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1 INTRODUCTION 

The study of collapse in concrete elements is an interest topic in engineering; particularly, the de-

termination of the first crack load and the crack pattern. It is well known that concrete strength 

under compression is from 10 to 20 times greater than the strength under tension, as shown the 

experimental results reported by Kupfer and Gerstle (1973). In the way to collapse of reinforced 

concrete elements, their behaviour at the beginning is approximately linear elastic; next, cracking 

occurs. Then, crushing appears and finally, plasticity in reinforcing steel initiates, although struc-
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Abstract 

This paper investigates the cracking process of reinforced concrete 

slabs subjected to vertical load, involving their crack pattern and 

the load-displacement capacity curve. Concrete was discretized 

with hexahedral finite elements with embedded discontinuities; 

whereas steel reinforcement was represented by 3D bar elements, 

placed along the edges of the solid elements, both kinds of ele-

ments have three degrees of freedom per node. The constitutive 

behaviour of concrete considers the softening deformation after 

reaching a failure surface, whereas the hardening of the reinforc-

ing steel is represented by a 1D rate independent plasticity model 

with isotropic hardening. The coupling of solid and bar finite 

elements was validated with a reinforced concrete slab reported in 

the literature; other two slabs were also investigated showing 

their cracking patters at the top and at the bottom surfaces. 
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tural collapse may occur before yielding of steel bars. Particularly, in clamped reinforced concrete 

slabs, cracking initiates on the top surface, then at the centre on the bottom surface, growing as the 

load increases; whereas in simple supported slabs, cracking initiates at the centre of the span on the 

bottom surface, growing to the edges (Juárez-Luna and Caballero-Garatachea 2014). 

 Laboratory tests have been perform to obtain the cracking paths and the moment coefficients of 

the rectangular slabs such as Bach and Graf (1915), who tested 52 simple supported slabs on their 

edges and 35 strips supported as beams, which were loaded until failure occurs. In these experimen-

tal tests, the displacements at some points of the slabs and the slopes at the centre of the edges 

were measured; also, the propagation of the cracks was registered as reported by Westergaard and 

Slater (1921). Afterwards, other experimental tests were performed as those reported by Casadei et 

al. (2005), Foster et al. (2004), Galati et al. (2008), Gamble et al. (1961),  Girolami et al. (1970), 

Hatcher et al.  (1960), Hatcher et al.  (1961), Jirsa et al. (1962), Mayes et al. (1959), Vanderbilt 

(1961), among others. It is interested to say that these references are the basis of the research and 

applications of the current analysis and design of the rectangular slabs. 

 In the modelling of the reinforced concrete slabs, de Borst and Nauta (1985) applied the smeared 

crack model to study an axisymmetric slab under shear penetration, showing that cracking initiated 

at the bottom face of the slab and the corresponding cracking paths. Then, Kwak and Filippou 

(1990) modelled a square slab supported on its corners with a concentrated load at the centre of the 

span, obtained the load vs. displacement curve, which was congruent with experimental results re-

ported by Jofriet and McNeice (1971) and Mcneice (1967); in the reported results by Kwak and 

Filippou (1990), neither the first crack load nor the cracking pattern was given. There were other 

proposals for modelling reinforced concrete slabs such as Gilbert and Warner (1978), Hand et al. 

(1973), Hinton et al. (1981), Lin and Scordelis (1975), Wang et al. (2013) among others, most of 

them used the smeared crack model. 

 There are some commercial software for modelling reinforced concrete elements such as 

ABAQUS (ABAQUS 2011), ANSYS (ANSYS 2010), DIANA (DIANA 2008), ATENA (Kabele et 

al. 2010), NLFEAS (Smadi  and Belakhdar 2007), among others. These software mainly use the 

finite element method with the smeared crack model for the behaviour of the concrete, equipped 

with a failure surface with different threshold value in tension and compression, necessary to deter-

mine the first crack load and crack propagation. However, the smeared crack model may have nu-

merical problems of stress locking and spurious kinematic modes (Rots 1988), which may be over-

come with heuristic shear retention factors. 

 In this paper, finite elements with embedded discontinuities (FEED) were used for studying 

reinforced concrete slabs, computing their load-displacement capacity curves and their cracking 

patterns. The advantages of FEED are the capability for representing highly localized strains by 

improving the kinematic, the possibility to statically condense out the displacement jump and the 

nearly mesh-independent. Concrete was discretized with hexahedral FEED and steel reinforcement 

was discretized with 3D bar elements, both kinds of elements have three degrees of freedom per 

node. 

 The outline of this paper is as follows. Section 2 presents the details of FEED formulation. Sec-

tion 3 provides the constitutive models to describe the behaviour of the materials, a discrete damage  
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model equipped with softening for concrete and a plasticity model for the steel reinforcement. Nu-

merical examples of reinforce concrete slabs which validate the proposed formulation are presented 

in Section 4. Finally, in Section 5, conclusions derived from this work are given. 

 
2 EMBEDDED DISCONTINUITY MODEL 

2.1 Variational formulation 

The FEED are formulated from an energy functional which has the displacement, u, and the dis-

placement jump [|u|] as independent variable (Alfaiate et al. 2003, Juárez and Ayala 2009, Lotfi 

and Shing 1995, Wells and Sluys 2001). This functional is given by: 

  
             ( )

\
, ( ) ( )

S

u
S

S
d d d

σ

φ∗

Ω Γ Γ
    Π = Ψ − ⋅ Ω − ⋅ Γ + Γ     ∫ ∫ ∫u u b u t u uεεεε       (1)   

 

where the free energy density, ( ),uΨ εεεε  depends on the continuous strain field uεεεε  , and the free 

discrete energy density, u( ),S
 Ψ    depends on the displacement jump. These energy densities are 

respectively given by:  

 
Ψ = ∫ 0
( ) ( )u d

εεεε
ε σ ε εε σ ε εε σ ε εε σ ε ε

  (2) 
 

 ,0
( ) ( )S S n s

dφ
       =     ∫
u

u T u u
  (3) 

 

where the elastic stresses, σσσσ , are defined by: 
 

 C :σ = εσ = εσ = εσ = ε  (4) 

 

and TS is the traction vector at the discontinuity. 

 

 

2.2 Finite Element Approximation 

It is not possible to prescribe the boundary conditions, u*, in only one of the displacement fields, 

i.e., u or [|u|], a difficulty overcame, according to Oliver (1996), defining the displacement as in 

Eq. (5), shown in Figures 1a and b: 
 

u u x uˆ ( )SM
 = +                          (5) 

 

Then, the strain field is defined by: 
 

u u x uˆ ( )S S S
SM

 = ∇ = ∇ + ∇  εεεε
  (6) 

 

where û is the regular displacement field and x( )SM  is a function given by: 
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( ) ( ) ( )S SM H φ= −x x x
  (7) 

 

where x( )φ  is a continuous function such that: 
 

( ) 0

( ) 1

φ

φ

−

+

= ∀ ∈ Ω

= ∀ ∈ Ω

x x

x x
  (8) 

The function SM , has two properties: ( ) 1SM x x S= ∀ ∈  and ( ) 0SM x x − += ∀ ∈ Ω ∪ Ω  as shown 

in 

Figure 1. 

 

Figure 1: Graphic representation of: a) continuous, b) regular displacements and c) function SM . 

 
The continuous displacement field is defined as: 
 

u u x uˆ ( )φ  = −     (9) 

In the continuous part of the solid, which may be linear elastic, the continuous strain field, εεεε is 
given by: 

S= ∇εεεε u   (10) 
 

Substituting Eq. (9) into Eq. (10), 
 

 
u x u x uˆ ( ) ( )S S Sφ φ   = ∇ −∇ − ∇   εεεε

  (11) 
 

If the displacement jump is constant in Eq. (11), the continuous strain field may be rewritten as: 
 

 
u x uˆ ( )S Sφ  = ∇ −∇  εεεε

  (12) 
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2.3 Approximation of the Displacement and Strain Fields 

The regular displacement field is approximated by: 
 

 
ˆ =u Nd

  (13) 

where N is the standard vector of shape functions of the element 
 

 
( )

1

i n e
ii
N

=

=∑N ====
  (14) 

 

and, d, is the nodal displacement vector. The function, MS(x), is defined in the finite element 

approximation as: 

 
( )( )e e e

S SM H φ= −x x
  (15) 

where 
eφ  is constructed by: 

 1

ene

ii
Nφ

+

++=
= ∑   (16) 

 

where i
N +  are the shape functions corresponding to the nodes placed on +Ω  of the finite element 

which contains the discontinuity, in agreement with the definition of φ in Eq. (8). 

The displacement field defined in Eq. (5) is given by 
 

 � ,
 

c

e
S x y

M  = +  
N

u Nd u
  (17) 

The continuous strain field in Eq. (12) is approximated as: 
 

 �
B

B d u x
,

/

c

e

x y
Sφ  = − ∇ ⋅ ∀ ∈ Ω ε ⋅ε ⋅ε ⋅ε ⋅

  (18) 

whereB , is the standard strain interpolation matrix, containing the derivatives of the standard 

shape functions Nd Bd( )∂ = . 

The equilibrium equations corresponding to this formulation are obtained by substituting Eqs. 

(17) and (18) into the energy functional of Eq. (1), and setting the derivatives with respect to the 

independent variables (d and [|u|]) to zero, 
 

 
( )

\

0 T T T

S

d d d

σ

∗

Ω Ω Γ

∂Π
= = Ω − ⋅ Ω − ⋅ Γ

∂ ∫ ∫ ∫B N b N t
d

σ εσ εσ εσ ε
  (19) 

 

 
( )B

u
,

\

0
S

T
c x y

S

d d
Γ

Ω

∂Π
= = − Ω+ Γ

 ∂  
∫ ∫σ εσ εσ εσ ε T

  (20) 

 

In Eqs. (19) and (20), ( )σ ε  and 
, ,x y z

Τ  are nonlinear, their respective linearizations with Taylor 

series give (Juárez-Luna and Ayala 2014): 
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where R has the direction cosines, R1 and R2 are defined as: 
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B
, 0
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n nT
ext
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R F d
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  (23) 

 

To reduce the size of the system given in Eq. (21), the additional degrees of freedom, Δ[|u|], may 

be condensed. In Eq. (22), R1 means the equilibrium between the external and the internal forces 

in the domain \ SΩ , whereas R2, in Eq. (23), the equilibrium between the forces in the domain 

\ SΩ  and forces in the discontinuity SΓ . 

Tractions at the discontinuity are: 
 

 
B, ,

\

1 T
x y z c

d S

d
A

Ω

= Ω∫ σσσσT
  (24) 

which expressed in the local system becomes 
 

 
R B, ,

\

1 T
n s t c

d S

d
A

Ω

= Ω∫T σσσσ
  (25) 

 

The definitions of the traction vector in Eqs. (24) and (25) are dependent on the discontinuity 

area, Ad, and the direction cosines to the normal vector n, as shown in Figure 2.   

 

 

Figure 2: Finite element: a) discontinuity area and b) displacement jumps. 

 

The FEED, given in eq. (21), were implemented in the finite element analysis program (FEAP), 

developed by Taylor (2008). These FEED capture a discontinuity surface at their geometric cen-

tre, which is placed perpendicular to the major principal stress direction. The discontinuity sur-
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faces of the surrounding elements are not aligned as Sancho et al. (2007) did for 2D problems. 

Although there are formulations which consider linear displacement jumps inside the element 

such as Alfaiate at al. (2003) and Contrafatto et al. (2012), the displacement jump is constant 

into these FEED. It is important to say that these elements do not have problems of spurious 

shear deformations and they satisfied the following requirements: (1) equilibrium, traction conti-

nuity across the discontinuity interface and (2) kinematics, free relative rigid body motions of the 

two portions of an element split up by a discontinuity (Juárez-Luna and Ayala 2014).  

 
3 CONSTITUTIVE MODELS 

3.1 Concrete 

The concrete behaviour was modelled with a discrete damage model, which has different thresh-

old values under tension and compression, as shown in Figure 3a. This model is equipped with 

softening after reaching the ultimate tensile strength, Tut, or the ultimate compressive strength, 

Tuc, shown in Figure 3b. This model is defined by the following equations: 
 

 

( ) ( ) ( ) ( )

( )

( )

( )

e

e

u e

u

u u Q u
u

Q n C n

Q u

1
0 2

0

,

_

Discrete free energy density , 1 ,

Constitutive equation (1 )

Damage variable 1 ; ,1

Evolution law , 0,

q

t

φ α

α

α

φ
φ α ω φ α

ω

ω ω

α λ α α

 ∂  
 ∂  

∂
∂

       =        = −   
 = −  

 = − ∈ −∞  

= = ∈
ɺ

⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅

= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅= ⋅ ⋅

= ⋅= ⋅= ⋅= ⋅T

( ) ( )

1

1e

e

Q
Q

_ _

Damage criterion ( , ) ;

Hardening rule ; 0

Loading-unloading
0; 0; 0; 0 (consistency)

conditions

f q q

q H H q

f f f

τ τ

α α α

λ λ λ

′

 ∞ 
= − = =

= = ≤

≤ ≥ = =

ɺ ɺ

ɺ

−−−−
−−−− ⋅ ⋅⋅ ⋅⋅ ⋅⋅ ⋅

T T
T T T T

  (26) 

 

whereφ is the discrete free energy density, T  is the traction vector. The damage variableω is de-

fined in terms of the hardening/softening variable 

_

q
ɺ

, which is dependent on the harden-

ing/softening parameter. The damage multiplier λ determines the loading-unloading conditions, 

the function (f T , )q , bounds the elastic domain defining the damage surface in the tractions 

space. The tangent constitutive equation, in terms of rates from the model in Eq. (26), is: 

 

 
C uT
d

  ɺ ɺ= ⋅= ⋅= ⋅= ⋅T
  (27) 

where C
T
d  is the tangent constitutive operator, relating the traction and the displacement jump of 

the nonlinear loading interval, which is defined by 

 

 
( ) ( )e e eC Q Q u u Q

3
1 q HT

d
α

α
ω

−    −    = − ⋅ ⊗ ⋅= − ⋅ ⊗ ⋅= − ⋅ ⊗ ⋅= − ⋅ ⊗ ⋅
  (28) 
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and for the elastic loading and unloading interval ( 0d =ɺ  and 0ω=ɺ ): 

 

 
( ) eC Q1T

d ω−====
  (29) 

 

 

 

Figure 3: 1D discrete damage model with softening: a) elastic space and b) traction-displacement jump curve. 

 

This constitutive model considers a material fictitious interpenetration, [|u|]c, when Tuc is over-

come. Because of the energy dissipation in compression takes place over a surface, rather than 

within a volume, the use of a fictitious interpenetration instead of a strain is justified (Carpinteri 

et al. 2010). In this model, it is assumed that both post-peak regimes, tension and compression, 

have decreasing functions with the same slope, EH, as ca be seen in Figure 3b.  

The area under the traction versus jump displacement curve represents the fracture energy 

density, Gf , in the first quadrant of  Figure 3b, i.e.: 
 

 
1

T
2

t

f ut cr
G u=      (30) 

 

where [|u|] t
cr

is the critical value of the crack opening, which is given by:  
 

 
Tt
ut

cr
u

EH
  = −    (31) 

 

Substituting Eq. (31) into Eq. (30) and solving for EH, the slope of the decreasing function under 

tension is given by:  

 
2T1

2

ut

f

EH
G

= −   (32) 

 

Considering that the area under the compression versus the fictitious jump interpenetration dis-

placement curve represents the crushing energy density, Gc , in the third quadrant of  Figure 3b, 

then 
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1

T
2

c

c uc cr
G u=      (33) 

 

The fictitious critical value of interpenetration can be computed as:  

 
Tt
uc

cr
u

EH
  = −    (34) 

 

Substituting Eq. (34) into Eq. (33), then: 
 

 

2T1

2

uc
cG

EH
= −   (35) 

 

As the slope of the decreasing function under tension is the same under compression, Eq. (32) is 

substituted into Eq. (35): 

 
2

2

T

T

uc
c f

ut

G G=   (36) 

 

If n= Tut / Tuc in Eq.(36), Gc is given by: 

  
2

c fG n G=   (37) 

 

This equation provides a relationship between the crushing and the fracture energy densities.   

 
3.2 Steel 

A 1D rate independent plasticity model with isotropic hardening was used for modelling the steel 

reinforcement. This model has the same threshold value in tension and compression, as shown in 

Figure 4a; the hardening of the steel reinforcement, after reaching the yield stress σy, was consid-

ered with an idealized bilinear function as shown in Figure 4b. The plasticity model is defined by 

the following equations: 
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  (38) 

 

where ψ is the free energy density, σ is the stress tensor. The plastic variable α is defined in 

terms of the hardening variable H. The plastic multiplierλ determines the loading-unloading con-
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ditions, the function f(σ,σy), bounds the elastic domain defining the plastic surface in the stress 

space. The tangent constitutive equation, in terms of rates from the model in Eq. (38), is: 
 

 
CT ɺɺ = : ε= : ε= : ε= : εσ

  (39) 

where CT  is the tangent constitutive operator, relating the stresses and the strain of the nonlinear 

loading interval, which is defined by 
 

 

C C
C C

C

:

: :
T

H +
m n

n m

⊗ :⊗ :⊗ :⊗ :
= −= −= −= −

  (40) 
 

and for the elastic loading and unloading interval ( 0λ =ɺ  and 0α=ɺ ): 
 

 
CT C====

  (41) 

 

 
Figure 4: 1D rate independent plasticity model with isotropic hardening: 

a) elastic space and b) stress-strain curve. 

 
4 NUMERICAL EXAMPLES 

In the presented examples, the reinforcement was meshed with 3D linear finite elements with two 

nodes, which have three degrees of freedom each. The constitutive behaviour of the steel rein-

forcement was modelled with a plasticity model with hardening. The steel elements were placed 

on the edges of the solid elements, coupling the degree of freedom of both kinds of elements. Per-

fect bond between steel bars and concrete was assumed, as the failure of this type of slabs occurs 

mainly on flexure without evidence of debonding. 

 
4.1 Square Slabs Supported at the Corners 

The FEED and the constitutive models were validated by the numerical modelling of the experi-

mental results reported by Girolami et al. (1970). The test specimen, shown in Figure 5a, is a 

square slab of sides 1.829 m long and a thickness 0.044 m, which was simple supported at its cor-
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ners. The top and bottom reinforcement used in the slab consisted of 3.66 mm diameter steel bars 

cut from No.7 gage wire, which were spaced 10.954 cm in both orthogonal directions, as shown in  

Figure 6a.  Also, the stirrups were bent from the No.7 gage steel wire as shown in 

Figure 6b. The vertical loads were applied at the top of the slab using four jacks with loading 

trees distributed to 16 load plates, as shown in Figure 5b. The mechanical properties of the con-

crete are: Young´s modulus Ec=19.90 GPa, Poisson ratio υ=0.2, ultimate tensile strength 

σtu=3.1026 MPa, ultimate compressive strength σuc=31.026 MPa and fracture energy density 

Gf=0.098 N/mm. The mechanical properties of the reinforcing steel are: Young´s modulus 

Es=206 GPa, Poisson ratio υ=0.3, yield stress σy=330.95 MPa and hardening modulus 

H=2.871GPa.  
 

 

a)  b)  

Figure 5: Experimental test: a) geometry in cm and b) applied loads (adapted from Girolami et al. 1970). 

 

 

 

a)  b)  

 

Figure 6: Reinforcement of: a) one quarter of the slab and b) one half 

of a beam (adapted from Girolami et al. 1970). 
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Only one quarter of the slab was modelled, considering the two axes of symmetry of its geometry. 

To describe the symmetry conditions at the boundary constraints, no translation was imposed on 

the degree of freedoms perpendicular to the corresponding axes of symmet

ment mesh is shown in Figure 7a, whereas the concrete

Figure 7b. 
 

 

a) 

Figure 7: Meshes: a) steel reinforcement in the slab and b) concrete.

The load vs displacement at the centre of the span curves are shown in 

curve with FEED shows numerical results

ported by Girolami et al. (1970). In fact, it is observed that both curves are similar at the begi

ning; however, there is a backward of the displacement. This movement may be attributed to a 

sliding of the measurement devices, cons

move upwards as the load is applied downwards

ments such as beams, where snapback behaviour may occur

show that the numerical and the experimental curves are greater than the horizontal curve

puted with the yield line theory. The yield line theory is a method to estimate the ultimate load 

of a slab system by postulating a collapse mechanism compatible with the bound

The moments at the plastic hinge lines are the ultimate moments of resistance of the sections, 

and the ultimate load is determined using

librium (Park and Gamble 2000).  

 

Figure 8: Comparison between experimental and numerical results.
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quarter of the slab was modelled, considering the two axes of symmetry of its geometry. 

To describe the symmetry conditions at the boundary constraints, no translation was imposed on 

the degree of freedoms perpendicular to the corresponding axes of symmetry. The steel reinforc

a, whereas the concrete mesh of the slab and beams is shown in 

  
b) 

: Meshes: a) steel reinforcement in the slab and b) concrete. 

displacement at the centre of the span curves are shown in Figure 8. The computed 

numerical results, which are congruent with the experimental curve

. In fact, it is observed that both curves are similar at the begi

ning; however, there is a backward of the displacement. This movement may be attributed to a 

, considering that the displacement at the centre would never 

the load is applied downwards; this effect only happens at plain concrete el

where snapback behaviour may occur (Carpinteri 1988). It is important to 
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The yield line theory is a method to estimate the ultimate load 

of a slab system by postulating a collapse mechanism compatible with the boundary conditions. 

The moments at the plastic hinge lines are the ultimate moments of resistance of the sections, 

ultimate load is determined using the principle of virtual work or the equations of equ
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Cracking initiated at the corners on the top surface, growing along the edges to the centre as 

shown in Figure 9a; on the bottom surface, cracking occurs at the centre, growing to the corner as 

shown in Figure 9b. The crack patterns at both, top and bottom surfaces, are congruent with the 

experimental results reported by Girolami et al. (1970). 

 

  
(a) 

  

(b) 

Figure 9: Cracking propagation on the: a) top and b) bottom surface. 

 

4.2 Simple Supported and Clamped Slabs 

Other two slabs were also analysed, a 4m square slab and a 2m width by 4m length rectangular 

slab respectively shown in Figure 10; both of them were 10 cm thick and subjected to an increas-

ing uniform distributed load. Two boundary conditions were considered along their edges: simply 

supported and clamped. The reinforcement used in the slabs consisted of 3/8 in diameter steel 

bars, which were spaced 20 cm in both orthogonal directions, as shown respectively in Figures 11 

and 12. The mechanical properties of the concrete are: Young's modulus Ec=14710 MPa, Poisson 

ratio ν=0.2, ultimate tensile strength σtu=2.86 MPa, ultimate compressive strength σcu=28.63 

MPa, fracture energy density Gf=0.098 N/mm. The mechanical properties of the steel reinforce-

ment are: Young's modulus Es=196.13 GPa, yield stress σy=411.88 MPa, Poisson ratio ν=0.3, 
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area A=0.71 cm2 and hardening modulus H=2.871 GPa. Like the previous example, the two axes 

or symmetry were considered, so only a quarter of the slab was modelled, as shown in Figure 13, 

which reduces the time consuming of the computational calculation. 

 

 

Figure 10: Geometry of slabs: a) square and b) rectangular. 

 

   

(a) (b) (c) 
 

Figure 11: Steel reinforcement of the square slab: a) 3D view, b) first quadrant 

with top reinforcement and b) first quadrant with bottom reinforcement. 

 
 

  

(a) (b) (c) 
 

Figure 12: Steel reinforcement of the square slab: a) 3D view, b) first quadrant 

with top reinforcement and b) first quadrant with bottom reinforcement. 
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(a) 

Figure 13: Mesh of slabs: a) square and b) rectangular.

 

The distributed load vs. displacement curves at the centre of the spans of both slabs are 

tively shown in Figure 14. Here, it may be observed that

clamped slabs are approximately five times greater than 

at the displacements of 2.5 and 0.5 cm, respectively

supported slabs, the ultimate load computed with the yield line theory is greater than the load 

computed with FEED; on the contrary, for clamped slabs, the ultimate load computed with the 

yield line theory is lower than the load computed with FEED.

effect is attributed to the steel reinforcement placed 

stress before the steel reinforcement placed at the 

is assumed that every bar instantly reaches the yield

 

          

      (a) 

Figure 14: Distributed load vs. displacement 
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(b) 

: Mesh of slabs: a) square and b) rectangular. 

at the centre of the spans of both slabs are respec-

. Here, it may be observed that the intensity of the distributed load on 

clamped slabs are approximately five times greater than the intensity on simple supported slabs 

s of 2.5 and 0.5 cm, respectively. Additionally, it is observed that, for simple 

ltimate load computed with the yield line theory is greater than the load 

computed with FEED; on the contrary, for clamped slabs, the ultimate load computed with the 

yield line theory is lower than the load computed with FEED. In simple supported slabs, this 

placed at the centre of the span reaches the yield 

stress before the steel reinforcement placed at the edges does; whereas in the yield line theory, it 

is assumed that every bar instantly reaches the yield stress.  

 
       

        (b) 

: Distributed load vs. displacement curves in slab: a) square and b) rectangular. 

clamped square slab, cracking simultaneously initiated along the edges on the top surface, 

growing to the centre until a ring is formed, as shown in Figure 15a, whereas on the bottom sur-

growing to the corners and to the edges, as shown in 

b. In the simple supported condition, cracking initiated at the corners and at the centre 

Figure 16b, whereas on top surface, it initiated at the 

Figure 16a.  
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In the clamped rectangular slab, cracking simultaneously initiated along its long edges on the 

top surface. Then, cracking appeared along its short edges, growing to the centre until a ring is 

formed as shown in Figure 17a. On the bottom surface, cracking initiated along a strip at the 

centre of the span, parallel to the long edges, growing to the corners and to the edges, as shown 

in Figure 17b. In the simple supported rectangular slab, cracking initiated along a strip at the 

centre on the bottom surface, parallel to the long edges as shown in Figure 18b; some cracks ap-

peared at the corners on the top surface, as shown in Figure 18a. In general, the cracking paths 

on the bottom surfaces of the corresponding studied slabs were similar to the paths proposed by 

the classical yield line theory as well as the experimental results reported by Bach and Graf 

(1915). 

 

  

(a) 

  
(b) 

Figure 15: Cracking propagation of a clamped square slab on the: a) top and b) bottom surfaces. 

 

 

  
(a) 
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(b) 

Figure 16: Cracking propagation of a simple supported square slab on the: a) top and b) bottom surfaces. 

  

 
(a) 

 
(b) 

Figure 17: Cracking propagation of a clamped rectangular slab on the: a) top and b) bottom surfaces. 

 

 
(a) 

 
(b) 

Figure 18: Cracking propagation of a simple supported rectangular slab on the: a) top and b) bottom surfaces. 
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To know if the steel reinforcement yields, the yield strain, εy= σy/Es=0.0021, was compared with 

the strains of the steel bars placed perpendicular to the central and edge strips of the slabs, i.e., 

perpendicular to strips 0-A, 0-a, 0-B, A-C, a-c and b-c, respectively, as shown in Figure 10. The 

strains of the steel bars were only computed in half of the strips as they are symmetric. 

In the clamped square slab, only the central reinforcing top steel bars placed perpendicular to 

the edge strip yielded as shown in  

 Figure 19b, while the other bars remained linear elastic as shown in  

 Figure 19a. This result is congruent with the occurrence of cracking, which simultaneously 

initiated along the edges on the top surface. On the contrary, in the simple supported square slab, 

only the central reinforcing bottom steel bars placed perpendicular to the central strip yielded as 

shown in  

Figure 20a, while the other steel bars remained linear elastic as shown in  

Figure 20b. This result is also congruent with the occurrence of cracking, which initiated at 

the centre on the bottom surface. 

In the clamped rectangular slab, only the central reinforcing top steel bars placed perpendicu-

lar to the long edge strip yielded, strip b-c, as shown in Figure 21c, while the other bars remained 

linear elastic as shown in Figure 21a, b and d. This result is congruent with the occurrence of 

cracking, which simultaneously initiated along the long edges on the top surface. On the contrary, 

in the simple supported rectangular slab, only the central reinforcing bottom steel bars placed 

perpendicular to the long central strip yielded, strip 0-a as shown in Figure 22a, while the other 

bars remained linear elastic as shown in Figure 22b, c and d. This result is also congruent with 

the occurrence of cracking, which initiated at the centre on the bottom surface. 

 

 

   
(a) (b) 

 

 Figure 19: Strains in the reinforcing steel bars of the clamped square slab 

placed perpendicular to the: a) central strip 0-A and b) edge strip B-C.  
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(a) (b) 

 

Figure 20: Strains in the reinforcing steel bars of a simple supported slab 

placed perpendicular to the: a) central strip 0-A and b) edge strip B-C. 

 

 

    
(a) (b) 

    
(c) (d) 

Figure 21: Strains in the reinforcing steel bars of a clamped rectangular slab placed perpendicular to the: a) 

central strip 0-a, b) central strip 0-b, c) edge strip b-c and c) edge strip a-c.  
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(a) (b) 

  
(c) (d) 

Figure 22: Strains in the reinforcing steel bars of a simple supported rectangular slab placed perpendicular 

to the: a) central strip 0-a, b) central strip 0-b, c) edge strip b-c and c) edge strip a-c. 

 

5 CONCLUSIONS 
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slabs, cracking initiated at the centre of the span on the bottom surface, propagating to the cor-

ners until a cross was formed. On the top surface, incipient cracking occurred at the corners. 

The ultimate load computed for simple supported slabs with the yield line theory is greater 

than the load computed with FEED; on the contrary, for clamped slabs, the ultimate load com-

puted with the yield line theory is lower than the load computed with FEED. In simple supported 

slabs analysed with FEED, this effect is attributed that the steel reinforcement at the centre of 

the span reached the yield stress before the steel reinforcement placed at the edges did; whereas 

with the yield line theory, it is assumed that every bar instantly reaches the yield stress. 

In the clamped square slab, the central reinforcing steel bars placed perpendicular to the 

edges yielded, while in the simple supported square slab the central reinforcing steel bars placed 

perpendicular to central strip yielded. On the other hand, in the clamped rectangular slab, the 

reinforcing steel bars placed perpendicular to the long edges yielded, while in the simple sup-

ported rectangular slab, the reinforcing steel bars placed perpendicular to long central strip 

yielded. These results were congruent with the places of the slabs where cracking initiated, corre-

sponding to the places where grater tension stresses occurred. 
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