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Abstract 

In this paper, the critical axial speeds of three types of sigmoid, 

power law and exponential law functionally graded plates for both 

isotropic and orthotropic cases are obtained via a completely ana-

lytic method. The plates are subjected to lateral white noise exci-

tation and show evidence of large deformations. Due to random-

ness, the conventional deterministic methods fail and a statistical 

approach must be selected. Here, the probability density function 

is evaluated analytically for prescribed plates and used to investi-

gate the critical axial velocity of them. Specifically the effect of in-

plane forces, mean value of lateral load and the material property 

on the critical axial speed are studied and discussed for both iso-

tropic and orthotropic functionally graded plates. Since the gover-

ning equation is transformed to a non dimensional format, the 

results can be used for a wide range of plate dimensions. It is 

shown that the material  heterogeneity palys an essential and 

significant role in increasing or decreasing the critical speed of 

both isotropic and orthotropic functionally graded plates. 
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1 INTRODUCTION 

During the manufacturing process, many industrial plates move axially along their production and 

assembly lines. Also, many engineering devices, such as band saws, serpentine belts, moving rolled 

metal sheets, plastic films, magnetic tapes, paper sheets, textile fibers, etc. can be classified under 

the subject of axially moving plates. Therefore, obtaining plate’s critical axial velocity is the most 
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important step in design of such applications. Low travelling speed decreases the total effectiveness 

while extra ordinary speed may intensify the transverse vibration and consequently the dynamic 

instability of plates.  

 In literature and due to above listed industrial activities, the linear and nonlinear dynamic be-

haviors of axially moving plates have been studied during two past decades (Hatami et al. 2009) . 

Pakdemirli and Batan (1993) and Pakdemirli et al. (1994) investigated the stability of an axially 

accelerating string numerically. Fung et al. (1997) studied the transient vibrations of an axially 

moving viscoelastic string. Chen et al. (2003) and Chen et al. (2004a, 2004b) studied the chaos and 

bifurcation of axially moving viscoelastic strings with different constitutive relations under different 

excitations numerically. Zhang (2008) studied the dynamic analysis of an axially moving viscoelastic 

string using translating string Eigen-functions. Hatami et al. (2007, 2009) considered prescribed 

above problems for 2D plates. Recently, Ghayesh et al. (2012, 2013), Yang et al (2012), and Saksa 

(2012) studied the dynamic stability of elastic and viscoelastic plates under deterministic loads. 

In many industrial applications, especially when the moving plate passes through a cooling fluid, 

the resultant distributed lateral force due to solid structure interaction displays random behavior 

(Asnafi, 2011). Therefore, the stochastic and statistical approaches must be considered also. 

 Having good strength and low deformation at high temperatures in many practical problems, 

leads the researchers use of other materials such as composite and functionally graded materials. 

Research on the stability analysis of composite and functionally graded plates in the past decade 

has been noticed. For example, Chen et al. (2013) studied the dynamic instability of functionally 

graded material (FGM) plates under an arbitrary periodic load. Chen and Yang (1990) studied the 

dynamic stability of laminated composite plates due to periodic in-plane loads. A complete study on 

the dynamic stability of isotropic FG plates under random lateral loads with some analogical com-

parisons was done by Asnafi and Abedi (2015). Of course, the behavior of axially moving function-

ally graded plates has been less considered in literature. Piovan and Rubens (2008) studied the vi-

brations of axially moving flexible beams made of functionally graded materials. Cardona et al. 

(2006) investigated the dynamics of axially moving beam made of functionally graded materials.  

Considering random parameters in the behavior investigation of axially moving strips, beams or 

plates, numerically or analytically, for homogenous or non-homogenous plates has been less studied.  

In this paper, first the general governing equation for the isotropic and orthotropic sigmoid, power 

law and exponential type axially moving functionally graded plates under lateral stochastic load in 

presence of large deformation is derived. After that, this complicated equation is transformed to a 

non-dimensional format such that the investigation becomes applicable and workable for a wide 

range of plates. Next, via an analytic approach, the probability density of non-dimensional deflec-

tion is derived for further analysis. This is because in stochastic equations, all statistical properties 

can be obtained via this density. The qualitative changes and instabilities of derived probability 

density function let somebody see how and when the critical speed happens; also which parameters 

may intensify or pull it down. 
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2 FORMULATION OF THE PROBLEM 

2.1 Material gradient of isotropic and orthotropic Functionally Graded Plates 

Generally, a functionally graded material can be defined by the variation in the volume fraction of 

its constituents. Famous volume fraction profiles are: power-law, sigmoid and exponential functions 

(P, S and E-FGM; see (Lanhe et al. 2007) for more details). Figure 1 shows an orthotropic FG 

plate, and Figure 2 the variation of the material via the thickness for mentioned material profiles. 

 

 
Figure. 1: A typical axially moving functionally graded plate 

 

With reference to these figures, the variation of the material property (p), such as Young’s modulus 

in the x and y-direction (Ex, Ey), density (ρ), Poisson’s ratio (υxy) and shear modulus (Gxy), is con-

sidered to be varying from the upper to the lower surface of the plate throughout its thickness for 

P, S and E-FGM as (Chi and Chung, 2006): 
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where np, p1and p2 are the material parameter, material property of the lowest (z=h/2) and highest 

(z=-h/2) surfaces of an orthotropic FGM plate, respectively. 
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 The variation of material property in the thickness direction of the P, S and E-FGM plate are 

drawn in Fig. 2.  

 

a b c 

Figure. 2: The variation of material property in a: P-FG, b: S-FG and c: E-FG materials. 

  

2.2  Governing Equation of Axially Moving Functionally Graded Plates 

The governing equation of an isotropic plate can be obtained as a special case of a general ortho-

tropic one; so here, we try to derive the relations for a general orthotropic functionally graded plate. 

Relative to schematic plate of Fig. 1, consider a simply supported linearly-elastic medium-thick 

rectangular axially moving orthotropic FG plate with length �, width �  and uniform thickness ℎ. 
Here x and y are the Cartesian coordinates of the mid-surface of the un-deformed plate while z is 

the coordinate along the thickness direction. If the displacement along x, y and z are u, v and w 

respectively, the displacement field becomes (Timoshenko et al . 1959): 
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where u0(x, y), v0( x, y) and w0(x, y) are the displacements at the middle surface. Under the as-

sumption of large deformation, the strain field of the orthotropic FGM plate becomes: 
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For the case of plane stress, the stress-strain relation, in-plane axial forces (N) and the bending 

moments (M) become: 
0 0

,    ,   = = + = +D N A B M B Cσ ε ε κ ε κσ ε ε κ ε κσ ε ε κ ε κσ ε ε κ ε κ
 

(5) 

where 
0

0

0

   ,      ,   ;

x x x x

y y y y

xy xy xy xy

N N M

N N M

N N M

σ
σ
τ

    −
    

= = − =     
     −    

N Mσσσσ

 

(6) 

 

0

xN , 
0

yN  and 
0

xyN  are the constant in-plane axial forces which are independent from time and 

geometry and the matrices A, B, C and D relate to the material properties of the orthotropic FGM 

plate with such the following equations (Timoshenko et al . 1959): 
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Now, the equilibrium and compatibility equations in the case of large deformation become: 
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where qz is the distributed lateral load. If the plate is subjected only to the transverse load ��, the 
in-plane forces can be expressed in term of a stress function φ(x, y) which is defined as (Timoshenko 
et al . 1959): 
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Consequently, the strains and the bending moment at the middle surface are expressed in term of 

the stress function φ(x, y) and the deflection as: 
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In order to find the relations between the stress function φ(x, y) and deflection w, one can substitute 
Eq. 12 into Eq. 10, and then Eqs. 11 and 13 into 9, including the inertial and linear damping forces 

and the components of acceleration due to axial moving also, to reach: 
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where U is the axial velocity and I1 is defined as: 
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Eqs. 15 and 16 are general nonlinear partial differential equations; we try to solve them via one of 

the famous approximate methods known as the Galerkin’s method. 
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2.3  Galerkin's Method 

One of the best methods used to solve the partial differential equation of the continuous vibratory 

system is the Galerkin's method (see (Rao 2010) for more details). Here, the deflection w can be 

written by series of eigen-functions as: 
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For the first vibration mode of simply supported plates, the deflection w can be expressed as (Rao 

2010): 
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By substituting Eq. 19 in Eq. 15, one can reach: 
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The particular solution of Eq. 20 can be easily obtained while its homogeneous solution must satisfy 

Eq. 11 also. Using some calculation, the following relation for φ(x, y) can be achieved: 
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where the three last terms are attained from the homogeneous solution. Substituting Eqs. 19 and 21 

in Eq. 17 and using the properties of orthogonal functions, one can recognize that: 
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(23) 

These parameters are derived for a general 2D orthotropic axially moving functionally graded plate 

in presence of large deformations. In the case of isotropic one, using Ex=Ey=2Gxy(1+υxy) in Eq. 23, 
we have: 
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3 DERIVING THE PROBABILITY DENSITY FUNCTION 

USING FOKKER PLANCK KOLMOGOROV EQUATION 

There are various methods to analyze random differential equations, for example, statistical lineari-

zation, perturbation methods, using statistical moments, Monte-Carlo simulation, etc. One of the 

best and more applicable of them in the sense of being analytic is the Fokker-Planck-Kolmlgorov 

(FPK) method (Bolotin 1984, Potapov 1999, Roberts and Spannos 1990, Fuller 1969). The applica-

tion of the FPK equation to compute stationary or non-stationary probability density function for 

nonlinear stochastic oscillators has been found in literature since 1980 decade. See for example 

(Asnafi and Mahzoon 2005, Cai and Lin 1988, Caughey anf Fai 1982, Yong and Lin 1987). To ob-

tain instability conditions in axially moving plates, this method has been less considered and ad-

dressed in literature. As an example, in (Asnafi, 2011), the critical speed of an axially moving elastic 

plate that is submerged in a fluid with random pressure was obtained using FPK equation.  

 Generally, the FPK equation in non-stationary format does not present a closed form solution 

while in stationary cases and under certain conditions (see (Cai and Lin 1988, Yong and Lin 1987) 

for these conditions), gives an exact probability density function. It was shown in the literature 

(Asnafi and Mahzoon 2005, Cai and Lin 1988, Yong and Lin 1987) that under such conditions, the 

typical following randomly excited oscillator: 
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where G is a general nonlinear function of X and ξ(t) is the unit white noise excitation, the joint 
stationary probability density function has the following solution in closed form: 
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where k is the intensity of the white noise excitation and Γ is the normalization factor. For Eq. 22, 
we assume a general lateral white noise excitation in the following form: 
 

( )q q k tξ= +
 

(28) 
 

where ξ(t)  is a white noise excitation, whose intensity is k and varies about a mean value q. Now, 
assuming 1x  and 2x  instead of the W and dW/dt1 (state variables defined in Eq. 22) and making 

an analogy between Eqs. 22, 26 and 27, one can easily arrive at the relation in Eq. 29, along with 

Eq. 30, which shows the joint probability density function of the response in phase plane: 
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The function ϕ that was also known in the literature as the probability potential is the total me-
chanical energy of the oscillator. Note also that the parameter Γ relates to the normalization factor 
only. Equation 29 shows the distribution of the probability density of the response over the phase 

space. In other words, it can specify how the statistical properties change when the parameters of 

oscillator are varied. It also gives rich information about the behavior of the system, such as the 

number of equilibrium points, their instabilities and critical speeds. The probability density function 

must satisfy the following conditions (Bolotin 1984): 
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Therefore, the relative minima/maxima of the probability density function play the essential role in 

studying the instability behavior of the plate. With reference to Eqs. 29 and 30, since 2 0=x  is the 

only root on the second state, all the roots of PDF must vary on the 1x axis. To compute the roots, 

we have: 
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Equation 32 gives the extrema of PDF for different parameters. In what follows, using this equa-

tion, the dynamic instability and critical speed of some axially travelling plates are studied. Note 

also that the results obtained in the solved examples can be used for a wide range of plates, because 

the parameters used in Eq. 32 are all non-dimensional. 

 
4 ANALYTIC EVALUATION, RESULTS AND DISCUSSION 

In this section, the critical speeds of two typical plates are obtained and discussed analytically using 

Eq. 32. This equation reveals the extrema of probability density function that tell us about any 

possibly instability and bifurcation in the response. Simply, when Φ in Eq. 32 reveals one real root, 
the corresponding probability density of deflection has one extreme point and consequently one 

peak. It means that the plate oscillates around only one point i.e. its dominant equilibrium point. 

Once the number of real roots of Φ changes, the number of peaks of probability density and conse-
quently the number of equilibrium points vary also that means the instability and bifurcation occur. 

The parameters of Eq. 32 are some functions of np, q, β and γ. Therefore we try to obtain non di-
mensional critical speed, γcritical with respect to these variables. Physically, these variables relate to 
material property, non dimensional mean value of lateral load and the non-dimensional in-plane 

forces (see Eq. 23).  

Note also that, in the case of linear vibration, the parameters µ and δ vanish. Therefore the critical 
speed for a specific mean lateral load q, depends only to the sign of β - γ2. Simply β = γ2 gives the 
condition of critical speed, i.e. 

 
2

, 2 2 2

1

1   
yx

critical linear

NNa
U

I a b

α π
π α

 
= + + 

   (33) 

where α is defined in relation 23 but must be computed for linear plates. In this case, of course, we 
cannot talk about the bifurcation phenomenon since this subject is expressed for nonlinear systems 

only. 

In what follows, without any loss of generality, the method is applied to both isotropic and ortho-

tropic FG plate. In section 5, the corresponding probability density functions are drawn for some 

cases. After that in section 6, some of the analytic results obtained by this method are validated by 

numerical outcomes. 

 
4.1 Critical Speed for an Isotropic Functionally Graded Plate 

In this example, the method is applied to an isotropic FG plate subjected to random white noise 

excitation. The mechanical property and dimension of plate are tabulated in Table 1. 
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Dimensions (m) Surface � (Gpa) �(kg/m3) � 

1×1×0.02 

Lowest (Aluminum, Alloy 

2024-T4 (Beer et al. 

2006)) 

73 2800 0.33 

Highest ( Structural Steel, 

ASTM-A36 (Beer et al. 

2006)) 

200 7860 0.3 

 

Table 1: The mechanical property and dimension of isotropic FG plate 

 

For E-FG plate, the parameters δ and µ in Eq. 32 are solely evaluated with respect to properties of 
Table 1. For S and P-FG plates, to evaluate above parameters, the value of np must be also speci-

fied.  

 The parameter η  that speaks about the external linear damping is assumed to be 0.4 (Abedi et 
al. 2014) and the parameter k that demonstrate the intensity of white noise excitation is assumed to 

be 1 for all cases. Now we try to obtain non dimensional critical speed γ, while other parameters, i.e. 
β and q which relate to in-plane and lateral forces respectively are varied.  
 Fig. 3 gives any one an idea about the values of non dimensional critical speed in E-FG and two 

ingredients with respect to β and q. Each curve in the figure demonstrates the border of instability. 
In other words, in each β and q, one can realize the value of critical speed.  
 

 
(a) 

  
(c) (b) 

Figure 3: The non dimensional critical speed of a: isotropic E-FG,  

b: Aluminum and c: steel plate with respect to β and q 
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Positive value of β, means tensile in-plane force and vice versa for negative value of this parameter. 
Theoretically, β = 0 demonstrate the condition, in which the tensile in-plane force transforms to 
compressive one.  This condition, of course does not happen in axially moving plates since a pre 

tension is required for moving.  

 With reference to Fig. 3, it is clear that the critical speeds for different values of β (in-plane lat-
eral force) are in their minimum values when the mean lateral load is zero. Up or down ward lateral 

loads improve the stability in an almost similar manner.  

 To obtain the critical speed for S and P-FG plate, the role of material property, np should be 

considered too. In Figure 4, for different values of β and q and as a function of np, the non dimen-
sional critical speeds are evaluated and depicted which lets somebody see the changing in critical 

speeds with respect to these parameters. The curves on the figure display instability border that can 

be used to obtain the critical speed. In fact, some one can recognize the value of critical speed for 

each np, β and q. 
 

  

  

Figure 4: The non dimensional critical speed of isotropic P and S-FG plates 

with respect to np at different values of β and q. 
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Figure 4 (cont.): The non dimensional critical speed of isotropic P and S-FG plates 

with respect to np at different values of β and q 

 

Based on Fig. 4, the critical speed is completely affected by the variation in material property, np. It 

is clear that the behavior of S and P-FG plates are converse. In other words, for tensile in-plane 

forces, the larger values of np result in smaller values of critical speeds for P-FG plate and vice versa 

for S-FG plate.  

 Fig. 4 shows another interesting outcome which demonstrates that larger values of np in P-FG 

plate, can improve stability even for zero or compressive in-plane forces. Left column images of 

Fig.4 show although the homogenous plate (np=0) illustrates instability for compressive in-plane 

loads, the corresponding P-FG plate becomes stable for largely enough values of np. It is noted also 

that the critical speed for P-FG plate is more influenced due to changing in np than the S-FG plate.  

Similar to previous figure, it is noted that in the presence of lateral loads, the stability increases for 

both S and P-FG plates. Relative to Fig.4, for q = +/- 0.3, the critical speed for both plates takes 

higher value than when the mean lateral load equals to zero. 

 
4.2 Critical Speed for an Orthotropic FG Plate 

Now, the method is applied to an orthotropic FG plate subjected to random white noise excitation. 

The mechanical property and dimension of this plate are tabulated in Table 2. 

 

  

	
� �
� � 
��� ��� 

����� 
�� 

����� 
�� 

����� Material Surface 
Dimensions 

(m) 

1600 0.1 5 70 70 

Fiber / Epoxy (Goodfellow, 

2015; Acpsales, 2014; Rahmani 

et al., 2014) 

Lowest 

1×1×0.02 

3980 0.28 38.21 90.43 116.36 100% alumina (Dag, 2006) Highest 

 

Table 2: The mechanical property and dimension of orthotropic FG plate. 
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Similar to that was previously done in Sec. 4.1, the non dimensional speeds for orthotropic E-FG 

plate together with its ingredients are drawn in Fig. 5.  
 

 

  
 

Figure 5: The non dimensional critical speed of a: orthotropic E-FG, 

b: Fiber/Epoxy and c: Alumina plate with respect to β and q 

 

Again and with reference to Fig. 5, it is clear that the critical speeds for different values of β are in 
their lowest values when the mean lateral load is zero. Up or down ward lateral loads improve the 

stability. Since the Fiber/Epoxy shows more stability with respect to alumina, the down ward mean 

lateral load improves the stability a bit more that the upward.  

 In Figure 6, the non dimensional critical speeds are evaluated and depicted for different values of 

β and q and as a function of np for orthotropic S and P-FG plate which display the changing in 
critical speeds with respect to these parameters. 
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Figure 6: The non dimensional critical speed of orthotropic P and S-FG plates 

with respect to np at different values of β and q 

 

Similar to results taken for isotropic plate in Fig.4, again the critical speed is completely affected by 

the variation in material property, np for orthotropic plates. Also the behavior of S and P-FG plates 
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are converse such that the larger values of np in P-FG plate can improve/destroy stability for zero 

or compressive/tensile in-plane forces and vice versa for S-FG plate.  

It is noted also that in the presence of lateral loads, the stability increases for both S and P-FG 

plates. Here, for q = +/- 0.3, the critical speed for both plates takes higher value than when the 

mean lateral load equals to zero. 

 
5 THE CORESPONDING PROBABILITY DENSITY FUNCTIONS 

In this section, to have a better visual realization, the probability density function of the non-

dimensional deflection i.e. the first state variable of Eq. 29, are drawn for some specific cases (see 

also Eqs. 22 and 30). The probability density of a variable illustrates the possible presence of that 

random variable in the workspace. Therefore the variation of this function lets somebody see the 

evolution of demanded variable with respect to prescribed parameters. In figure 7, the PDFs of 

response with respect to non dimensional speed for isotropic P, S and E-FG plates can be seen.  

 

  

 

Figure 7: The Probability density function of non dimensional deflection with respect 

to non dimensional speed of isotropic plates when np=5, β=1 and q=0 

 

With reference to Fig.7, it is clear that the instability and jumping is unavoidable in the probability 

density of response when the axial speed increases. Making an analogy between figures 3, 4 and 
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present figure plays up the instability occurred in vicinity of γ=1. This subject is also validated in 
next section using a numerical procedure. 

 Similar to that was done in Fig.7, the probability density function of the response for orthotropic 

FG plates are depicted In Fig. 8. Here the conditions are all the same used for previous figure ex-

cept that the materials are replaced by orthotropic materials. 

 

  

 

Figure 8: The Probability density function of non dimensional deflection with respect 

to non dimensional speed of orthotropic plates when np=5, β=1 and q=0 

 

Again, it is noted that the instability and jumping happen in the probability density of response as 

the axial speed increases. Exact location of these instabilities are shown in future figures while the 

results are validated using a numerical method. 

 
6 NUMERICAL VALIDATION  

The results of sections 4 and 5 are all obtained from Eq. 32 that itself is extracted from the exact 

analytic solution of the FPK equation 27. Since the results (sections 4 and 5) are achieved via a 

complete analytic procedure and this procedure was previously validated in (Abedi and Asnafi, 

2015a, Abedi and Asnafi, 2015b), their accuracy and correctness are acceptable but to ensure about 

the validity, a direct numerical procedure is also employed. Relative to this method, the bifurcation 
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and jumping in the non dimensional deflection is extracted directly from Eq. 22 for the cases stud-

ied in section 5. In Fig. 9 the numeric bifurcation diagram of non dimensional deflection of isotropic 

P, S and E-FG are imposed on the corresponding PDFs obtained previously in Fig. 7. A simple 

comparison between figures 3, 4 and 8 affirms that at np=5, β=1 and q=0, the non dimensional 
critical speeds are the same for both analytic and numeric methods.  
 

  

 
Figure 9: The numeric bifurcation diagram of non dimensional deflection of isotropic plates 

(dashed line) which are imposed on corresponding PDFs when np=5, β=1 and q=0 

 

Similar to that was done in Fig. 9, the numeric bifurcation diagram for orthotropic plates are im-

posed on corresponding PDFs and drawn in Fig. 10.  

 

  

Figure 10: The numeric bifurcation diagram of non dimensional deflection of orthotropic plates 

(dashed line) which are imposed on corresponding PDFs when np=5, β=1 and q=0. 
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Figure 10 (cont.): The numeric bifurcation diagram of non dimensional deflection of ortho-

tropic plates (dashed line) which are imposed on corresponding PDFs when np=5, β=1 and q=0 

 

An association between figures 5, 6 and 9 confirms that at np=5, β=1 and q=0, the non dimensional 
critical speeds for orthotropic plates are the same for both analytic and numeric methods. 

 
7 CONCLUSIONS 

In this paper, using the Fokker Planck Kolmogorov equation, a general probability density function 

for a class of nonlinear axially moving functionally graded plates under lateral stochastic loads is 

obtained analytically. Since all the statistical properties of response can be attained using the prob-

ability density function, a comprehensive study on the parameters that can affect on this function is 

done. Especially, the effects of material property, in-plane forces and mean value of lateral load are 

investigated and discussed. First it is shown that the more tensile in-plane forces results in bigger 

critical speed for all types of isotropic and orthotropic plates. The material property, np plays signif-

icant and contradictory role for each material. In both isotropic and orthotropic sigmoid FG plate, 

a larger value of np increases the critical speed for a plate under tensile in-plane forces and vice ver-

sa for compressive ones. In contrast, larger np results in smaller critical speed for a plate under ten-

sile in-plane forces and vice versa for compressive ones. It is shown that in all cases, a non zero 

mean for lateral load reduces the critical speed. In other words, up or down ward mean values of 

lateral load improves the stability. To have a better visual realization, the probability density func-

tions for some case studies are drawn and then using a direct numerical approach, the analytical 

results are validated. It noted that the results can be used for a wide range of plates since they re-

ported as some non dimensional parameters. 

 

Nomenclature 

a  Length of plate  q  Mean value of lateral white 

noise excitation 

b  Width of plate  t  Time 

c  Internal damping coefficient  , ,u v w  Displacements along x, y and z 

directions 
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,  x yE E  Young’s modulus in x and y-

direction 
 

0 0 0
, ,u v w  Displacements at the mid sur-

face along x, y and z directions 

xyG  Shear modulus  X  
State variable of randomly 

excited ODE 

h  Thickness of the plate  
1 2
,  x x  State variables 

k  
Intensity of white noise 

excitation 
 ,  ,  x y z  Cartesian coordinates 

,  ,  x y xyM M M  Bending moment compo-

nents 
 , ,x y xyε ε γ  Strain components 

,  ,  x y xyN N N  In-plane axial force compo-

nents 
 

0 0 0, ,x y xyε ε γ  
Strain components at the mid 

surface 

0 0 0,  ,  x y xyN N N  
Constant in-plane axial force 

components 
 φ  Stress function 

pn  Material parameter  γ  Non dimensional  speed 

P  Probability density function  Γ Normalization factor 

p  Material property  ρ  Density of the plate 

1 2
,  p p  Material property of the 

lowest and highest surfaces 
 , ,x y xyσ σ τ  Stress components 

zq  Transverse load  xyυ  Poisson’s ratio 

q  General lateral white noise 

excitation 
 ξ  Unit white noise excitation 
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