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Abstract 

In this paper, an active control is used to suppress the flutter 

vibration of a support excitation beam subjected to a follower 

force, using piezoelectric sensors/actuators. The beam is fixed to a 

motion support from one end and the other end is subjected to a 

follower force. The governing equations of motion are derived 

based on the generalized function theory and Lagrange-Rayleigh-

Ritz technique, considering the Euler-Bernoulli beam theory. A 

robust Lyapunov based control scheme is applied to the system to 

suppress the induced flutter vibrations of the beam. The mathe-

matical modeling of the beam with control algorithm is derived. 

Finally the system is simulated and the effects of the type of exci-

tation, the magnitude of the follower force, instrument disturb-

ances, and parameter uncertainties are studied. The simulation 

results show the applicability and robustness of the controller 

algorithm. 
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1 INTRODUCTION 

Vibration suppression of a cantilever beam with support motion has been the subject of much at-

traction in recent years. Jalili et al. (2002) have presented a non model-based controller for a flexi-

ble cantilever beam with PZT patch actuator attachment and subjected to a moving base. They 

used the linear formulations to drive the equation of motion. Foutsitzi et al. (2003) studied vibra-

tion control of a beam with bonded piezoelectric sensors and actuators. They derived the equation 

of motion for the beam structure by using the Hamilton's principle. They also designed a H2 robust 

controller and showed that the vibration can be significantly suppressed by the proposed controller. 

Sun et al. (2004) described an approach for the use of smart materials, specifically, piezoelectric 

materials (PZT), in control of a single-link flexible manipulator. Lin and Nien (2005) investigated 
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modeling and vibration control of a composed cantilever beam using piezoelectric damping-model 

actuators/sensors. Lin and Liu (2006) presented a novel resonant fuzzy logic controller (FLC) to 

minimize cantilever beam vibration using collocated piezoelectric actuator/sensor pairs. An active 

control scheme was used to restrain vibration of a cantilever beam system by Xinke and Haimin 

(2007). Mahmoodi et al. (2008) studied the nonlinear vibration analysis of a directly excited canti-

lever beam modeled as an inextensible viscoelastic Euler-Bernoulli beam. Santillan et al. (2008) 

investigated Large-amplitude in-plane beam vibration using numerical simulations and a perturba-

tion analysis applied to the dynamic elastic model. Alhazza et al. (2009) developed a simple multi-

mode delayed-acceleration feedback controller to mitigate the vibrations of a flexible cantilever 

beam using a single sensor and a single piezoelectric actuator. Ji et al. (2010) studied a switch con-

trol strategy based on an energy threshold for vibration control of a beam. Enhancement of the 

buckling and flutter capacities of a column by the attachment of an arbitrary lumped mass is stud-

ied by Fazelzadeh et al. (2010). An analysis of three active-passive damping design configurations 

applied to a cantilever beam was presented by Trindade(2011). He studied two design configura-

tions based on the extension mode of piezoelectric actuators combined with viscoelastic constrained 

layer damping treatments and one design configuration with shear piezoelectric actuators embedded 

in a sandwich beam with viscoelastic core. Kucuk et al. (2011) applied an optimal control to sup-

press the vibrations of an Euler-Bernoulli beam with piezoelectric layers as actuators. An H∞ meth-

od for the vibration control of an iron cantilever beam with axial velocity using the noncontact 

force by permanent magnets was proposed by Wang et al. (2011). They derived the governing equa-

tions of motion using D'Alembert's principle and then updated them by experiments. Kucuk et al. 

(2012) presented an active vibration control of the transverse modes, which is implemented by dis-

crete sets of piezoelectric actuators which apply the optimal forces, in a flexible elastic system. They 

made use of a combination of Galerkin and variational approaches to determine the control forces 

in the time domain explicitly in terms of coupled amplitudes and velocities. Dynamic stability anal-

ysis and vibration control of a rotating elastic beam connected with an end mass driven by a direct 

current (DC) motor has been studied by Kuo et al. (2013). Fazelzadeh and Kazemi-Lari (2013) 

studied the stability of a cantilever beam resting on an elastic foundation under the action of a uni-

formly distributed tangential load. Prokic et al. (2014) presented a numerical method for solution of 

the free vibration of beams governed by a set of second order ordinary differential equations. Sinir 

et al. (2014) studied the exact solution of buckling and vibration response of post-buckling configu-

rations of beams with non-classical boundary conditions. Azadi et al. (2014) applied an active con-

trol to suppress the vibration of a FGM beam. Thevibration of a gold nano-beam which has been 

induced by laser pulse heating is investigated by Youssef et al. (2015).  

 In this study, a cantilever beam with attached piezoelectric layers is considered. The support of 

the beam can move and excite the lateral vibration in it and a follower force is applied to the end of 

the beam. Lagrange Reilly-Ritz method is used to obtain the governing equation of motion. A ro-

bust controller is used to damp the lateral vibration of the beam. Finally, the system is simulated 

and the simulation results show the high performance of the controller. 

 By a thorough look at the literature, it is understood that the study of the suppression of the 

flutter vibration of a support excitation beam under follower force is important and requires atten-

tion. In spite of the wide researches in the area of the control vibration of the beams, there has been 
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no attempt to tackle the problem described in the present paper. Applying an active control to 

suppress the flutter vibration of a support excitation beam under follower force, using piezoelectric 

sensors/actuators, and analyzing the stability of the beam in different conditions is the main contri-

bution of the present paper. 

 
2 SYSTEM DYNAMICS 

Figure 1 shows the schematic view of the system. This system consists of a support motion cantile-

ver beam subjected to a follower force. The piezoelectric layers are attached on both side of the 

beam as sensors/actuators. 

 

 

Figure 1: Schematic view of the smart beam. 

 

The system considered as a cantilever beam with width b, thickness h, length l, density bρ , and 

Young’s modulus E  to which the piezoelectric layers are attached. Each piezoelectric layer has 

thickness ph , density pρ , Young’s modulus pE  and equivalent piezoelectric coefficient 31e . )(xw

represents the lateral deflection of the beam. Each pair of piezoelectric layers is attached on oppo-

site sides of the beam from 
n

x1 to 
n

x2 (n=1, 2. . . N). Herein N is the number of piezoelectric lay-

ers. 

The Lagrange’s equations are used to determine the dynamical equations of the system.  
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herein pb TTT += , pb UUU += , and Q  are the kinetic energy, potential energy, and generalized 

forces, respectively. The subscripts b , and p stand for beam, and piezoelectric layers, respectively. 

q  is the generalized coordinates.  

The displacement of each element of the beam can be determined as follows 
 

)(),(),( tytxwtxy b+=  (2) 
 

where )(tyb  is the movement of the beam support. 

Each term of the system kinetic energy is determined as: 
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The potential energy of the system is obtained as 
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where dV  is a volume differential element of the beam. According to the second part of Eq. (4), the 

potential energy of the piezoelectric layers is divided into elastic and electric parts. The subscript 

np  represents the nth piezoelectric layers and 
nn pnz hvE = )...1( Nn =  is the electric field in the 

nth piezoelectric layer. nd is the electric displacement for the nth patch. The last term in piezoelec-

tric potential energy equation is the electric energy stored in the piezoelectric material. The electric 

displacement is 
 

n
n

p

n
pn

h

v
d ε=  (5) 

 

where
npε is the dielectric constant of the piezoelectric material which forms the nth patch.  

The non-conservative work which is done by the follower force is 
 

),(
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By knowing that qQW T δδ = , the vector of generalized forces can be easily determined from 

Equation (6). 

Due to the intricacy of the governing equations, the solution may be achieved by an approxi-

mate solution procedure. To this end, w  can be represented by a series of trial shape functions, is , 

satisfying the boundary conditions, which each of them is multiplied by a time dependent general-

ized coordinate, iq , that is, 

qstqxstxw T

i
ii =∑= )()(),(  (7) 

 

where s  and q  are the vectors of assumed mode shapes and generalized coordinates of the beam, 

respectively. 

By substituting equations (7) into equations (3-6), applying the Rayleigh-Ritz procedure on the 

governing equations the following set of ordinary differential equations is obtained: 
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where ,bM  and pM  are the beam, and piezoelectric inertial matrices. bK , pK , and WK  are the 

beam, and piezoelectric stiffness matrices, and the stiffness effects of the follower force, respectively. 

These parameters are defined as 
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aelastelectpK and
selastelectpK  in Eq. (8) are the matrices of the elastic-electric effect of the piezoelec-

tric actuator and sensor layers, respectively. 
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electpK is a diagonal capacitance matrix of the piezoelectric patches. 
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where the 1×N vector np  has zero entries except for entry n which is equal to 
nph1 . 

Equation (8) can be rewritten as the following compact form 
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Equation (14) is the standard form of the governing equation of a dynamical system. 

 
3 ROBUST LYAPUNOV BASED CONTROL  

Since in this problem the effects of the support excitation appear as an external disturbances, so a 

robust Lyapunov based control is applied to suppress the flutter vibration of the beam. The control-

ler voltages which are applied to the piezoelectric actuators can be defined as follows. 
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Herein df̂  is an estimate of df which is the disturbance term in Eq. (14) and the superscript (+) 

denote the pseudo-inverse matrix. The parameters ζ and λ  are defined as 
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Where dq is the desired value of the generalized coordinate, q , and dqqq −=~ . )(⋅A is a linear op-

erator that should be chosen so that )(⋅B  is strictly proper and stable. The relation between )(sA

and )(sB is  

)()(1 sAsIsB +=−   (18) 
 

The following error equation will be obtained by substituting Eq. (16) into Eq. (14). 
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Where ddd fff ˆ~
−= . 

Now consider the following Lyapunov function 
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Where IK is a positive definite matrix. The time derivative of Eq. (20) is 
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Substituting the magnitude of the λɺM  from error equation (19), Eq. (21) can be rewritten as 
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To cancel the last term of Eq. (22), the following estimation law for df̂ is defined. 
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So the time derivative of the Lyapunov function is determined as 
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Since the Lyapunov function,V, is positive definite and the time derivative of it, Vɺ , is negative 

semi-definite, the states λ , and df
~
 are bounded. Considering Eq. (19), it can be shown that if the 

mapping df
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4 SIMULATION RESULTS AND CONCLUSIONS 

In this section the simulation results are presented. Material properties of the beam and piezoelec-

tric layers are illustrated in Table 1. The dimensionless parameters which are used in the numerical 

simulation are:
EI

L
bh

P

P
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cr

42

,
ω

ρω == , where 22 / LEIPcr π=  is the Euler buckling load, andω is 

the natural frequency of the beam.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: The magnitude of the system parameters. 

 

Figure 2 compares the first two dimensionless natural frequencies of the beam with the results pre-

sented by Wang et al. (2002). 
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Figure 2: Validation of first two dimensionless natural frequencies versus dimensionless follower force. 

 

This figure illustrates that if the magnitude of the dimensionless follower force is a little more than 

two, then the flutter instability happens. To simulate the system two cases are considered. The 

support excitation function is different in each case. Two types of functions are considered as sup-

port excitation; these functions are sinusoidal and square ones. To show the performance and capa-

bility of the controller, in all simulations the controller gains are same and are IK D 500= and 

Parameters Value 

Beam length 1 m 

Beam wide 0.08 m 

Beam high  0.02 m 

Beam density  7000 kg/m3 

Young modulus of Beam 200 GPa 

Young modulus of PZT 61 GPa 

Beam Moment of inertia   12.5 × 10-12 m4 

PZT Moment of inertia   1.5 × 10-13 m4 
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IK I 20= . Where I  is an identity matrix. In each case the effect of the three different values of the 

follower forces are studied. To control the vibrations of the beam three pair of piezoelectric layers 

are considered to be attached to the both side of the beam. The length of these piezoelectric layers 

for all cases is 0.1m. Figure 3 shows the tip vibration of the beam while a sinusoidal support excita-

tion is applied to it and subjected to a follower force with magnitude 5.0=P . 
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Figure 3: Time response of the tip vibration of the beam when sinusoidal support excitation is applied ( 5.0=P ) 
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Figure 4: Time response of the tip vibration of the beam when sinusoidal support excitation is applied ( 1=P ) 
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Figure 5: Time response of the tip vibration of the beam when sinusoidal support excitation is applied ( 2=P ) 
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This figure shows the effectiveness of the robust controller and illustrates how the piezoelectric ac-

tuators damp the vibration of the beam. Figure 4 and 5 show the tip vibration of the sinusoidal 

support excited beam when 1=P , and 2=P , respectively. It is illustrated that when the magni-

tude of the dimensionless follower force is close to the instability condition the amplitude of the 

vibrations increased several times; it is noteworthy to say that, the flutter vibrations of the beam is 

suppressed in this condition, too. Figure 6-8 present the tip vibration of the beam in which a square 

support excitation is applied to the system.  

 

Time (s) 

T
ip
 v
ib
ra
ti
o
n
 o
f 
th
e
 b
e
a
m
 (
m
) 

 

Figure 6: Time response of the tip vibration of the beam when square support excitation is applied ( 5.0=P ). 
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Figure 7: Time response of the tip vibration of the beam when square support excitation is applied ( 1=P ). 
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Figure 8: Time response of the tip vibration of the beam when square support excitation is applied ( 2=P ). 
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The effects of variation of the magnitude of the follower force are illustrated in these figures. The 

actuator voltages when the beam subjected to a sinusoidal support excitation and 1=P  are shown 

in Fig. (9). This figure illustrates that these voltages are in admissible limits.  
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Figure 9: The applied voltages to the actuators. (a) first piezoelectric layer, 

(b) second piezoelectric layer, (c) third piezoelectric layer. (sinusoidal support excitation, and 1=P ). 

 

To illustrate the capability of the controller scheme, the effects of the parameter uncertainties and 

instrument disturbances are studied when the beam is excited by a sinusoidal function and 1=P . 

Figure (10) shows the effects of the %10, and %20 uncertainties of the fd in the beam vibrations. 

The effects of the %10, %15, and %25 instrument disturbances are shown in Fig. (11). 
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Figure 10: Time response of the tip vibration of the beam by considering %0, %10, 

and %20 parameter uncertainty (sinusoidal support excitation and 1=P ). 
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Figure 11: Time response of the tip vibration of the beam by considering %10, %15, 

and %25 instrument disturbances (sinusoidal support excitation and 1=P ). 

 
Figure (12) shows the tip vibration of the beam by considering %10 instrument disturbances and 

%10 parameter uncertainty. These last three figures illustrate that although by increasing the pa-

rameter uncertainties and instrument disturbances the amplitude of the controlled vibrations in-

creased, but these vibrations are damped in few seconds, too. These simulation results show the 

effectiveness and robustness of the controller.  

 

Time (s) 

T
ip
 v
ib
ra
ti
o
n
 o
f 
th
e
 b
e
a
m
 (
m
) 

 

Figure 12: Time response of the tip vibration of the beam by considering %10 instrument 

disturbances and %10 parameter uncertainty (sinusoidal support excitation and 1=P ). 

References 



M. Azadi et al. / Control of a Support Excitation Smart Beam Subjected to a Follower Force     2415 

Latin American Journal of Solids and Structures 12 (2015) 2403-2416 

 

Alhazza, K. A., Nayfeh, A. H., Daqaq, M. F. (2009). On utilizing delayed feedback for active-multimode vibration 

control of cantilever beams. Journal of Sound and Vibration 319(3): 735-752. 

Azadi, V., Azadi, M., Fazelzadeh, S. A., Azadi, E. (2014). Active control of an FGM beam under follower force with 

piezoelectric sensors/actuators. International Journal of Structural Stability and Dynamics14(3): 1350063-1-19. 

Fazelzadeh, S. A., Eghtesad, M., Azadi, M. (2010). Buckling and flutter of a column enhanced by piezoelectric layers 

and lumped mass under a follower force. International Journal of Structural Stability and Dynamics 10(5): 1083-

1097. 

Fazelzadeh, S. A., Kazemi-Lari, M. A. (2013). Stability analysis of partially loaded Leipholz column carrying a 

lumped mass and resting on elastic foundation. Journal of Sound and Vibration 332(3): 595-607. 

Foutsitzi, G., Marinova, D. G., Hadjigeorgiou, E., & Stavroulakis, G. E. (2003, August). Robust H2 vibration control 

of beams with piezoelectric sensors and actuators. In Physics and Control, International Conference on (Vol. 1, pp. 

157-162). IEEE. 

Jalili, N., Dadfarnia, M., Hong, F., & Ge, S. S. (2002). Adaptive non model-based piezoelectric control of flexible 

beams with translational base. In American Control Conference, 2002. Proceedings of the 2002 (Vol. 5, pp. 3802-

3807). IEEE. 

Ji, H., Qiu, J., Zhu, K., Badel, A. (2010). Two-mode vibration control of a beam using nonlinear synchronized 

switching damping based on the maximization of converted energy. Journal of Sound and Vibration 329(14): 2751-

2767.  

Kucuk, I., Sadek, I., Yilmaz, Y. (2014). Optimal control of a distributed parameter system with applications to beam 

vibrations using piezoelectric actuators. Journal of the Franklin Institute 351(2): 656-666.  

Kucuk, I., Sadek, I. S., Zeini, E., Adali, S. (2011). Optimal vibration control of piezolaminated smart beams by the 

maximum principle. Computers & Structures 89(9): 744-749.  

Kuo, C. F. J., Tu, H. M., Huy, V. Q., Liu, C. H. (2013). Dynamic stability analysis and vibration control of a rotat-

ing elastic beam connected with an end mass. International Journal of Structural Stability and Dynamics 13(03). 

Lewis, F. L., Abdallah,C. T., Dawson, D. M. (1993). Control of robot manipulators. Vol. 866. Macmillan Publishing 

Company.  

Lin, J., Liu, W. Z. (2006). Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy 

controller in a cantilever beam. Journal of sound and vibration 296(3): 567-582. 

Lin, J. C., Nien, M. H. (2005). Adaptive control of a composite cantilever beam with piezoelectric damping-modal 

actuators/sensors. Composite structures 70(2): 170-176. 

Mahmoodi, S. N., Jalili, N., Khadem, S. E. (2008). An experimental investigation of nonlinear vibration and frequen-

cy response analysis of cantilever viscoelastic beams. Journal of Sound and vibration 311(3): 1409-1419.  

Prokic, A., Besevic, M., Lukic, D. (2014). A numerical method for free vibration analysis of beams. Latin American 

Journal of Solids and Structures 11: 1432-1444. 

Santillan, S. T., Plaut, R. H., Witelski, T. P., Virgin, L. N. (2008). Large oscillations of beams and columns includ-

ing self-weight. International Journal of Non-Linear Mechanics 43(8): 761-771.  

Sinir, B. G., Ozhan, B. B., Reddy, J. N. (2014). Buckling configurations and dynamic response of buckled Euler-

Bernoulli beams with non-classical supports. Latin American Journal of Solids and Structures 11: 2516-2536. 

Sun, D., Mills, J. K., Shan, J., Tso, S. K. (2004). A PZT actuator control of a single-link flexible manipulator based 

on linear velocity feedback and actuator placement. Mechatronics 14(4): 381-401.  

Trindade, M. A. (2011). Experimental analysis of active-passive vibration control using viscoelastic materials and 

extension and shear piezoelectric actuators. Journal of Vibration and Control: 17(6), 917-929. 

Wang, L., Chen, H., He, X. (2011). Active H∞  control of the vibration of an axially moving cantilever beam by mag-

netic force. Mechanical Systems and Signal Processing 25(8): 2863-2878. 



2416       M. Azadi et al. / Control of a Support Excitation Smart Beam Subjected to a Follower Force 

Latin American Journal of Solids and Structures 12 (2015) 2403-2416 

 

Wang, Q.,Quek, S. T. (2002). Enhancing flutter and buckling capacity of column by piezoelectric layers. Internation-

al Journal of Solids and Structures 39: 4167-4180. 

Xinke, G., & Haimin, T. (2007, August). Active vibration control of a cantilever beam using bonded piezoelectric 

sensors and actuators. In Electronic Measurement and Instruments, 2007. ICEMI'07. 8th International Conference on 

(pp. 4-85). IEEE. 

Youssef, H. M., El-Bary, A. A., Elsibai, K. A., (2014). Vibration of Gold Nano Beam in Context of Two-

Temperature Generalized Thermoelasticity Subjected to Laser Pulse. Latin American Journal of Solids and Struc-

tures 12: 37-59.  

 


