L”ﬁﬂzs oy ma  a iaar }W"
2 2 2 2 2 2
L286—2+L298— 0. + L3Oa—2+L3la—2+L3za——Kza—2+L33 0, =
oy Oxdy | ox oy Ox Oy ot !
63 83 63 8 63 (28)
Lyy——=+Lys———+Ls s tLly ——cJ, 2 (™o
oy T Ox "0y = Ox Oy oy oy ot
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where L; (i=1,2,...,37) are constant coefficients which are functions of applied electric and mag-
netic potentials, foundation parameters, and material and geometrical properties of the plate and
are given in Appendix A.

It can be seen that Eqgs. (24) and (25) are decoupled from Egs. (26) — (28). So, to study the
transverse motion ofthe plate, it is sufficient to consider only Egs. (26) — (28).Egs. (27) and (28)
constitute a set of linear equations in terms ofé, and#,. Algebraic solution of this equations re-
sults in:

] :A3A5 _A2A6w P’ :AlAe _A3A4W (29)
X 0° ) 0
A A —A,A, Y AA, -AA,

whereA;(i=1,...,6) are partial differential operators and are defined in Appendix B.
Substituting Eq. (29) into (26) one obtains the following partial differential equation for the
transverse motion of the magnetoelectroelastic plate:

3 3 3 3
{L1:@“+L2 a3+L3 i +L, 0 2-+L5J27}(Ay45—A2A6)+
ox ox Oox “0y Ox Oy oy
3 3 3 3
L6i+L7a—3+L8 62 +L, 0 5 Jera—3 (4,4,—-4,4,)+
oy oy Ox “0y Ox Oy ox” ;
& i o' o' o' o* o' (30)
L11_2+L12_2+L13 _4+L14_4+L15 2~ 2 +L16 3 +L17 3 _kw (AIAS _A2A4)_
Ox oy Ox Oy Ox “0y Ox 0y Ox Oy
o’ g ol o’ | o 0
W{IO —cflﬁ(ax2 + %’ H(AIAS _A2A4)_01J4W[57(A3A5 —A2A6)+5(A1A6 —A3A4)}}w0 =0

which is expressed in terms of wy.
Three boundary conditions are considered in the present study, which are simply-supported,
clamped and combination of simply-supported and clamped edges, that is:

w,=w, =0 at (x =0,a),
0 O ( ) All edges are simply-supported (SSSS) (31a)
Wo=w,,, =0 at :O’b)

wo=w, =0 at (x :0,a)

b), All edges are clamped (CCCC) (31b)

wo=w,, =0 at (x =0,a), _ _
’ Simply-supported along a-axis and clamped along y-axis
wo=w,, =0 at (y =0,) (31¢)
(SCSC)
The transverse displacement for each of these boundary conditions can be obtained by:

w, =hW (t)sin(mzx /a)sin(nzy /b)for SSSS boundary condition (32a)
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wo=hW (¢){[sin(a,x )= sinh(a,x )~ £, (cos(e,x ) —cosh(a,x )) | x
[sin(e,y )= sinh(, )¢, (cos(a,y ) —cosh(a,y )) ]}

w o =hW (t){sin(mzx /a)x
[sin(e,y )= sinh(a, ) ~¢, (cos(a,y )~ cosh(a, )]}

for CCCC boundary condition (32b)

for SCSC boundary condition (32¢)

in which
(2m +1)7 sin(a,, ) —sinh(e,, )
m = b é‘m = 2
2 cos(a,, )—cosh(a,, )
y - (2n+1)7 ‘- sin(a, ) —sinh(a, ) (33)
o2 cos(a, )—cosh(e, )’

where (m,n) denotes the mode of vibration and W(?) is unknown function in terms of time ().
Substituting Eqgs. (32a) — (32¢)into Eq. (30) and employing the orthogonality of trigonometric
functions, the following ordinary differential equationis obtained for each boundary condition:

MW +K W =0 (34)

in which the terms containing d'W/dt' and d®W/df® are neglected. In this equation, Meq and Keq
are the equivalent mass and stiffness of the system, respectively.

3 RESULTS

To validate the present study, some numerical examples are presentedand the results are compared
with the published ones. As a first comparison, an isotropic simply-supportedsquare plate is consid-
ered and the dimensionless frequencies for different length-to-thickness ratios are obtained. The
dimensionless frequencies are obtained by using o=, (a2 /h),/ 0,/E , where E is the Young’s
modulusof the plate and wy = (Keq/ Meq)l”/2 is the circular natural frequency.The results are shown
in Table 1 and compared with the results of Vel and Batra (2004) based on the three-dimensional
approach, Hosseini-Hashemiet al. (2011) based on the third-order shear deformation plate theory,
and Kianiet al. (2012) based on the first-order shear deformation theory. It is seen that there is
acceptable accuracy for the thick case (a/h =\/E) and perfect agreements for the relatively thick
(a/h = 10) and the thin (a/h = 50) plates areobserved.

a/h
Method N 10 50
Vel and Batra (2004) 4.6582 5.7769 -
Hosseini-Hashemiet al. (2011) 4.6225 5.7694 -
Kianiet al. (2012) - 5.7693 5.9647
Present study 4.4473 5.7646 5.9647

Table 1: Comparison of dimensionless fundamental frequency of asimply-supportedsquare plate (v = 0.3).
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As a second comparison, a simply-supported isotropic thin plate with different aspect ratios is con-
sidered. The dimensionless frequencies are obtained by @ =wa’/p,h/D in which D is the flexural

rigidity and D—ER*/(12(1-/%)). Table 2 shows the results.

a/b
Method
0.4 2/3 1.0 1.5 2.5
Leissa (1973) 11.4487 14.2561 19.7392 32.0762 71.5564
Present study 11.4487 14.2561 19.7391 32.0760 71.5537

Table 2: Comparison of dimensionless fundamental frequency

of a simply-supportedrectangular plate (v = 0.3, a/h=1000).

Table 3 shows first four dimensionless frequencies of clamped (CCCC) and simply-
supported /clamped  (SCSC) square thin plates. The frequencies are obtained by
0= o, (az/ ﬂz),/ poh /D and compared with the values reported by various authors. It is seen that

the proposed model predicts the frequencies precisely.

SCSC CCCC
Method
, ®, o, , , @, o, ,
Kim et al. (1993) 2.9333  5.5466 7.0242 9.5833 3.6460 7.4362 7.4362 10.9644
Woo et al. (2003) 2.9306  5.5469 7.0208 9.5831 3.6448 7.4373 7.4374 10.9650

Eftekhari and Jafari (2013)  2.9333  5.5466 7.0242 9.5833 3.6460 7.4362 7.4362 10.9643

Present study 29219  5.5643 7.0282  9.6122 3.6315 7.4615 7.4615 11.0383

Table 3: First four dimensionless frequencies of square plates
with different boundary conditions (v = 0.3, a/h=1000).

Table 4 shows the dimensionless fundamental frequencies @=wm,a’\/p,h/D of a square isotropic

plate with a/h = 100 resting on an elastic foundation. The dimensionless parameters of the founda-
tion are defined as K, =k, a*/D andK_ =k a*/D It is observed that the results are in good agree-

ment with the accurate results reported by Hasani Baferani et al. (2011).1t is worth noting that the
dimensionless shear coefficient (K;) has more effect on the natural frequency.Moreover, it is ob-
served from Tables 3 and 4 that clamped edges increase natural frequencies.
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Bound Method
oundar
(K Ky) .. Y Lam et al Hasani Baferani ~ Present study
condition
(2000) et al. (2011)
0.0) SSSS 19.74 19.7374 19.7320
’ scsc 28.95 28.9441 28.8274
SSSS 41.62 48.6149 48.6101
(0,100)
SCSC 54.68 54.6742 55.1384
SSSS 22.13 22.1261 22.1209
(100,0)
SCSC 30.63 30.6229 30.5123
SSSS 49.63 49.6327 49.6279
(100,100)
SCSC 55.59 55.5811 56.0377

Table 4: Dimensionless fundamental frequency of square isotropic

plates resting on elastic foundation (v = 0.3).

As the last comparison, three piezoelectric, piezomagnetic and isotropic square plates with simply-
supported boundary condition are considered and two firstdimensionlessfrequencies of these plates
are obtained. Table 5 shows the results. The considered piezoelectric, piezomagnetic and isotropic
plates are of BaTiOs, CoFeyO4 and aluminum materials, respectively. The BaTiOg (shown with B)
and CoFeyOy(shown with F) plates are thick with ¢ = b = 1 m and h = 0.3 m and their material
properties are given by Wu and Lu (2009). However, the aluminum plate (shown with Al) is thin
with ¢ = b = 300 mm and A~ = 1 mm.The dimensionless frequencies of BaTiO3 and CoFe;O,4 are
calculated by using @ = @ya+/0,/C .. Where Cpax is the maximum value of the stiffness coefficient

of the plate, whereas The dimensionless frequencies of aluminum plate are obtained by
o =awa’\ p,h /D Again, there is a good agreement between the results.

Mode (m,n)
Method (1,1) (2,1)
B F Al B F Al
Ribeiro (2005) - - 19.7392 - - 49.3480
Wu and Lu (2009) 1.2523 1.0212 - 2.3003 1.9747 -
Moita et al. (2009) 1.2629 1.1358 - 2.4649 2.1075 -
Present study 1.2349 1.1048 19.7384 2.2857 1.9571  49.3430

Table 5: Dimensionless frequencies of several square plates.

Effects of aspect ratio, and the applied electric and magnetic potentials on the dimensionless fun-
damental frequencies of a magnetoelectroelastic plate with different boundary conditions are studied
and the results are shown in Table 6. The dimensionless frequencies are obtained by
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@ =wya+p,/C .. - The material properties of the magnetoelectroelastic plate are (Li and Zhang,
2014): Cj; = 226x10° Nm%, Cio = 124x10° Nm%, Gy = 216x10° Nm®, Cy = Css = 44x10° Nm?,
Coo = 51x10° Nm?, e = e31 = -2.2 Cm’>, ggo = 31 = 290.2 NA'm™, 133 = 6.35x10™ C*N"'m™® d3
— 2737.5x10™% NsV'C™, 33 = 83.5%10° Ns?C?, and py = 5500 kgm™.

Boundary vy (10° V) Qo (10° A)
Condition o/b
0 +1 0 +1
0.5 0.343322939 0.343322938 0.343322939 0.343322939
SSSS 1.0 0.535860885 0.535860883 0.535860885 0.535860887
2.0 1.233226423 1.233226400 1.233226423 1.233226453
0.5 0.380853054 0.380853053 0.380853054 0.380853055
SCSC 1.0 0.774485196 0.774485191 0.774485196 0.774485204
2.0 2.270502531 2.270502390 2.270502531 2.270502717
0.5 0.675570089 0.675570085 0.675570089 0.675570094
CcCcCcC 1.0 0.962062272 0.962062261 0.962062272 0.962062287

2.0 2.342843729 2.342843576 2.342843729 2.342843931

Table 6: Dimensionless fundamental frequencies of a magnetoelectroelastic rectangular plate(h = 1 mm, a/h = 10).

It is noticed that increasingthe aspect ratio increases the dimensionless frequency of the
magnetoelectroelastic plate. Moreover, Table 6 shows that increasing the electric potential decreases
the dimensionless frequency of the magnetoelectroelastic plate whereas magnetic potential increases
the dimensionless frequency. It is also noticeable that potentials effects on dimensionless frequency
are more significant in plates with higher aspect ratios and plates with clamped edges.

Table 7 shows the effects of a/h ratio and foundation parameters on the dimensionless frequencies
of a magnetoelectroelastic square plate. In this table, the dimensionless frequencies are obtained by
= way/p,/C and dimensionless foundation parameters are obtained by K, =k, a* / (C h3)

max max

andK, =k a’ / (C h3). The magnetoelectric boundary condition is considered to be closed-circuit

meaning that in Eq. (18),V, =Q, =0 is substituted. It is seen that a/h ratio tends to decrease the

dimensionless frequency. Foundation parameters increase the natural frequencies because the pres-
ence of elastic foundation results in the increase of the stiffness of the system. It is also obvious that

the dimensionless shear coefficient (K, ) has more effect on the natural frequencies.In addition, it is

observed that similar to the results of Tables 3 and 4, clamped edges increase the dimensionless
frequencies.
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Boundary ( X K ) /h Mode (m;n)
e wotts a,
condition Ly (12 @2
50 0.1131  0.2792  0.4492
(0,0)
100 0.0566  0.1402 0.2261
50 0.1295 0.2863 0.4536
(10,0)
100 0.0649  0.1437  0.2283
SSSS
50 0.3028 0.5244 0.7188
(0,10)
100 0.1515 0.2627  0.3606
50 0.3093 0.5282  0.7216
(10,10)
100 0.1547  0.2646  0.3620
50 0.1639  0.3909 0.5374
(0.0)
100 0.0821 0.1964 0.2706
50 0.1757  0.3960 0.5411
(10,0)
100 0.0880 0.1989 0.2725
SCSC
50 0.3398 0.6146 0.7946
(0,10)
100 0.1698  0.3075  0.3985
50 0.3456 0.6178 0.7971
(10,10)
100 0.1727  0.3092  0.3998
50 0.2046  0.4158 0.6187
(0.0)
100 0.1025 0.2089 0.3114
50 0.2142 0.4206 0.6285
(10.0)
100 0.1073  0.2113 0.3156
CCCC
50 0.3744  0.6383 0.8631
(0,10)
100 0.1870  0.3194 0.4369
50 0.3797  0.6415 0.8831
(10,10)

100 0.1897  0.3210  0.4404

Table 7: Dimensionless frequencies of a magnetoelectroelastic square plate (h = 1 mm).

Figures 2 and 3 show the effects of shear coefficient of foundation and a/h ratio on the natural fre-
quencies of magnetoelectroelastic plates, respectively. It can be seen that for fixed material and
geometric properties, clamped plate has the most natural frequency among the considered plates.
Moreover, as it was also shown above, foundation parameter increases the natural frequency where-
as the a/h ratio decreases it.
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Figure 2: Effect of shear coefficient of foundation on the fundamental natural frequency

of closed-circuit magnetoelectroelastic square plates (a/h = 25, K, =0).
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Figure 3: Effect of length-to-thickness on the fundamental natural frequency

of closed-circuit magnetoelectroelastic square plates (h = 1 mm, K, =K, =0).
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4 CONCLUSIONS

In this study, free vibration of a magnetoelectroelastic rectangular plate with different edge sup-
ports was investigated analytically. To this end, Reddy’s third-order shear deformation theory and
Gauss’s laws for electrostatics and magnetostatics were used to model the considered smart plate.
Galerkin method was applied to the partial differential equation of motion to reduce it to an ordi-
nary differential equation and then an analytical relation was obtained for the natural frequency.
Some numerical examples were presented and it was shown that: (a) electric potential decreases the
dimensionless natural frequency of the magnetoelectroelastic plate while the magnetic potential
increases it, (b) clamped edges increase the dimensionless frequencies of magnetoelectroelastic plate
so that the clamped plate has the most dimensionless frequency whereas the simply-supported plate
has the least one, and (c) elastic foundation increases the stiffness of the system and consequently
increases the natural frequency of the magnetoelectroelastic plate.

Appendix A

L =8hC /15, L,=4h°C, [315+ B,, Ly= B, L, =4h*(C,, +2C)[315+ B, L, = f, (A.1)

L,=8hC,, /15, L, =4h°C,, [315+ B, Ly=4h"(C, +2C4)/[315+ B,, L,y =f3,, L,, = B, (A.2)

L, =8hCy/15+k, +esVy +q3 Q. Ly, =8hC, 15+ k, +eV  +q,Qy, Ly =—h°C,, /252 + 3,
L, :_h3C22/252+ﬂmL15 =—h’ (Clz +2C )/126+ﬂl3’L16 =p.L, =P,

Ly :17h3C11/315+054’L19 :17h3ceo/3155L20 =ay,Ly, :_8hC55/15’L22 =%,
L, =17h*(C,, +Cy)/315+a,,L,, =4h°C, [315-a,L,, =0, (4.4)
Ly =4h’ (CIZ +2C66)/315_a5’ L, =8hC55/15

Ly =y, Lyy =170 (C,, +C ) [315+ &), Ly, =17h°C /315,
L, =17h°C,, 315+ atyy, Ly, = 0y, Ly, =—8hC,, /15, (4.5)
Ly, =4h°C,, [315—a,,Lyg =4h° (C, +2C ) 315 - a3, Lyg = —ary, Ly, =8hC,, /15
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where

a, =17h’ [12624631 +4 (e24q31 +e3lq24) + ﬂﬁqz4q3l]/315,

a, = 17h° [ﬂ,zelse31 +4 (elsq31 +e,4,s ) + %q15q3l]/315,

o, =17h° [/12631e32 + 4 (€393 +endy )+ A3 ]/315,

a, =1Th* [ e, + 2he5qy + g3, ] 315,

o = —4n° [ﬂze3le32 +4 (e31q32 +e,,45, ) + 449495 ]/315,

o, =-4h’ [ﬂzefl +2e,45, +/13q321:|/315,

a, =17h" [ﬂz (e1se31 +enes )+ A4 (€sqs +e31q,s + €205 +€3,05 )+ A (41505 + 92495, )]/315,
a, =17’ [/12624632 +4 (e24q32 +e32q24) + 449,95, ]/315, (A.6)
a, =17h° [ﬂ»zelse32 + 4 (esq3, +eds)+ 44,505 ]/3 15,

ay =1Th*[ Ae3, +2Aea5, + a3, | /315,

o, =171’ [ﬂ,ze3le32 +4 (e31q32 +e5,45, ) + 49545, ]/315,

a, =—4h’ [/126322 +24€5q5 + Aq4 }/315,

a,, =—4h’ [/12631632 + 4 (e3lq32 +e,q5, ) + 449,495 ]/315,

o, =17h [ﬂz (1563 +€2€3, ) + A (€153 + €315 +€3uG3y +€30000 )+ A5 (4150 30 + G245 )]/315

B =h [12624831 + A (€x4gs1 +e3a) + %%4%1]/105,

B =1 [ersen + (et +euin) + 2 0 1/105,

B=h [}vze“e32 + A (€345 tends )+ Adads, ]/105’

B, =h’ [ﬂzefl +24e,q5 + g ]/105,

By =—h’ [%831832 + 4 (€345 +endn )+ Adads, ]/336’

B, =—h’ [/72‘3321 +24e,q5 + A, 1/336’

By =h*[ 2 (ese5, +enes) + A (€105 +e5,0is + sy +e€302 )+ A5 (0,503 +2403 ) |/105,
By =h’ [12624@2 + A (€23 +es00a) + Al ]/1 05,

B, =h’ [ﬂzelseﬂ + 4 (€15 tends) + A4 sds ]/105’

Bo=h [/?28322 +22e0q5 + 445 1/105’

B =h [ﬂzeﬂeﬂ + 4 (€395, +e3ds, ) + Adsds, ]/105’

B, =—h [ﬂ,_)efz +24enq5 +/1361322]/336’

By =—h’ I:/12e3le32 + 4 (€305, +e305 )+ 40345 ]/336’

B =1 A (erses, +eses, )+ A (€153 +endis + €y Ty ) + A (41505 + 203, ) /105,

(A7)
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Appendix B
A4, =L1886722+L19%22+L20%—K288722+L21 (B.1)
A4, :LZZ%-FLB% (B.2)
A4, :L28%22+L29% (B.4)
A :L‘QO%22+L31%22+L32 af; KZ% L, (B.5)
Ao=Lu3 oL P a;a i axzy Tt g, o Oya;tz (B:6)
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