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Abstract 
In the present paper, the aerothermoelastic behavior of Functiona-
lly Graded (FG) plates under supersonic airflow is investigated 
using Generalized Differential Quadrature Method (GDQM). The 
structural model is considered based on the classical plate theory 
and the von Karman strain-displacement relations are utilized to 
involve the nonlinear behavior of the plate. To consider the super-
sonic aerodynamic loads on the plate, the first order piston theory 
is applied. The material properties of the FG panel are assumed to 
be temperature independent and alter in the thickness direction 
according to a power law distribution. The temperature distribu-
tion on the surface of the plate is assumed to be constant and in 
the thickness direction is obtained by one-dimensional steady 
conductive heat transfer equation. The discretized governing equa-
tions via GDQM are solved by the fourth order Runge-Kutta 
method. Comparison of the obtained results with those available 
in literature confirms the accuracy and ability of the GDQM to 
perform the aerothermoelastic analysis of FG plates. Also, the 
effect of some important parameters such as Mach number, in-
plane thermal load, plate aspect ratio and volume fraction index 
on the plate aerothermoelastic behavior is examined. 
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1 INTRODUCTION 

The lifting surfaces and panels of space re-entry vehicles and high-speed aircrafts are exposed to 
combined effects of aerodynamic, thermodynamic, inertial, and elastic forces. One of the key factors 
in the design of their outer skins is the aerothermoelastic considerations. In this regard many re-
searches have been performed. 
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The first studies on the flutter behavior of a panel can be traced back to the works of Houbolt 
(1958), Bolotin (1963) and Dowell (1966, 1975). Schaeffer and Heard (1965) studied aeroelastic re-
sponse of a flat panel exposed to a nonlinear temperature distribution with simply support bounda-
ry conditions. Xue and Mei (1993a) investigated the nonlinear flutter response of isotropic panels 
under thermal effects using FEM. To account for structural nonlinearity, von Karman's large de-
tion plate theory was considered. They studied the effects of nonuniform temperature distribution, 
panel aspect ratio, and boundary conditions on the flutter behaviors of rectangular and triangular 
panels. Also, Xue and Mei (1993b) considered the fatigue life of isotropic panels in frequency do-
main using FEM and investigated the effect of dynamic pressure and temperature on the fatigue life 
of a panel. 

In the modern structures, a new material with desired mechanical and strength properties is 
generated by combining of different material layers. Thus, Isotropic materials have been replaced by 
composite materials. In the recent decades, Functionally Graded Materials (FGMs) have attracted 
considerable attention as materials for various advanced purposes. Functionally graded materials 
are a new type of inhomogeneous materials and advanced composites. A functionally graded mate-
rial is usually a combination of two materials or phases that have gradual transition of properties 
from one side of sample to another side. This gradual transition allows the thermo-mechanically 
interface problems in a composite structure such as sharp local stress concentration, delamination 
and weak thermal resistance, can be impressively decreased (Miyamoto et al., 1999). Across the 
consecutive development of FGMs, there have been many research works as follows. Praveen and 
Reddy (1998) investigated the static and dynamic response of functionally graded plates using a 
plate finite element that accounted for the effects of the transverse shear strains, rotary inertia and 
the moderately large rotations in the von Karman sense. They showed that the response of the 
plates with material properties between those of the ceramic and metal is not intermediate to the 
responses of the ceramic and metal plates. Javaheri and Eslami (2002) derived stability equations of 
a rectangular functionally graded plate using with the classical plate theory. Sohn and Kim (2008) 
analyzed structural stability of functionally graded panels under simultaneous thermal and aerody-
namic loads. In this work, thermal post-buckling behaviors and stability boundaries for clamped 
and simply support FG panels with uniform temperature gradients were studied. Sohn and Kim 
(2009) studied the aerothermoelastic instability of FGM panels in supersonic flow and showed the 
effects of the volume fraction distributions, temperature changes, aerodynamic pressures and the 
boundary conditions on the panel flutter. Navazi and Haddadpour (2011) analyzed the nonlinear 
flutter behavior and stability boundaries of isotropic and FGM plates in supersonic airflow, and 
showed that under real flight conditions and using coupled model, the aerodynamic heating is very 
severe and the type of instability is divergence. Janghorban and Zare (2011) examined the vibration 
analysis of a functionally graded plate with cutouts and skew boundary. In this work, the role of 
different parameters such as cutout size, type of loading and different boundary conditions on the 
vibration of the plate was reported. Taj and Chakrabarti (2013) investigated a finite element formu-
lation based on Reddy’s higher order theory to investigate the dynamic response of a FG skew shell. 

So far, different analysis techniques have been used for panel flutter studies. However, the 
methods having less computational complexity (and effort) and greater accuracy are of most inter-
est to researchers. One of them is DQM which first presented by Bellman and Casti (1971). The 
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main idea behind the DQM is that the derivative of a function with respect to a space variable at a 
given point is approximated as a weighted linear sum of the function values at all discrete points 
along the domain of that variable. 

The DQM has been applied to solve various structural elements such as beams, plates and 
shells. Bert et al. (1988) applied the DQM to investigate static and dynamic response of structures 
for the first time, and afterwards it was improved by Bert and Malik (1996). Also, Bert et al. (1989) 
used DQM for composite plates for the first time and analyzed nonlinear bending of orthotropic 
rectangular plates. Then, Shu and Richards (1992) presented the GDQM to simplify the computa-
tion of the weighting coefficients. Shu and Wang (1999) applied GDQM for vibration analysis of a 
rectangular plate with combined and non-uniform boundary conditions. Fazelzadeh et al. (2007) 
investigated the vibration of a rotating thin walled-blade made of functionally graded materials 
operating under high temperature supersonic gas flow with DQM. Talebitooti et al. (2013) present-
ed the effects of boundary conditions and axial loading on the frequency characteristics of rotating 
laminated conical shells with orthogonal stiffeners using GDQM. 

This paper extends the application of the DQM to aerothermoelastic analysis of a flat plate in 
supersonic flow. In this regard the governing differential aeroelastic equations of a FG plate as first 
discretized using GDQM and then aerothermoelastic response of the plate is studied by the fourth 
order Runge-Kutta method. To demonstrate the accuracy and fidelity of the GDQM, the dynamic 
stability boundaries of the plate are validated with available results presented by other researchers. 
Also, the effects of some important parameters such as Mach number, in-plane thermal load, plate 
aspect ratio and volume fraction index on the plate aerothermoelastic behavior are investigated. 
 
2 FORMULATION 

2.1 Structural Model 

A plate with length a, width b, and thickness h made up of a mixture of ceramic and metal is con-
sidered. The airflow is assumed in the x-direction. Volume fraction of the functionally graded mate-
rial varies continuously through the plate thickness according to a simple power law (Javaheri and 
Eslami, 2002). Hence: 
 

/ 2 n

m

z h
V

h

   
 

 (1)

 

 1m cV V   (2)
 

where z is the coordinate in the thickness direction with origin at the plate mid-surface and n is the 
volume fraction index. Thus, the material properties of the functionally graded plate can be ex-
pressed as 
 

eff m m c cP P V PV   (3)
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where subscripts c and m refer to ceramic and metal, respectively, and Peff is the effective material 
properties of the plate corresponding to the modulus of elasticity  E , Poisson’s ratio   , density 

   and thermal coefficient expansion   . 

Based on the Classical Plate Theory (CPT), the displacement field of the plate is: 
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where u0 and v0 are the in-plane displacement components, and w0 is the out-of-plane displacement 

component measured from the plate’s mid-plane. 
According to the von Karman nonlinear strain-displacement relations, the nonlinear strains are 

defined as: 
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where 0 and k  are the mid-plane membrane and bending strain vectors, respectively, which can 
be defined as follows: 
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The thermoelastic constitutive equations of the FG panels are: 
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where T0, T(z) and ( , )z T are reference temperature, temperature distribution in the plate thick-

ness direction and thermal expansion coefficient, respectively. Qij are the elements of material con-
stant matrix and defined by 
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where E(z) is the elastic modulus of a FG panel. 
In-plane force resultant and out-of-plate moment resultant are obtained as follows: 
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Here, NT and MT are the thermal in-plane force and moment resultant vectors. Thus 
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while A, B and D are extension, bending–extension coupling, and bending stiffness and are given as 
follows: 
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2.2 Aerodynamic Model 

According to the first order piston theory (Dowell, 1975), the aerodynamic pressure, may be ex-
pressed as 
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where q, M and U  represent the dynamic pressure, Mach number, and the free stream velocity, 

respectively. The linear piston theory is valid for 2 5M  (Mei et al., 1999). 
 
2.3 Temperature Distribution 

The temperature distribution on the surface of the plate is assumed to be constant while in the 
thickness direction it is considered to be variable and may be obtained by solving the one-
dimensional Fourier equation of the heat conduction, which is 
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Tm and Tc are the temperature of the lower and upper surfaces of the panel, and temperature dis-
tribution in the plate thickness direction is obtained by means of polynomial series (Javaheri and 
Eslami, 2002) and given as follows: 
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2.4 Equations of Motion 

By means of the extended Hamilton’s principle, the nonlinear governing equations of motion can be 
obtained. In the absence of surface shearing forces, body moments and inertial forces in the x and y 
directions, the aeroelastic equations of a FG plate are (Bert et al., 1989) 
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where 
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By substituting the Eqs. (9) and (12) into Eq. 21, the equations of motion are obtained as fol-
lows: 
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By differentiating from Eq. (23) and Eq. (24) with respect to the variable of x and y, respective-
ly, and summing the resultant equations, we will have 
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By multiplying 11B  to Eq. (25) and 11A to Eq. (26) and substituting Eq. (25) into Eq. (26) and 

after some mathematical manipulations, the following equation is obtained. 
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The above equation can be written as 
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where 
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In this paper, the plate is considered to be simply supported along all edges and therefore the 
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the in-plane force resultants can be modified as follows (Dowell 1975, Miller et al., 2011): 
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By substituting Eqs. (16) and (31) into Eq. (28), the aerothermoelastic equation is obtained. 
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In a supersonic regime, the coefficient of the aerodynamic damping in Eq. (31) can be approxi-
mately expressed as (Liaw and Yang, 1993) 
 

22

2 2

2
1 1

M

M MM

   
      

 (32)

 

In order to express Eq. (31) in a non-dimensional form, the following set of dimensionless pa-
rameters is defined as follows: 
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By introducing the above parameters into Eq. (31), the non-dimensional form of aeroelastic 
equations can be obtained. 
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 (34)

 
3 DISCRETIZED FORM OF THE GOVERNING EQUATION 

In this section, the governing aeroelastic equation is discretized by using the GDQM. This method 
implies that the rth-order derivative of a function W, at a point s = si , with N discrete points can 
be estimated by 
 

( )

1
i

r N
r s

s s ij jr
j

W
A W

s 





   (35)

 

The coefficient ( )r s
ijA represents the weighting coefficeints. The method for constructing these co-

efficients can be found in Chang Shu (2000). 
The DQ method may also be used for linear combinations of partial derivatives and integrals 

(Chang Shu, 2000) as follows: 
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where ,l kc c are the weighting coefficients of the one-dimensional integral in the x and y directions 

respectively, and given by (Chang Shu, 2000) 
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where 
 

( ) (1) 1 ( ) (1) 1( ) , ( )I x x I y yH A H A    (40)
 

In the above equations ( )kr x and ( )lr y  are the Lagrange interpolated polynomials. By using 

the DQM, the discretized form of the governing equations (Eq. 34) can be written as: 
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(41) 



806     H. Shahverdi et al. / Aerothermoelastic Analysis of Functionally Graded Plates Using Generalized Differential Quadrature Method 

Latin American Journal of Solids and Structures 13 (2016) 796-818 

4
(2) (2) (1)

1 1 2 2 1
1 1 2 1 1 1

0

, , , , , 1 1,2,...,
, , , , , 2 1,2,...,

N M N
x y x

x ik k j y jk ik ik k j
k k k

a
R A W R A W A W

b

for i k k m n k N

j p q s t k M


  

     
 




  
 

 

Also, the assumed boundary conditions may be defined as follows: 
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The discretized form of these boundary conditions will be: 
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Thus, the boundary conditions can be written as: 
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By incorporating the boundary conditions into Eq. (41) and doing some manipulations, the final 
aerothermoelastic equation of a FG plate can be drawn as: 
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(45)

 

where C1 to C16 are defined in Appendix A 
 
4 RESULTS AND DISCUSSION 

In this section, the critical dynamic pressures for FG plates are calculated to investigate the validity 
of the GDQM for determining flutter boundaries. In this regard, a simply-supported functionally 
graded flat plate made of a combination of metal (SUS304) and ceramic (Si3N3) is considered as a 
test case. The material properties are listed in Table 1 (Navazi and Haddadpour, 2011). 

In order to obtain the flutter instability, the governing aerothermoelastic equation (Eq. 45) is 
utilized by considering 11 × 11 sampleing points in the computational domain. However, after some 
investigations, it was found that the present nonlinear analysis is extremely sensitive to the sam-
pling point distribution. Thus, Chebyshev-Gauss-Lobatto distribution is not a right choice for this 
type of problems, but the suggested distribution by Tomasiello (1998) can be used as an alternative 
choice. Then, the resulting ordinary differential equations are solved via the 4th order Runge-Kutta 
method. 
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Material 
Young's  
modulus 
(GPa) 

Poisson's 
ratio 

Mass den-
sity 

(Kg/m3) 
CTE (1/K) 

Thermal  
conductivity 

(W/mK) 

SUS304 207.8 0.3 7800 1.53E-05 1.214E+01 

Si3N3 322.3 0.3 3200 7.47E-06 1.011E+01 

Table 1: Material properties at reference temperature (T= 300 K) 

 
 

Table 2 shows the obtained critical non-dimensional dynamic pressures (λcr) of a FG square 
plate with a/b=1(aspect ratio), a/h=100 (length/ thickness ratio) along with those reported by 
Sohn and Kim (2008) under different volume fractions and temperatures. It is clear that the ob-
tained results are in good agreement with Sohn and Kim (2008). 
 
 

Temperature changes 
of the surfaces 

Volume 
fraction 

λcr 

Present 

λcr 

Sohn and 
Kim (2008) 

Error 
(%) 

Tm=300 n=0.0 792.81 792.70 0.012 
Tc=300 n=0.5 682.50 681.40 0.161 

 n=1 642.82 641.30 0.233 
 n=5 586.25 584.90 0.230 
 n= 512.13 511.10 0.195 
     

Tm=300 n=0.0 713.90 715.80 0.265 
Tc=310 n=0.5 598.32 599.00 0.116 

 n=1 554.85 555.40 0.099 
 n=5 489.10 491.90 0.569 
 n= 408.45 414.80 1.530 
     

Tm=310 n=0.0 636.80 638.3 0.234 
Tc=310 n=0.5 501.45 503.4 0.387 

 n=1 454.23 454.9 0.147 
 n=5 387.52 388.5 0.252 
 n= 311.25 312.0 0.240 

Table 2: Critical non-dimensional dynamic pressure 

 
 

Next, to validate the post flutter characteristics of the present computational model, the limit cy-
cle amplitudes of an isotropic square panel for various dynamic pressures, at a specified location 
( 0 .75  and 0 .5  ) on the panel are computed and depicted in Fig. 1. As is evident, the 

DQM results are in satisfactory agreement with those presented by Dowell (1966) and Xue and Mei 
(1993) which used time integration and finite element method, respectively. 
 



H. Shahverdi et al. / Aerothermoelastic Analysis of Functionally Graded Plates Using Generalized Differential Quadrature Method     809 

Latin American Journal of Solids and Structures 13 (2016) 796-818 

 

Figure 1: LCO amplitudes of the isotropic square panel 

Finally, the aerothermoelastic stability boundaries of the panel according to in-plane thermal 
load are depicted in Fig. 2. As shown in this figure, the developed tool can capture different dynam-
ic behaviors of the plate, including stable, limit cycle oscillation (LCO), Buckled and chaotic, as 
well as Xue and Mei (1993). 
 

 

Figure 2: Stability boundaries of the isotropic square panel 

 
Fig. 3 shows the critical dynamic pressure of the aforementioned FG panel versus volume frac-

tion index (n). It can be seen that as µ/M decreases the critical dynamic pressure decreases too. On 
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the other hand, any increase in volume fraction index leads to reduction in the critical dynamic 
pressure. However, this reduction is impressive until the value of volume fraction becomes about 
unity. 

The effects of aspect ratio (a/b) on the critical dynamic pressure are presented in Fig. 4. It can be 
seen that the critical dynamic pressure increases with the plate aspect ratio. Moreover, the variation 
of critical dynamic pressure with respect to µ/M is more dominant for plates with higher aspect ratio. 
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Figure 3: Effect of µ/M on the critical dynamic pressure of the FG panel (a/h=100) 
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Figure 4: Effect of aspect ratio on the critical dynamic pressure of the FG panel (a/h=100) 
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The limit cycle amplitude of the FG plate at the aforementioned point versus the critical dy-
namic pressure for various volume fraction indexes and different values of Tc is shown in Figure 5. 
It should be noted that the value of Tc is considerd to vary from 300 K (the gary lines) to 320 K 
(the black lines) and Tm is taken to be 300 K. It is found that by increasing the surface tempera-
ture of the FG plate, the critical dynamic pressure is decreased. 
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Figure 5: Deflection LCO dimensionless amplitude of the FG panel.  

 

The aerothermoelastic stability margins versus in-plane thermal load for various volume frac-
tion indexes are shown in Fig. 6. It can be seen that as the volume fraction index decreases the 
critical thermal buckling load, the critical dynamic pressure and the in-plane thermal load, where 
the chaotic motion begins, all increase. As a result, the bifurcation point shifts to the top right. 
 

 

Figure 6: Stability boundaries of the FG panel at various n 
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As shown in Fig. 6, the plate remains stable in zone A. The typical time history of this zone is 
shown in Fig. 7. 
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Figure 7: Non-dimensional deflection of the panel (λ=350, n=1, Rx=Ry=3π2) 

 
In zone B, the panel is dynamically stable, but statically unstable and buckled. The dimension-

less deflection time histories in zone B for two specific conditions are shown in Figs. 8 and 9. They 
reveal that the steady response of the panel increases with increasing of n. They also show that the 
amplitude of the panel motion decreases with increasing of dynamic pressure. 
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Figure 8: Non-dimensional deflection of the panel (n=0, Rx=Ry=5π2) 
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Figure 9: Non-dimensional deflection of the panel (n=1, Rx=Ry=5π2) 

 
 

At zone C the plate motion is chaotic and the time history response and the related phase dia-
gram at a specified condition (λ=420, n=0, Rx=Ry=8π2  is shown in Figs. 10 and 11, respectively. 
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Figure 10: chaotic time history of the panel (λ=420, n=0, Rx=Ry=8π2) 
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Figure 11: Phase plane of the chaotic motion (λ=420, n=0, Rx=Ry=8π2) 

 

As mentioned before, the limit cycle oscillation occurs in zone D. The deflection time history 
and the related phase diagram in this zone for two specified conditions are shown in Figs. 12 to 15. 
However, for moderate Rx as dynamic pressure increases, the periodic limit cycle oscillation changes 
to the simple harmonic limit cycle oscillation. 
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Figure 12: Time history of the panel (λ=195, n=, Rx=Ry=4π2) 
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Figure 13: Phase plane (λ=195, n=inf, Rx=Ry=4π2) 
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Figure 14: Non-dimensional deflection (λ=280,n=inf, Rx=Ry=4π2) 
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Figure 15: Phase plane (λ=280, n=inf, Rx=Ry=4π2) 

 
5 CONCLUSIONS 

In this study, the GDQM has been used to provide the ordinary differential form of the aerother-
moelastic equation of a FG flat plate. To investigate the aerothermoelastic behavior of the plate, 
the 4th order Runge-Kutta numerical method has been utilized. The evaluation of the obtained re-
sults in comparison with those available in literature shows the accuracy and ability of the GDQM 
to study the aerothermoelastic behavior of a FG panel in supersonic regime. However, it should be 
noted that the application of this method is much simpler than other well-known computational 
methods such as (Galerkin, and FEM). Also, it was found that the nonlinear panel flutter analysis 
with GDQM is extremely sensitive to the grid point distribution. Therefore, the well-known  
Chebyshev-Gauss-Lobatto distribution is not suitable for this type of problems, but Tomasiello’s 
distribution (Tomasiello, 1998) can be suggested as an efficient and suitable choice. 
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Finally, this study reveals that increasing of the surface temperature of a FG plate leads to de-
crease in the critical dynamic pressure due to the reduction of structural Rigidity. Also, it has been 
shown that some parameters such as volume fraction index, Mach number, in-plane thermal load 
and plate aspect ratio were found to have significant effects on the aeroelastic behavior or dynam-
ical motion of a FG plate. 
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Appendix A 

The Ci coefficients in Eq. (45) are defined through the following relations: 
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