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Abstract 
In this paper vibration behavior of a fluid-conveying cracked pipe 
surrounded by a visco-elastic medium has been considered. During 
this work, the effect of an open crack parameters and flow velocity 
profile shape inside the pipe on natural frequency and critical flow 
velocity of the system has been analytically investigated. An explicit 
function for the local flexibility of the cracked pipe has been offered 
using principle of the fracture mechanics. Comparison between the 
results of the present study and the experimental data reported in 
the literature reveals success and high accuracy of the implemented 
method. It is demonstrated that the existence of the crack in the 
pipe, decreases the natural frequency and the critical flow velocity 
so that the system instability onsets at a lower flow velocity in 
comparison with the intact pipe. Results indicate that the flow ve-
locity profile shape inside the pipe caused by the viscosity of real 
fluids, significantly affects the critical flow velocity of both intact 
and fluid-conveying cracked pipe. For instance, as the flow-profile-
modification factor decreases from 1.33 to 1.015, the dimensionless 
critical flow velocity of intact clamped-clamped pipe increases from 
5.45 to 6.24. 
 
Keywords 
Cracked Fluid-conveying Pipe, Vibration Analysis, Natural Fre-
quency, Velocity Profile, Critical Flow Velocity.
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NOMENCLATURE 

,௜ܣ ,ܣ ݅ ൌ 1, . . ,8 constant ݐ time 

ܽ crack depth ܷ mean fluid velocity 

ܽ௫ crack depth of the strip (in Figure 1)  dimensionless fluid velocity ݑ

ܽ௖ dimensionless crack depth ݔ coordinate 

ܾ half width of crack  ܺ axial coordinate 

damping coefficient of foundation ܹ and ഥܹ ܥ  transverse deflection 
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NOMENCLATURE (continuation) 

ܿ local flexibility ݓ dimensionless transverse deflection 

 ோݓ,௅ݓ Young module ܧ
left and right side of the crack transverse 
deflection 

 coordinate ݕ ௘௫௧ external forceܨ

   ௫ሻ crack effect function݄/ߦሺܨ

݄ height of rectangular section ߙ flow-profile-modification factor 

݄௫ height of the strip (in Figure 1) ߚ dimensionless frequency 

 dimensionless axial coordinate ߞ second moment of area ܫ

 ௖ dimensionless crack locationߞ ூ stress intensity factorܭ

 Dimensionless damping factor ߟ ௧ equivalent torsional spring stiffnessܭ

,௦ܭ ݇௦ foundation constant, dimensionless ߣ ,ߣ௜, ݅ ൌ 1, . . ,4 constants 

,௠ܭ ݇௠ Winkler stiffness, dimensionless ߦ local coordinate 

݈ length of pipe ߥ Poisson’s ratio 

 bending moment φ ܯ
dimensionless parameter related to the 
effect of crack depth 

݉௙ and ݉௣ 
mass per unit length of pipe and 
fluid 

߱ natural frequency 

݉ dimensionless mass   

,௜݌ ݅ ൌ 1, . . ,4 constants   

ܲ,ܳ, ܴ matrix   

ܴ௢and ܴ௜ Outer and inner radius of the pipe    

ܶ matrix   

 
1 INTRODUCTION 

Dynamic behavior of the fluid-conveying pipes has significant importance due to its extensive appli-
cation in different industries such as petrol and gas transportation systems (Païdoussis 1998, Ibrahim 
2010, Ghaitani and Esmaeili 2013). These pipes often lie on a foundation and would be cracked as a 
result of various internal and external loads while conveying fluid. So, analyzing the dynamic behavior 
of the cracked pipes would be practically important. 

Inspired by the work of Tada et al. (1973), many researchers have performed the vibration anal-
ysis of the cracked structures such as thin walled tubes during the last five decades. Recently, some 
reviews on vibration of cracked structures were reported by Dimarogonas (1996) and Kumar et al. 
(2010). In some researches the crack has been simulated by a local reduced section or stiffness of the 
structure around the crack (Sinha, Friswell et al. 2002). The local flexibility of the structure is reduced 
due to the crack and this concept has been used to model the vibration behavior of the cracked pipe 
in some studies (Xie 1998, Mahjoob and Shahsavari 2007, Hu et al. 2011, Yumin et al. 2011, liu et al. 
2012, Bai et al. 2013). Literature review indicates that available studies about the vibration behavior 
of the cracked pipes can be divided into three groups; 
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 Having no fluid inside, 
 Filled with fluid without flow (zero flow velocity) 
 Having fluid flow inside (fluid-conveying pipe).  

There are fairly large amount of researches dedicated to the first two groups; Liu et al. (2003) 
examined the stability of thin-walled pipe due to circumferential cracks analytically and experimen-
tally based on the coupled-response measurements. Ye et al. (2010) investigated the vibration behav-
ior of the cracked pipe in the absence of the fluid flow using the finite element method. Their results 
show that the presence of the crack in the pipe reduces the natural frequency, and its effect on the 
upper natural frequencies is more than the lower ones. Murigendrappa et al. (2004a; 2004b) studied 
the vibration behavior of the cracked pipe theoretically and experimentally. In their works, the crack 
has been considered as a torsional spring and the transfer matrix method with Rayleigh’s quotient 
has been used for vibration analysis. Naniwadekar et al. (2008) developed an experimental method 
for crack detection based on changing the natural frequency and presented a numerical method to 
analyze the vibration behavior of a straight horizontal steel hollow pipe filled with an incompressible 
fluid (without flow). 

In contrast to the first two groups, there are fairly limited amount of investigation about the 
vibration behavior of the cracked fluid-conveying pipes (third group). Yoon and Soo are two research-
ers that have contributed in most papers published about vibration behavior of the fluid-conveying 
cracked pipes. They investigated the effects of the open crack parameters and the moving mass on 
the dynamic behavior of simply supported pipe conveying fluid using Timoshenko beam model. Nu-
merical methods based on the transfer matrix have been preferred in their works (Son, Lee et al. , 
Yoon and Son 2004, Yoon, Son et al. 2004, Yoon and Son 2005, Yoon and Son 2006, Son, Cho et al. 
2007, Yoon and Son 2007, Yoon, Son et al. 2007, Son and Yoon 2008, Son, Yoon et al. 2010). So, 
available research in literature did not consider the effects of the crack parameters on the critical flow 
velocity which is our main objective in this paper. 

In present paper the vibration behavior of the cracked fluid-conveying pipe is examined via Euler-
Bernoulli beam model focusing on natural frequency and critical flow velocity. Also, in order to have 
a more realistic model, the surrounding elastic medium is modeled via a visco-elastic foundation. Our 
study is carried out through an analytical method. The crack is considered using a massless torsional 
spring. An explicit function for obtaining the local flexibility of the cracked pipe is presented using 
the theory of fracture mechanics. Also, we demonstrate that how the fluid flow velocity profile would 
influence the critical flow velocity of the system. 
 
2 LOCAL FLEXIBILITY OF THE CRACKED PIPES 

Dimarogonas and Papadopoulos (1983) proposed the massless torsional spring model of the cracked 
beam and shaft, and derived the additional flexibility due to the crack using the principle of fracture 
mechanics. Following this procedure, a small vertical sectional strip is considered in the cracked 
section of the pipe. The strain energy of the strip is obtained using the theory of fracture mechanics. 
By integrating of the strain energy over the cracked section, for the local flexibility, an explicit func-
tion is obtained as a function of the crack depth.  
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The additional strain energy due to the crack can be considered in the form of a flexibility coef-
ficient expressed in terms of the stress intensity factor, which can be derived by Castigliano’s theorem 
in the linear elastic range. Therefore, the local flexibility in the presence of the crack is defined by 
(Zou et al. 2003):  
 

ܿ ൌ
߲ଶܷ
ଶܯ߲ ൌ

1 െ ଶߥ

ܧ
න න

߲ଶሺܭூ
ଶሻ

ଶܯ߲

௔

଴

௕

ି௕
(1) ݕ݀ݔ݀

 

where E is Young module, υ is Poisson’s ratio, ܽ and ܾ are the crack dimensions as shown in Figure 
1. ΙK is the stress intensity factor corresponding to the first fracture mode due to the bending moment 

M. 
  

 

Figure 1: Cross section of the cracked pipe. 

 
It is seen from Eq. (1) that the local flexibility depends on the stress intensity factor. In order to 

calculate the stress intensity factor for the cracked pipes, consider a small vertical rectangular strip, 
having a small cross-sectional width dx and height with an arbitrary offset distance x, as shown 

in Figure 1. In Ref. (Tada, Paris et al. 2000) the stress intensity factor for a rectangular section is 
presented as: 
 

ூܭ ൌ
ܽܯ
ଶܫ2

ሺܽ/݄ሻ (2)ܨܽߨ√
 

where, a is the crack depth, Ι and hare the second moment of area and height of the rectangular cross-
section, respectively and ܨሺܽ/݄ሻ is a mathematical function of crack dimension. Employing Eq. (2) 
for the rectangular strip shown in Figure 1 leads: 
 

ூܭ ൌ
ߦܯ
ଶܫ2

ඥߦߨ ௫ሻ (3)݄/ߦሺܨ
 

xh
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in which, ߦ	is local coordinate which varies from  ߦ ൌ 0 to ߦ ൌ ܽ௫ swiping the crack depth in the given 
strip, and	ܨሺߦ/݄௫ሻ is defined as (Tada et al. 1973): 
 

ܨ ൬
ߦ
݄௫
൰ ൌ ඨ

2݄௫
ߦߨ

tan	ሺ
ߦߨ
2݄௫

ሻ
0.923 ൅ 0.199 ൬1 െ sinሺ

ߦߨ
2݄௫

ሻ൰
ସ

cosሺ
ߦߨ
2݄௫

ሻ
 (4)

 

Substituting Eq. (3) into Eq. (1) leads to: 
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଴

௕
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଴
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௕
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The equivalent rotational spring stiffness, ܭ௧, is defined as (Dimarogonas and Papadopoulos, 
1983): 
 

௧ܭ ൌ
1
ܿ
 (6)

 

Taking into account the coordinate system illustrated in Figure 1, ݄௫ and ܾ calculated as: 
 

݄௫ ൌ 2ඥܴ௢ଶ െ ଶݔ (7)
 

ܾ ൌ ඥܴ௢ଶ െ ሺܴ௢ െ ܽሻଶ (8)
 

and the upper boundary of the crack,ܽ௫, can be expressed as: 
 

ܽ௫ ൌ
݄௫
2
െ ሺܴ௢ െ ܽሻ ൌ ඥܴ௢ଶ െ ଶݔ െ ሺܴ௢ െ ܽሻ. (9)

 

By defining the dimensionless variables; ox x R , x x oh h R , ob b R , x x oa a R  and 

αc oa R , the dimensionless form of Eqs. (7)- (9) becomes: 
 

ത݄
௫ ൌ 2ඥ1 െ ଶݔ̅ (10)

 

തܾ ൌ ඥ1 െ ሺ1 െ തܽሻଶ (11)
 

തܽ௫ ൌ
ത݄
௫

2ܴ௢
െ ൬1 െ

ܽ
ܴ௢
൰ ൌ ඥ1 െ ଶݔ̅ െ ሺ1 െ ܽ௖ሻ. (12)

 

Substitution of Eqs. (10)-(12) into Eq. (5) leads: 
 

ܿ ൌ
ሺ1ߨ2 െ ଶሻܴ଴ߥ

ହ

ଶܫܧ
න න ሺ1 െ ଶሻݔ̅

௔തೣ

଴
ଶሺܨ̅ߦ

̅ߦ

ത݄
௫
ሻ

௕ത

ି௕ത
(13) ݔ̅݀̅ߦ݀

 

where ̅ߦ ൌ ߦ ܴ଴⁄ . For the flexibility coefficient, the dimensionless form introduced as: 
 

ܿ̅ ൌ
ଶܫܧ

ሺ1ߨ2 െ ଶሻܴ଴ߥ
ହ ܿ (14)

 

it can be derived from Eq. (13): 
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ܿ ൌ න න ሺ1 െ ଶሻݔ̅
௔തೣ

଴
ଶሺܨ̅ߦ

̅ߦ

ത݄
௫
ሻ

௕ത

ି௕ത
(15) ݔ̅݀̅ߦ݀

Eq. (15) represents an integral form for the local flexibility of the cracked pipes. This integral 
expression is only a function of the dimensionless crack depth, αc oa R . By numerical integration of 

Eq. (15) and fitting an appropriate curve to the numerical values of c  and then using the least square 
method, an explicit expression for the dimensionless flexibility coefficient of the cracked pipe is ob-
tained as: 
 

ܿ̅ሺܽ௖ሻ ൌ െ5.6 ൈ 10ି଺ሺܽ௖ሻ ൅ 0.0335ሺܽ௖ሻଶ ൅ 16.19ሺܽ௖ሻଷ െ 1047.91ሺܽ௖ሻସ ൅ 5.98 ൈ 10ସሺܽ௖ሻହ

െ 2.34 ൈ 10଺ሺܽ௖ሻ଺ ൅ 6.03 ൈ 10଻ሺܽ௖ሻ଻ െ 1.00 ൈ 10ଽሺܽ௖ሻ଼ ൅ 1.02 ൈ 10ଽሺܽ௖ሻଽ

െ 5.83 ൈ 10ଽሺܽ௖ሻଵ଴ ൅ 1.42 ൈ 10ଵଵሺܽ௖ሻଵଵ
(16)

 

It should be noted that according to the main assumption in the fracture mechanics, Eq. (16) is 
satisfied up to middle of the pipe wall thickness i.e.  ܽ ൌ ሺܴ଴ െ ܴ௜ሻ 2⁄  .  

This explicit function may be applied for any pipe with specified mechanical properties and geo-
metrical dimensions. Considering Eqs. (16) and (14), the equivalent stiffness of the cracked pipe, tK

is calculated straightforwardly from Eq. (6). In order to verify the accuracy of this model, the pre-
dicted values of tK and the experimental results reported by Murigendrappa et al. (2004) for a cracked 

pipe with a parameters 16.5mmoR  , 10mmiR  , 65GPaE   and ν 0.33  have been  

compared in Table 1. The comparison shows that there is a good agreement between the equivalent 
stiffness obtained from the proposed method and the experimental data. So, the maximum difference 
between the predicted results and the experimental data of Murigendrappa et al. (2004) is less than 
5%. 
 

Crack depth, a (mm) 

Local stiffness, kt (MNm rad-1) 

Error (%) 
Presented model, Eq. (7) 

Experimental data 
(Murigendrappa  

et al. 2004) 

1.238 16.10 16.06 0.25 

1.650 9.56 9.32 2.58 

2.475 3.62 3.71 2.43 

4.125 1.10 1.05 4.76 

Table 1: The local stiffness due to crack, Comparison between the calculated results  
and the experimental data of Murigendrappa et al. (2004). 

 
The effect of the crack depth on the dimensionless local flexibility coefficient is shown in  

Figure 2. The figure indicates that an increase in the crack depth enhances the flexibility coefficient 
of the cracked pipe because of the reduction in equivalent stiffness (Eq. 6). 
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Figure 2: Effect of the crack depth on the dimensionless local flexibility coefficient. 

 
3 MATHEMATICAL MODEL 

Figures 3a and 3b illustrate schematically a fluid-conveying cracked pipe resting on a visco-elastic 
foundation and its corresponding mathematical model, respectively. Using the  
Euler-Bernoulli theory, the modified governing equation of motion for the uniform fluid-conveying 
pipe which is subjected to an external force, e x tF , can be written as (Guoa et al. 2010): 
 

ܫܧ
߲ସܹሺܺ, ሻݐ

߲ܺସ
൅ ௙ܷଶ݉ߙ ߲

ଶܹሺܺ, ሻݐ
߲ܺଶ

൅ 2݉௙ܷ
߲ଶܹሺܺ, ሻݐ
ݐ߲߲ܺ

൅ ൫݉௙ ൅݉௣൯
߲ଶܹሺܺ, ሻݐ

ଶݐ߲
ൌ ௘௫௧ (17)ܨ

 

where pm  and fm are the mass per unit length of pipe and fluid, respectively. t stands for time, ܺ 

is axial coordinate, ( )W X , t  and EΙ are the transverse deflection and the flexural stiffness of the 

pipe, respectively. αdenotes a dimensionless parameter named as the flow-profile-modification factor 
dependent on fluid velocity profile inside pipe. Considering the power-law profile for the time-average 
flow velocity profile (Streeter et al. 1998)as: 
 

ܷሺݎሻ ൌ ௠௔௫ሺݑ
ݕ
ܴ
ሻ
ଵ
௡ 

 

α can be determined by (Guoa et al. 2010): 
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5 11

2 2
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n n
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Figure 3: (a) Schematic view of the cracked clamped-clamped pipe, (b) Mathematical model. 

 
Where n is dependent on the Reynolds number. The well-known one-seven power-law velocity 

profile introduced by Prandtl can be achieved for n=7 that is valid for the smooth-wall circular pipes 
in the range 3×103൑Re൑3×105 (Re denotes the Reynolds number). Also, n=4 and n=5 provide the 
velocity profile of a rough-wall circular pipe based on the experiments of Nikuradse. For n=7, α 
=1.020; and for n=4 and n=5, α≈1.037–1.055. We will discuss more about the impact of α on the 
vibration behavior of the intact and cracked fluid-conveying pipes in subsection 6.2. 

In the present work, the external force related to the visco-elastic foundation modeled using two-

parameter Kelvin-Voigt model. Based on this model extF  can be written as: 
 

௘௫௧ܨ ൌ ௦ܭ
߲ଶܹሺܺ, ሻݐ

߲ܺଶ
െ ܥ

߲ܹሺܺ, ሻݐ
ݐ߲

െ ,௠ܹሺܺܭ ሻ (18)ݐ
 

where, mK  and C  stand for the Winkler stiffness constant and the damping coefficient of the visco-

elastic foundation, respectively. sK is an additional parameter defining the foundation, usually termed 

as the shear constant of the foundation (Kargarnovin et al. 2005, Nguyen and Duhamel 2008, Ansari 
et al. 2011, Basu and Kameswara 2013). By substituting of Eq. (18) into Eq. (17), the governing 
equation of the fluid-conveying pipe resting on a visco-elastic foundation is obtained as: 
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ܫܧ
߲ସܹሺܺ, ሻݐ

߲ܺସ ൅ ሺ݉ߙ௙ܷଶ െ ௦ሻܭ
߲ଶܹሺܺ, ሻݐ

߲ܺଶ ൅ 2݉௙ܷ
߲ଶܹሺܺ, ሻݐ
ݐ߲߲ܺ

൅ ൫݉௙ ൅ ݉௣൯
߲ଶܹሺܺ, ሻݐ

ଶݐ߲
൅ ܥ

߲ܹሺܺ, ሻݐ
ݐ߲

൅ ,௠ܹሺܺܭ ሻݐ ൌ 0
(19)

 

It is assumed that the solution of Eq. (19) is: 
 

ܹሺܺ, ሻݐ ൌ ഥܹ ሺܺሻ݁௜ఠ௧ (20)
 

where ( )W X  and ω indicate the amplitude and natural frequency, respectively. The dimensionless 

variables are defined as: 
 

ߞ ൌ
ܺ
݈
, ݓ ൌ

ഥܹ

݈
,݉ ൌ

݉௙

݉௙ ൅݉௣
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݉௙

ܫܧ
ܷ݈, ߚ ൌ

߱

ඨ
ܫܧ

൫݉௙ ൅݉௣൯݈ସ

, 

݇௠ ൌ
݈ସ

ܫܧ
,௠ܭ ݇௦ ൌ

݈ଶ

ܫܧ
,௦ܭ ߟ ൌ
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ඥܫܧሺ݉௙ ൅ ݉௣ሻ
 

(21)

 

Substituting Eq. (20) into Eq. (19) and using the above dimensionless variables, Eq. (19) can be 
rewritten as follows: 
 

݀ସݓ
ସߞ݀

൅ ሺݑߙଶ െ ݇௦ሻ
݀ଶݓ
ଶߞ݀

൅ ݑ݉√ߚ2݅
ݓ݀
ߞ݀

൅ ሺ݅ߟߚ െ ଶߚ ൅ ݇௠ሻݓ ൌ 0 (22)

 

The solution of the Eq. (22) is: 
 

ሻߞሺݓ ൌ ఒ఍ (23)݁ܣ
 

where A  and λ  are constants. Substituting this expression in Eq. (22) leads to the following charac-
teristic equation: 
 

ସߣ ൅ ሺݑߙଶ െ ݇௦ሻߣଶ െ ߣݑ݉√ߚ2݅ ൅ ሺ݅ߟߚ െ ଶߚ ൅ ݇௠ሻ ൌ 0 (24)
 

The Eq. (24) is a quartic polynomial equation, which has generally four complex roots (consider 
a typical real root as a complex root with zero imaginary part). The explicit algebraic formulas for a 
general solutions of Eq. (24) are expressed as (Persidis 2007): 
 

ଵߣ ൌ െ
1
2
൫݌ଵ ൅ ඥ݌ଶ െ 					,ଷ൯݌ ଶߣ ൌ െ

1
2
൫݌ଵ െ ඥ݌ଶ െ ,ଷ൯݌ ଷߣ ൌ

1
2
൫݌ଵ ൅ ඥ݌ଶ െ ,ଷ൯݌

ସߣ ൌ െ
1
2
൫݌ଵ െ ඥ݌ଶ െ  ଷ൯݌

(25)

 

where the parameters p1, p2 and p3 which depend on the dimensionless natural frequency β , have 

been defined in appendix. The general solution of Eq. (22) is 
 

ሻߞሺݓ ൌ ଵ݁ఒభ఍ܣ ൅ ଶ݁ఒమ఍ܣ ൅ ଷ݁ఒయ఍ܣ ൅ ସ݁ఒర఍ (26)ܣ
 

In which ,   1, 2, 3, 4iA i  are unknown constants and will be obtained by applying the boundary 

conditions. 
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4. FREQUENCY EQUATION  

Consider the corresponding mathematical model of the cracked pipe conveying fluid resting on a 
visco-elastic medium as shown in Figure 3b. For analyzing the free vibration of the cracked pipe, the 
entire pipe is divided from the cracked section into the two pipe segments. The crack is represented 
by a torsional mass-less spring that its stiffness was calculated previously in section 2. The two pipe 
segments can be treated separately. The equations of motion for two mentioned intact segments are 
obtained from Eq. (26) as follows: 
 

ሻߞ௅ሺݓ ൌ ଵ݁ఒభ఍ܣ ൅ ଶ݁ఒమ఍ܣ ൅ ଷ݁ఒయ఍ܣ ൅ ସ݁ఒర఍ (27)ܣ
 

ሻߞோሺݓ ൌ ହ݁ఒభ఍ܣ ൅ ଺݁ఒమ఍ܣ ൅ ଻݁ఒయ఍ܣ ൅ ఒర఍ (28)଼݁ܣ
 

where  ζLw  and  ζRw  are the vibration mode of each segment in the left and the right side of 

the crack, respectively. These vibration modes have eight unknown constants ,   1, 2, ...,8iA i  , which 

can be obtained by applying both boundary conditions and compatibility conditions at the crack 
location. The compatibility of displacement, moment and shear force of both segments at the dimen-
sionless crack location (i.e. cζ ζ ), are respectively given by: 
 

௖ሻߞ௅ሺݓ ൌ ௖ሻߞ௅ᇱᇱሺݓ			,௖ሻߞோሺݓ ൌ ௖ሻߞோᇱᇱሺݓ , ௖ሻߞ௅ᇱᇱᇱሺݓ ൌ ௖ሻ (29)ߞோᇱᇱᇱሺݓ
 

and the discontinuity in the slope of the pipe at the cracked location may be implemented as 
 

௖ሻߞ௅ᇱሺݓ െ ௖ሻߞோᇱሺݓ ൌ φݓோᇱᇱሺߞ௖ሻ. (30)
 

where φ ൌ
ாூ

௄೟௟
 is the dimensionless parameter indicating the effect of crack depth. General boundary 

conditions can be applied for the present model. In this paper, clamped–clamped supported pipe is 
considered. Thus the four boundary conditions may be written as: 
 

ሻ|఍ୀ଴ߞ௅ሺݓ ൌ 0,
ሻߞ௅ሺݓ݀

ߞ݀
ቤ
఍ୀ଴

ൌ 0, ሻ|఍ୀଵߞோሺݓ ൌ 0,
ሻߞோሺݓ݀

ߞ݀
ቤ
఍ୀଵ

ൌ 0. (31) 

 

Substituting Eqs. (27) and (28) into the boundary conditions Eq. (31) and into the compatibility 
conditions Eqs. (29) and (30), gives a set of eight homogeneous linear algebraic equations for the eight 
unknown constants ,   1, 2, ...,8iA i  as follows: 
 

൤
ሾܲሿ ሾܳሿ
ሾܴሿ ሾܶሿ

൨ ሾܣଵ ଶܣ ଷܣ ସܣ ହܣ ଺ܣ ଻ܣ ሿ଼்ܣ ൌ 0 (32)
 

where 
 
 
 
 

ሾܲሿ ൌ ൦

1 1 1 1
ଵߣ ଶߣ ଷߣ ସߣ
0
0

0
0

0
0

0
0

൪,  
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ሾܳሿ ൌ ൦

0 0 0 0
0 0 0 0
݁ఒభ
ଵ݁ఒభߣ

݁ఒమ
ଶ݁ఒమߣ

݁ఒయ
ଷ݁ఒయߣ

݁ఒర
ସ݁ఒరߣ

൪, 

ሾܴሿ ൌ

ۏ
ێ
ێ
ێ
ۍ ݁ఒభ఍೎ ݁ఒమ఍೎ ݁ఒయ఍೎ ݁ఒర఍೎

ଵߣ
ଶ݁ఒభ఍೎ ଶߣ

ଶ݁ఒమ఍೎ ଷߣ
ଶ݁ఒయ఍೎ ସߣ

ଶ݁ఒర఍೎

ଵߣ
ଷ݁ఒభ఍೎

ሺߣଵ െ φߣଵ
ଶሻ݁ఒభ఍೎

ଶߣ
ଷ݁ఒమ఍೎

ሺߣଶ െ φߣଶ
ଶሻ݁ఒమ఍೎

ଷߣ
ଷ݁ఒయ఍೎

ሺߣଷ െ φߣଷ
ଶሻ݁ఒయ఍೎

ସߣ
ଷ݁ఒర఍೎

ሺߣସ െ φߣସ
ଶሻ݁ఒర఍೎ے

ۑ
ۑ
ۑ
ې

 

ሾܶሿ ൌ

ۏ
ێ
ێ
ێ
ۍ െ݁

ఒభ఍೎ െ݁ఒమ఍೎ െ݁ఒయ఍೎ െ݁ఒర఍೎
െߣଵ

ଶ݁ఒభ఍೎ െߣଶ
ଶ݁ఒమ఍೎ െߣଷ

ଶ݁ఒయ఍೎ െߣସ
ଶ݁ఒర఍೎

െߣଵ
ଷ݁ఒభ఍೎

െߣଵ݁ఒభ఍೎
െߣଶ

ଷ݁ఒమ఍೎

െߣଶ݁ఒమ఍೎
െߣଷ

ଷ݁ఒయ఍೎

െߣଷ݁ఒయ఍೎
െߣସ

ଷ݁ఒర఍೎

െߣସ݁ఒర఍೎ے
ۑ
ۑ
ۑ
ې

 

 
 
 
(33)

 

The system of equations (32) has the nontrivial solution if and only if the determinant of the 
coefficients becomes zero. So the characteristic equation of the system will be: 
 

|Δ| ൌ ݂ሺߙ௖, ,௖ߞ ݇௠, ݇௦, ܿ, ,ߟ ,ݑ ,ߙ ሻߚ ൌ 0 (34)
 

Now, by solving the Eq. (34), the dimensionless natural frequency,	ߚ, can be obtained. 
 
5 VALIDATION 

To the best knowledge of the authors, there is no analytical or experimental result in the literature 
for the vibration analysis of a problem that is completely the same of one stated here. So in order to 
validate the aforementioned theoretical model and analytical procedure, we use available data for a 
similar problem. For instance, comparison made between the present work results and the experi-
mental data of Mahjoob and Shahsavari (2007) for the case of a clamped-clamped cracked pipe con-
veying fluid without foundation (i.e. 0m sk k c   ). The implemented mechanical and geometrical 

properties required to calculate the results are listed in Table 2. The maximum difference  between 
the experimental data of Mahjoob and Shahsavari (2007) and the present model results are 0.29%, 
0.47% and 0.45% for the first, second and third natural frequencies, respectively (Table 3). Therefore, 
this comparison indicates an excellent agreement between present study and the experimental data.  
 

 Pipe Fluid 

Parameter E ρp Ri Ro l  mf ρf 

Dimension GPa kg m-3 mm mm m kg m-1 kg m-3 

Value 210 7800 8 10.5 1 0.02 980 

Table 2: Mechanical properties and geometrical dimensions of the investigated pipe, fluid and foundation. 
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Flow 
velocity, 

m s-1 

Crack 
depth,  
mm 

Natural frequencies (Hz) 

Present analytical 
method 

 
Experimental Data 

(Mahjoob and 
Shahsavari 2007) 

 Error (%) 

1f  2f  3f   1f  2f  3f   1f  2f  3f  

1 Intact pipe 118.94 327.87 642.75  118.97 327.98 643.00  0.10 0.03 0.06 

 1 118.92 327.83 642.48  118.72 326.46 639.60  0.16 0.42 0.45 

 2 118.82 327.68 641.00  118.47 326.22 639.35  0.30 0.45 0.29 

             

5 Intact pipe 118.93 327.81 642.74  118.94 327.92 642.9  0.01 0.03 0.02 

 1 118.91 327.82 641.36  118.72 326.39 639.49  0.16 0.44 0.29 

 2 118.81 327.67 640.79  118.47 326.15 639.24  0.29 0.47 0.24 

Table 3: Natural frequencies of the clamped-clamped fluid-conveying cracked pipe for cζ 0.4 .  

Comparison between results of present analytical method and the experimental data of  
Mahjoob and Shahsavari (2007)for various flow velocity. 

 
6 RESULTS AND DISCUSSION 

Having insured the accuracy of the present model, it is used to examine the vibration behavior of the 
cracked pipe conveying fluid resting on a visco-elastic foundation. The elastic, shear and damping 
constants used for the foundation as a Kelvin–Voigt model are respectively Km=3.08 MPa, Ks=12550 
kN and C=3110 Pa.s as given in (Gerolymos and Gazetas 2006, Younesian et al. 2012). In all numer-
ical calculations, the flow-profile-modification factor, α, has been taken 1.33 except where it has been 
clearly specified. 
 
6.1 Effect of the Crack Parameters 

Figure 4, illustrates first natural frequency of the cracked pipe conveying fluid as a function of 
the dimensionless crack location, for three different values of cα 0.025 , cα 0.25  and cα 0.4 , 

where the foundation parameters were 0.01s mk k   and 0c  . It is found that the crack parameters 

affect the vibration behavior of the cracked pipe. It is obvious that the frequencies of a system gen-
erally decrease due to the crack. Results show that when the crack location approaches to the fixed 
ends of the pipe, the effect of the crack on the frequency reduction is increased. This tendency is 
intensified with an increase in the crack depth. Also, as seen in Figure 4, for the crack located at 

cζ 0.225 and cζ 0.775 , there is no reduction in the first natural frequency. Indeed, the mentioned 

locations are the inflection points for the first vibration mode of a clamped-clamped pipe. In these 
locations, the second derivation of the deflection function is equal to zero ( ( )2 2 0d W X dX = ) causing 

the bending moment to be completely vanished. Furthermore, since the major factor that decreases 
the natural frequencies caused by the crack is the bending moment, thus for the first vibration mode, 



148   G. Eslami and V.A. Maleki / Effect of Open Crack on Vibration Behavior of a Fluid-Conveying Pipe Embedded in a Visco-Elastic Medium 

Latin American Journal of Solids and Structures 13 (2016) 136-154 
 

the crack located at cζ 0.225  and cζ 0.775  has no effect on the first natural frequency. The same 

behavior is observed for the alteration of the second natural frequency shown in Figure 5.  
Figure 6 presents the natural frequency of the cracked pipe for the first mode as a function of the 

dimensionless crack depth for different values of cζ . When the crack depth, ca , increases, the local 

flexibility of the pipe reduces according to Eq. (7) causing reduction in the natural frequency.  
 

 

Figure 4: First dimensionless natural frequency of the fluid-conveying cracked pipe  

as a function of the dimensionless crack location. 

 

 

Figure 5: Second dimensionless natural frequency of the fluid-conveying cracked pipe  

as a function of the dimensionless crack location. 
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Figure 6: First natural frequency of the fluid-conveying cracked pipe. 

6.2   Effect of the Flow Velocity 

As seen from frequency equation (Eq. 34), the natural frequency of the cracked pipe conveying fluid 
in visco-elastic medium depends on the fluid flow velocity.  Figure 7 shows the natural frequency of 
the intact pipe versus the dimensionless flow velocity for the first and second vibration modes. For 
the clamped-clamped intact pipe, the dimensionless critical flow velocity is Intact 2cru π (Doare and 

Langer 2002). As it is obvious from the Figure 7, when the flow velocity increases, the pipe natural 
frequency decreases smoothly until it completely vanishes for u=2π. This equals to the lowest critical 
flow velocity that causes instability in the system. It is worth to note that u=2π corresponding to the 
mean flow velocity of U=498.5 m/s. This high velocity for a typical compressible fluid corresponds to 
Mach numbers greater than unit (Ma>1). Since for Ma>0.3, the compressibility should be taken into 
account, the present results for the critical flow velocity are not valid for the compressible fluids. 
 

 

Figure 7: Variation of the natural frequency of the clamped-clamped fluid-conveying  

cracked pipe against the dimensionless flow velocity. 
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Experiments of Nikuradse revealed that fluid velocity profile in the circular pipes changes based 
on the quality of wall roughness. In order to take into account the effect of the mentioned change in 
the velocity profile, on vibration behavior of the fluid-conveying pipes, Guoa et al. (2010) derived a 
modified equation of motion for the pipe. The expression, α, appears in the centrifugal term of the 
modified equation (Eq. 17). As depicted in Figure 8, the flow-profile-modification factor would influ-
ence the critical flow velocity of both intact and cracked fluid-conveying pipe. As Guoa et al. (2010) 
indicated, when α decreases from 1.33 to 1.015, the velocity profile in the pipe cross section tends to 
a typical turbulent flow profile. This trendency corresponds to increase in critical flow velocity ac-
cording to Figure 8. Thus it can be deduced that the instability in a typical fluid-conveying pipe 
would be delayed in turbulence regime in comparison with the laminar one. For an instance, the 
dimensionless critical flow velocity of intact pipe increases from 5.45 to 6.24 as the flow-profile-mod-
ification factor decreases from 1.33 to 1.015. 

 In the case of a cracked fluid-conveying pipe, the crack depth influences significantly the impact 
of flow-profile-modification factor on critical flow velocity. An interesting behavior observed in Figure 
8 is about the effect of crack and its depth on the system instability. As it is seen, existence of a crack 
on the pipe causes the instability in a lower fluid flow velocity and this effect is intensified propor-
tionally with crack depth for a given crack location ( 0.01c   in Figure 8). This behavior shows that 

the crack and the instability would practically reinforce each other in a pipe system causing its de-
struction. 
 

 
Figure 8: Flow-profile-modification factor influences the impact of crack depth, φ, on the critical flow velocity,  

ucr for 0.01c   (left vertical axis). Also, it affects the critical flow velocity of an intact  

clamped-clamped pipe (right vertical axis). 
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6.3 Effect of the Visco-Elastic Foundation 

Figure 9 shows the effect of the foundation parameters on the critical velocity as a function of the 
dimensionless damping factor, c, for the different foundation parameters. The comparison is made for 
the crack parameters cα 0.2 and cζ 0.1 . As seen in Figure 9, divergence instability for the first 

mode occurs when ucr≃1.01 but by increasing the dimensionless damping parameter of the visco-
elastic foundation, c and/or decreasing the dimensionless stiffness parameter, ks, the instability of the 
pipe takes place at a lower flow velocity. 

Figure 10 shows the first three dimensionless frequencies of the cracked pipe as a function of the 
dimensionless parameters mk where 0.01c  , 0u  . The results indicate that any augmentation in 

the foundation stiffness constant is followed by increasing the natural frequencies. This means that 
increasing the elastic constant makes the pipe stiffer. Also, effect of the foundation stiffness is more 
pronounced in the lower natural frequencies than the upper ones.  

 

Figure  9: Variation of the dimensionless critical flow velocity of the clamped-clamped cracked pipe against the  

dimensionless damping factor for different values of the dimensionless stiffness, ks. 

 

 

Figure 10: Effect of the foundation stiffness, km, on the first three natural frequencies  

of the fluid-conveying cracked pipe. 
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7   CONCLUSION 

In the current study, the vibration behavior of a cracked pipe conveying fluid resting on a visco-
elastic foundation was investigated analytically. A new approach for calculating the local flexibility 
caused by a crack was developed. The mentioned approach is applicable for various pipes with differ-
ent mechanical properties. Comparison between the analytical results and available experimental data 
in literature shows good agreement for a wide range of the crack parameters.  

The results indicate that increasing the crack depth improves the flexibility, and therefore the 
local stiffness reduces at the crack location. This leads to reduction in the both natural frequency and 
critical flow velocity of the cracked pipe system. This feature can be utilized for crack detection based 
on the vibration analysis. Also, when the crack location approaches to the fixed ends of the pipe, 
reduction in the natural frequency becomes more considerable. Furthermore, the results show that a 
decrease in the natural frequency reduces when the crack gets closer to the inflection points until it 
completely vanishes in the inflection points.  

The fluid flow inside the pipe and its profile shape influences the natural frequency of the cracked 
pipe significantly. Moreover, the crack decreases the critical flow velocity so that the system instability 
onsets at a lower flow velocity.  
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