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Abstract

A bi-hierarchical four nodes quadrilateral element with three displacements as degrees of
freedom by node is developed to analyze the free vibration of isotropic shells of revolution
with linearly varying thickness. The element is bi-hierarchical because of the double increase
of the hierarchical mode number independently according to both axial and radial directions.
The accuracy of solution is for high ratio dimensions as well flattened axisymmetric (plates)
shells that slim ones (high cylindrical shells) with different shapes and boundary conditions.
The second advantage is the possibility of using only one element to idealize composed shells
of linearly varying thickness. Through the application of this element to some numerical
examples, the comparisons with other studies show clearly that this element gives good results
accuracy with simple idealization for axisymmetric and non-axisymmetric shells vibration
(thick and thin).

Keywords: Bi-hierarchical finite element, double hierarchical increment, shells of revolution,
linearly varying thickness, non – axisymmetric, free vibration.

1 Introduction

In this study, the non axisymmetric free vibration of linearly varying thickness isotropic shells
of revolution is analyzed by using a new bi-hierarchical finite element. Shells of revolution of
linearly varying thickness can be of different shape and dimensions, cylindrical, plate, thin or
thick. In the standard finite element method or in the p-version, these shells can not be idealized
by the same finite elements. The geometrical characteristics of the shell influence on the choice
of the finite element and the mesh. To model for example a tank wall and its roof, one must
have two elements, one for the wall and the other for the roof. The new proposed element can
idealize the two shells.

The literature on finite element approximation of shells of revolution with linearly varying
thickness is huge. Some approaches are mention here.
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An exact method [10], based on the development in power series, was used to solve the
problems of free vibration of noncircular cylindrical shells having a circumferential thickness
variation. In the study of the free vibrations of truncated conical shells of rotation of slightly
varying thicknesses with annular strengthening [5], a solution was built up on the basis of linear
shell and bar theory using the Ritz method.

To predict the natural frequencies of shells of revolution which may have arbitrary shape of
meridian, general type of material property and any kind of boundary condition, a substructuring
analysis method was presented in [13]. The method was developed in the context of first order
shear deformation shell theory as well as the classical thin shell theory.

Other methods were implemented including a three-dimensional method to determine the
frequencies and eigen modes of hollow bodies of revolution with arbitrary shell curvatures and
arbitrarily varying curvatures [8]. A three-dimensional shell theory applicable to doubly curved
thick open shell which are arbitrarily deep in one principal direction but are shallow in the other
one, used Ritz variational formulation with algebraic polynomials as trial functions to extract
the natural frequencies [14]. Solid and hollow hemi-ellipsoids of revolution (the hollow ones being
shells) with and without an axially circular cylindrical hole [9], parabolod solids and parabolod
shells of revolution with variable thickness [6], thick and complete (not truncated) conical shells
of revolution [9] and hyperboloid shells of revolution [6] were analyzed by methods based on the
3-D dynamic equations of elasticity. The Ritz method was used to solve the eigenvalue problem.

A variety of finite elements was presented for shells of revolution of varying thickness such as
the linear truncated elements based on the Kirchhoff’s theory and the truncated elements with
double curve based on the Mindlin – Reissner’s theory [2]. The truncated elements are either
with two displacements and one rotation by node, three displacements and one rotation, or for
the not-axisymmetric case with three displacements and one rotation.

This study gives the possibility to idealize the majority of shells of revolution by only one
element.

In the present paper, the proposed element is a four nodes volumetric and axisymmetric
bi-hierarchical finite element with only displacements as degrees of freedom. The word “bi-
hierarchical” comes from the fact that this element has two hierarchical mode numbers, one in
the axis direction and the second in the radius one.

The two hierarchical mode numbers increase independently. This element can than idealize
flattened shells as plates, high shells, as cylinders, and conical shells (thin and thick) or structures
composed by them. For the first kind of shells, the radial direction hierarchical mode number
is increased to get the the results’ accuracy, and for the second kind, the axis hierarchical mode
number is increased.

This element gives the possibility of reducing the mesh. The accuracy is not given by a
high number of elements but only by increasing the two hierarchical mode numbers. Shells of
revolution are of different kinds, shapes, thickness and boundary conditions. An axisymmetric
structure composed of shells of revolution with constant or linearly varying thickness can be also
idealized by only one finite element. The shape displacement is defined by a double hierarchical
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Figure 1: Shell of revolution with linearly varying thickness

increment.

2 Formulations

2.1 Potential energy

The potential energy stored in the shell is in the form of a strain energy due to the effect of
both stretching and bending. The strain energy expression can be written as

U (t) =
1
2

∫ Re

Ri

∫ H

0

∫ 2π

0
(σrεr + σzεz + σθεθ + τrzγrz + τrθγrθ + τzθγzθ) .r.dr.dz.dθz (1)

And in matrix form

U (t) =
1
2

∫ ∫ ∫ (
{ε}T . {σ}

)
.r.dr.dz.dθ (2)

where
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{ε} =





εr

εz

εθ

γrz

γrθ

γzθ





and {σ} =





σr

σz

σθ

τrz

τrθ

τzθ





(3)

are the stain and stress vectors
The constitutive relationship between stress and strain is the generalized Hooke’s law. For

an isotropic homogeneous structure, it is given as

{σ} = [D] . {ε} (4)

Where [D] is the elasticity matrix given by

[D] = E1.




1− v v v 0 0 0

v 1− v v 0 0 0

v v 1− v 1−2v
2 0 0

0 0 0 0 1−2v
2 0

0 0 0 0 0 1−2v
2




(5a)

where

E1 =
E

(1 + v) . (1− 2v)
(5b)

E is Young’s modulus, and ν is Poisson ratio of the structure.
Substituting Eq. (4) into Eq. (2), the potential energy is given in terms of strain as

U (t) =
1
2

∫ ∫ ∫ (
{ε}T . [D] . {ε}

)
.r.dr.dz.dθ (6)

The strain-displacement relations are given by
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{ε} =





εr

εz

εθ

γrz

γrθ

γzθ





=





∂u
∂r

∂v
∂z

u
r + 1

r · ∂w
∂θ

∂u
∂z + ∂v

∂r

1
r · ∂u

∂θ + ∂w
∂r − w

r

1
r · ∂v

∂θ + ∂w
∂z





(7)

The strain vector can be expressed in term of the displacement vector as follows

{ε} = [d] . {δ} (8)

where

{δ} = {u, v, w} (9)

and [d] is a differential operator matrix defined by

{d} =




∂
∂r 0 0

0 ∂
∂z 0

1
r 0 1

r · ∂
∂θ

∂
∂z

∂
∂r 0

1
r · ∂

∂θ 0 ∂
∂r − 1

r

0 1
r · ∂

∂θ
∂
∂z




(10)

The stress vector can be expressed in terms of the displacement vector, as
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{σ} = E1.





(1− v) .∂u
∂r + v.

(
∂v
∂z + u

r + 1
r .∂w

∂θ

)

(1− v) .∂v
∂z + v.

(
∂u
∂r + u

r + 1
r .∂w

∂θ

)

(1− v) .
(

u
r + 1

r .∂w
∂θ

)
+ v.

(
∂u
∂r + ∂v

∂z

)

1−2v
2 .

(
∂u
∂z + ∂v

∂r

)

1−2v
2 .

(
1
r .∂u

∂θ + ∂w
∂r − w

r

)

1−2v
2 .

(
1
r .∂v

∂θ + ∂w
∂z

)





(11)

2.2 Kinetic Energy

The kinetic energy of the shell can be written as

T (t) =
1

2

∫ Re

Ri

∫ H

0

∫ 2π

O
ρ.

[(
∂u(r, z, θ, t)

∂t

)2

+

(
∂v(r, z, θ, t)

∂t

)2

+

(
∂w(r, z, θ, t)

∂t

)2
]

.r.dr.dz.dθ (12)

where, ρ is the density. Equation 12 can be written as follows

T (t) =
1
2

∫ ∫ ∫
ρ.

{
δ̇
}T

.
{

δ̇
}

.r.dr.dz.dθ (13)

where, {δ} is the displacement vector defined by Eq. (9) and, differentiation is with respect
to the time, t.

2.3 Hierarchical Finite Element Formulation

The hierarchical finite element method known as the p-version of the finite element method is
more precise and its convergence is faster than that of the h-method. Indeed, when the exact
solution is analytical everywhere the rate of convergence is exponential, whereas that of the
h-method is only algebraic. The quality of the solutions is not very sensitive to the distortions
of the elements, which allows the use of flattened elements or great ratio on sides without
penalizing the precision too much. In addition, as a hierarchical formulation is adopted for the
representation of displacements, the matrix of stiffness relative to a given degree imbricates those
of lower degrees. This makes it possible to obtain in an economic way a sequence of solutions
instead of only one solution as in the case of the h-method [1, 11,12].

The hp version of the finite element method has the characteristic to increase the precision
by increasing both the interpolation polynomial degree and the number of finite elements as for
the standard finite element method [11].
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2.3.1 Idealization of the shell

The shell is divided into four nodes hierarchical axisymmetric quadrilateral isoparametric finite
elements (see Fig.3). The element size is arbitrary, they may all be of the same size or may all
be different. The shell can also be idealized by only one element if the thickness of the shell is
varying linearly or if it is constant.

 

z 

r 

u w v 

θ 

Figure 2: Displacements of a shell point

The axisymmetric free vibration of a shell of revolution which is a extension in the radial
direction do not depend of the circumferential wave number n. However, for the non axisym-
metric vibration, the natural free lateral vibrational modes of a circular cylindrical shell can be
classified as the cosθ-type modes for which there is a single cosine wave of deflection in the cir-
cumferential direction, and as the cosnθ-type modes for which the deflection of the shell involves
a number of circumferential waves higher than 1. Figure 3 illustrates the circumferential and
the vertical nodal patterns of these modes. For a tall cylindrical shell, the cosnθ-type modes
can be denoted beam-type modes because the shell behaves like a vertical cantilever beam.

The non axisymmetric free vibration of a shell being dependent of the circumferential wave
number n, the equation of motion of the shell admit the representation of the radial, circumfer-
ential and axial displacement components u, v, and w (see Fig. 2) following respectively R, Z
and θ in the following form





u (r, z, θ) = ū (r, z) .cosnθ

v (r, z, θ) = v̄ (r, z) .cosnθ

w (r, z, θ) = w̄ (r, z) .sinnθ

(14)

where n is the circumferential wave number. The time dependence is removed by assuming
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m: Number of vertical modes 

n: Number of circumferential waves 

Vertical nodal pattern 

 

Circumferential nodal pattern  
 
 Figure 3: Shell vibration modes

that the displacements vary sinusodally in phase at the same frequency. The displacement
functions ū (r, z), v̄ (r, z) and w̄ (r, z) can be expressed in terms of the nodal displacements of
the finite elements by means of an appropriate set of interpolation functions.

2.3.2 Shape Functions Selection

The hierarchical shape functions are generally selected in the Serendipity space. In this paper,
the shape functions are built from the shifted Legendre orthogonal polynomials introduced by
A. Houmat [3]. These polynomials are defined in the interval [0,1].

They can be classified in three categories

- Nodal shape functions

- Side shape functions

- Internal shape functions
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Their recurring form is





fi (x) = 1− x

fi (x) = x

fi+2 (x) =
∫ x
0 Pi (α) .dα

(15)

where Pi(α) are the shifted Legendre polynomials defined by




P0 (α) = 1
P1 (α) = 2.α− 1

Pi+1 (α) = 1
i+1 ·

[
(−2i− 1 + (4i + 2)α).
Pi(α)− i · Pi+1(α)

] (16)

where i =1, 2, 3 . . .

The shape functions are given on the basis of one-dimensional hierarchical finite element.
The origin of the non-dimensional coordinates is at the left end of the element. For the C◦

continuous problems, the first two linear shape functions of the standard finite element method
are retained. The higher order C◦ shape functions vanish at each end of the elements; they are
used to describe the displacement function inside the element. These functions are generated
by using the recursive formula 16.





ū (r, z) =
M∑

1

Ni (r, z) .ui

v̄ (r, z) =
M∑

1

Ni (r, z) .vi

w̄ (r, z) =
M∑

1

Ni (r, z) .wi

(17)

where

Ni (r, z) = fk (r) .gl (z) (18)

with: k = 1,..,p+1 and l = 1,..,q+1
M = (p+1)(q+1)
p: Hierarchical mode number according to ξ

q : Hierarchical mode number according to η

f, g : Shape functions
The matrix form of the expression (17) is

{
δ̄
}

= [N ] . {q} (19)

The first six hierarchical shape functions are represented in table 1.
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Table 1: The first six hierarchical shape functions

1− ξ

0 , 0 0 , 5 1 , 0
0 , 0

0 , 5

1 , 0

( 1 )

 

ξ

0 , 0 0 , 5 1 , 0
0 , 0

0 , 5

1 , 0

( 2 )

 

ξ2 − ξ

0 , 0 0 , 5 1 , 0
-0 , 4

-0 , 3

-0 , 2

-0 , 1

0 , 0

( 3 )

 

2ξ3 − 3ξ2 + ξ

0 ,0 0 ,5 1 ,0
-0 ,2

-0 ,1

0 ,0

0 ,1

0 ,2

( 4 )

 

5ξ4 − 10ξ3 +
6ξ2 − ξ

0 ,0 0 , 5 1 , 0
-0 , 1

0 , 0

0 , 1

( 5 )

 

14ξ5 − 35ξ4 +
30ξ3− 10ξ2 + ξ

0 ,0 0 ,5 1 ,0
- 0 ,1

0 ,0

0 ,1

(6 )

 

where

{
δ̄
}

=





ū (r, z)
v̄ (r, z)
w̄ (r, z)



 (20)

is the generalized displacement vector,

{q} = {u1, v1, w1, . . . , ui, vi, wi, . . .}T (21)

with i=1,. . .,(p+1)(q+1)
is the nodal displacement vector, and

[N ] =
⌊
[N1] , [N2] , . . . , [Ni] , . . . ,

⌊
N(p+1)(q+1)

⌋⌋
(22)
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is the shape function matrix, where [Ni] is a sub-matrix given by

[Ni] =




fk (r) .gl (z) 0 0
0 fk (r) .gl (z) 0
0 0 fk (r) .gl (z)


 (23)

fk(r) and gl(z) are the nodal, side and internal shape functions of the element.
 

4 z 

r θ 

ξ 1 2 

3 

η 

 

Figure 4: Cylindrical and non-dimensional coordinates

2.3.3 Shell Stiffness Matrix

The definition of the shell stiffness is reduced to the evaluation of the stiffness of a typical
element. Expression (14) can be written

{δ} = [θn] .
{
δ̄
}

(24)

where

[θn] =




cos n θ 0 0
0 cos n θ 0
0 0 sin n θ


 (25)

Substituting Eq. 24 into Eq. 8, then one can write

{ε} = [d] {δ} = [d] [θn]
{
δ̄
}

=
⌊
d̄
⌋ {

δ̄
}

(26)
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where

[
d̄
]

=




∂
∂r cos n θ 0 0

0 ∂
∂z cos n θ 0

1
r cos n θ 0 n

r cos n θ

∂
∂z cos n θ ∂

∂r cos n θ 0

−n
r sin n θ 0

(
∂
∂r − 1

r

)
sin n θ

0 −n
r sin n θ ∂

∂z sin n θ




(27)

Substituting Eq. 26 into Eq. 6, the potential energy can be written as

U(t) =
1
2

∫ Re

Ri

∫ H

0

∫ 2π

0

(([
d̄
]
.
{
δ̄
})T

. [D] .
[
d̄
]
.
{
δ̄
})

.r.dr.dz.dθ (28)

To evaluate the stiffness matrix of an element, the global cylindrical coordinates (r, z ) may
be expressed in terms of the local dimensionless coordinates (ξ, η) by

{
r = (1− ξ) . (1− η) .r1 + ξ. (1− η) r2 + ξ.η.r3 + (1− ξ) .η.r4

z = (1− ξ) . (1− η) .z1 + ξ. (1− η) z2 + ξ.η.z3 + (1− ξ) .η.z4
(29)

where ri and zi are the cylindrical coordinates of the element nodes.
The coordinates ξ and η used to define the element geometry are given by the figure 4. They

are varying from 0 to 1 whose origin is the node lower right of the element.
The derivatives can be written using the Jacobian matrix

{
∂
∂ξ
∂
∂η

}
= [J ] .

{
∂
∂r
∂
∂z

}
(30a)

where

[J ] =

[
∂r
∂ξ

∂z
∂ξ

∂r
∂n

∂z
∂η

]
(30b)

And then after mathematical transformations, one can write

r.dr.dz.dθ = k.π. |J | .r.dξ.dη (31)

Where k = 2 for n = 0 and k = 1 for n = 1,2,. . . (n: circumferential wave number).
n is the circumferential wave number and |J | is the Jacobian matrix.
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Substituting Eqs. 31 and 19 into Eq. 28, the potential energy can be written, as

U(t) =
kπ

2

∫ 1

0

∫ 1

0

(
{q}T . [N ]T .

[
d̄
]T

. [D] .
[
d̄
]
. [N ] . {q}

)
. |J | .r.dξ.dn (32a)

=
1
2
{q}T .

[
kπ.

∫ 1

0

∫ 1

0

(
. [N ]T

[
d̄
]T

. [D] .
[
d̄
]
. [N ] .

)
. |J | .r.dξ.dη

]
. {q} (32b)

=
1
2
{q}T .[K]. {q} (32c)

where

[Ke] = kπ.

∫ 1

0

∫ 1

0

(
[B]T .[D].[B]

)
. |J | .r.dξ.dη.dθ (33)

is the element’s stiffness matrix, and

[B] =
⌊
d̄
⌋
.[N ] (34a)

=
[
d̄
]
.
[
[N1], [N2], . . . , [Ni], . . . , [N(p+1)(q+1)]

]T (34b)

=
[
[B1], [B2], . . . , [Bi], . . . , [B(p+1)(q+1)]

]T (34c)

Substituting Eq. 34c into Eq. 33, the element’s stiffness matrix can be written, as

[Ke] = kπ

∫ 1

0

∫ 1

0

p+1∑

i=1

q+1∑

j=1

(
[Bi]T .[D].[Bj ]

)
.r. |J | dξ.dη (35)

2.3.4 Mass Matrix

The kinetic energy can be written

T (t) =
1
2

∫ Re

Ri

∫ H

0

∫ 2π

O
ρ.

{¯̇
δ
}T

. [θn]T . [θn] .
{

˙̄δ
}

.r.dr.dz.dθ (36a)

=
1
2

∫ 1

0

∫ 1

0
ρ.

{¯̇
δ
}T

.

(∫ 2π

O
[θn]T . [θn] .dθ

)
.
{

˙̄δ
}
|J | .r.dξ.dη (36b)

=
kπ

2

∫ 1

0

∫ 1

0
ρ. {q̇}T . [N ]T . [N ] . {q̇} . |J | .r.dξ.dη (36c)

=
1
2
{q̇}T .

(
kπ.

∫ 1

0

∫ 1

0
ρ. [N ]T . [N ] . |J | .r.dξ.dη

)
. {q̇} (36d)

=
1
2
{q̇}T . [Me] . {q̇} (36e)
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[Me] = kπ.

∫ 1

0

∫ 1

0
ρ. [N ]T . [N ] . |J | .r.dξ.dη (37a)

= kπ.

∫ 1

0

∫ 1

0
ρ.

p+1∑

i=1

q+1∑

j=1

[Ni]
T . [Nj ] |J | .r.dξ.dη (37b)

is the element’s mass matrix.

2.3.5 Numerical Integration

The double integral appearing in the forms of the mass and stiffness matrices results in a
numerical integration. For its implementation, one uses the Gauss quadrature expressed by

∫ 1

0
f (x) d (x) =

Nint∑

i=1

Wi.f (xi) (38)

Where Nint, is the integration points number
After testing several integration points numbers, the number which is a compromise between

the computing time and the precision is

Nint = p + 2 (39)

Then to optimize calculations, the integration points number increase automatically with
the interpolation polynomial degree.

3 Results and Discussions

The convergence and comparison studies must be carried out to ensure the reliability of the
results. The vibration frequency ω is expressed in terms of the frequency parameter.

Ω = ω

√
2 (1 + v)

E
(40)

In this study, the Poisson’s ratio, the Young modulus and the density takes respectively the
values ν = 0.3, E = 2 1011 KPa and ρ = 7830 Kg/m3.

3.1 Convergence

The bi-hierarchical finite element is used for the first time, to study the free vibration of a
very thin cylindrical shell with free boundary conditions. The external and internal radius are
respectively Re=1m and Ri=0.99m, the shell height is H=2m. Table 2 shows the convergence
study of the first six modes with an increasing of the two hierarchical mode numbers p and q
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following respectively the radius and the axis directions for two and four elements. The results
are compared with those of the boundary collocation method [4] and those of ANSYS (20
harmonic and axisymmetric structural element solid with eight nodes). For the two idealization
(Table 2), two and four elements, an accuracy of three digits after the comma is reached for the
first two modes with p=2 and q=2.

For modes 3, 4, 5; the convergence is reached for p=6 and q=3 for a 2 elements model, and
for p=4 and q=2 for a 4 elements model. The sixth mode reaches the convergence for p=8
and q=3 for 2 elements, and p=6 and q=2 for 4 elements. It is apparent that by increasing
the number of elements, the hierarchical mode numbers p and q necessary to reach convergence
are smaller, but the degrees of freedom number becomes more important. Indeed for mode 6
this number is of 300 for 4 elements whereas it is only of 189 for 2 elements. The matrices
size is smaller if one increases p and q rather than the elements number. Table 2 shows that
the number of degrees of freedom can be easily decreased by modifying the values of p and q
according to the shell geometry.

3.2 Validation

In order to verify the accuracy of the bi-hierarchical finite element for solving the vibration of
shells of revolution, a comparison study is conducted for different shells. A thick and a very thin
cylindrical shells, a hollow cylindrical shell with varying thickness and a very thin plate. The
results are compared with those of the boundary collocation method BCM, [4] and with those
obtained by ANSYS where the harmonic and axisymmetric structural element solid with eight
nodes is used.

The comparison of the frequency parameters Ω with those of the boundary collocation
method [4] and ANSYS (32 harmonic and axisymmetric structural solid element with eight
nodes) for a free thick cylindrical shell is given in table 3. The inner radius is Ri =1/3m, the
outer radius is Re =1m and the shell height is H = 4/3m. Considering that the results accu-
racy is quickly reached for a low number of elements if one increases the number of hierarchical
modes, the shell is idealized by only four bi-hierarchical finite elements with the same hierar-
chical modes numbers p and q according to the axial and radial directions (p = q = 8). For
this very thick cylindrical shell, the results given in table 3 are in good agreement with those of
the two other methods, as well for the axisymmetric case as for the non-axisymmetric case. For
high frequencies, results agree more with those of the BCM than with those of the ANSYS. The
reason is that the warping of cross-sections is important and thus the interpolation polynomials
degree must be larger to describe these modes. It is easily and automatically possible by using
this bi-hierarchical finite element.

The second example is a very thin free cylindrical shell, idealized by four bi-hierarchical finite
elements. The outer radius is Re =1m; the inner radius is Ri =0.99m; and the height is H=2m.
The hierarchical mode number along the shell axis is q=8 and that following the radius is p=4.
The comparison results with those of the BCM [4] and those of ANSYS (20 elements) are given
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Table 2: Convergence and Comparison Study of Frequency Parameter Ω For a Free Cylindrical
Shell (Re =1m, Ri =0.99m, H=2)

Element number q p DOF
Modes number

1 2 3 4 5 6
2 1 1 18 0.014 0.018 1.923 1.930 3.012 4.007

q

p

2 1 30 0.014 0.018 1057 1.347 1.882 2.614
2 2 45 0.013 0.017 1.057 1.346 1.882 2.614
4 2 81 0.013 0.017 0.996 1.300 1.463 1.561
4 3 108 0.013 0.017 0.996 1.300 1.463 1.561
6 3 156 0.013 0.017 0.996 1.300 1.461 1.531
8 3 189 0.013 0.017 0.996 1.300 1.461 1.530

BCM 0.013 0.017 0.996 1.300 1.465 1.529
ANSYS 0.013 0.017 0.996 1.303 1.463 1.533

4 1 1 30 0.014 0.018 1.318 1.851 2.724 2.939

q

p

2 1 54 0.014 0.018 0.998 1.310 1.529 1.576
2 2 81 0.013 0.017 0.998 1.309 1.526 1.571
4 2 153 0.013 0.017 0.996 1.300 1.461 1.531
4 3 204 0.013 0.017 0.996 1.300 1.461 1.531
6 3 300 0.013 0.017 0.996 1.300 1.461 1.530
8 3 396 0.013 0.017 0.996 1.300 1.461 1.530

BCM 0.013 0.017 0.996 1.300 1.465 1.529
ANSYS 0.013 0.017 0.996 1.303 1.463 1.533

in table 4. The results are in perfect agreement with those of the BCM and those of ANSYS.
In the third example, a thick free hollow cylindrical shell with varying thickness is considered.

Along the axis, the inner radius is Ri =0.6m and the outer radius is varying from Re =0,8m
at the edges, to Re =1m at the middle height. The height is H =2m. The shell being thick,
one takes the same hierarchical modes numbers (p = q = 8). Each half cylindrical shell is
idealized by one bi-hierarchical finite element. Comparison of results with those of the BCM [4]
and those of ANSYS (16 elements) are given in table 5. The same observation is made for the
two other examples. The results agree very well with those of the BCM and those of ANSYS.
This agreement illustrates the power of this element. Finally, to verify the accuracy of the bi-
hierarchical finite element in solving the vibration of flattened shells of revolution, a very thin
free circular plate is considered. The plate is idealized by two bi-hierarchical finite elements.
The radius is R =1m and the thickness is H =0.05m. The hierarchical modes number along
the shell thickness is q=3 and that following the radius is p=12. The comparison of results
with those of the BCM [4] and those of ANSYS (20 elements) given in table 6, are in perfect
agreement.
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Table 3: Comparison of Frequency Parameters Ω for a Free Thick Cylindrical Shell (Re=1m,
Ri=1/3m, H=4/3,p=8,q=8)

 

q=8 

r 

z 

 

Modes number

circumferential
Method 1 2 3 4 5 6

wave number

0

Present 2.298 2.512 3.237 4.138 4.502 6.352

BCM 2.299 2.513 3.237 4.137 4.500 6.347

ANSYS 2.300 2.514 3.239 4.141 4.508 6.368

1

Present 2.124 2.716 3.305 3.448 3.892 4.645

BCM 2.123 2.716 3.304 3.447 3.89 4.645

ANSYS 2.125 2.718 3.307 3.452 3.895 4.65

2

Present 1.371 1.444 3.142 3.143 4.195 4.626

BCM 1.371 1.441 3.139 3.140 4.194 4.622

ANSYS 1.370 1.442 3.142 3.143 4.199 4.630

3

Present 2.820 3.079 3.762 4.285 5.531 5.716

BCM 2.818 3.071 3.758 4.279 5.526 5.711

ANSYS 2.818 3.074 3.761 4.286 5.538 5.727

4

Present 4.068 4.401 4.686 5.404 6.514 6.585

BCM 4.069 4.396 4.680 5.397 6.508 6.580

ANSYS 4.070 4.401 4.686 5.407 6.525 6.598

3.3 Applications

The frequency parameter variation versus the circumferential wave number is carried out by
using this element to idealize three shells of revolution. A very thin cylindrical shell (see Fig.
5), (height =2, thickness =0.01), a thick hollow cylindrical shell with linearly varying thickness
(see Fig. 8) and a cylindrical shell of linearly varying thickness with a bottom plate like a
storage tank (see Fig. 11). Along the axis, the inner radius is Ri =0.6m and the outer radius is
varying from Re =0.8m at the edges to Re =1m at the middle height. The height is H =2m.
The three shells are considered for the two cases, free base and clamped base. The vibration
characteristics of a cylindrical shell could be evaluated by observing the radial deformation. Fig.
4 shows the circumferential node patterns of a cylindrical shell, n being the circumferential wave
number. For n = 0, the circumferential nodal pattern is a circle, indicating that this mode is
an extensional mode referred to as breathing type mode. n = 1 indicates two crossings between
the deformed and original shapes, n = 2 indicates four crossings. The lowest frequency does not
occur at the lowest values of n. For example, for the thin clamped base cylindrical shell, the
lowest frequency occurs when n = 4, for the other examples this frequency occurs when n = 2.
This phenomenon can be explained by considering the strain energy of the middle surface under
both bending and stretching [7].

The figures, 6, 7, 9, 10, 12 and 13 shows the variation of the frequency parameters against
the circumferential wave number given by six curves. The first curve indicated by m = 1 is
corresponding to the first lowest frequency parameter, the second curve (m =2) to the second
lowest one etc. Fig. 6 shows for the free cylindrical shell, that for n = 0 (the axisymmetric case),
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Table 4: Comparison of Frequency Parameters Ω For a Free Thin Cylindrical Shell (Re =1m,
Ri=0.99m, H=2m, p=4, q=8)

 z 

r 

p=4 

q=8 

 

Modes number

circumferential
Method 1 2 3 4 5 6

wave number

0

Present 1.576 1.613 1.618 1.620 1.625 1.636

BCM 1.576 1.613 1.618 1.618 1.630 1.639

ANSYS 1.577 1.613 1.618 1.621 1.625 1.637

1

Present 1.248 1.414 1.545 1.583 1.611 1.641

BCM 1.248 1.414 1.544 1.587 1.612 1.658

ANSYS 1.250 1.416 1.546 1.584 1.613 1.643

2

Present 0.013 0.017 0.995 1.300 1.461 1.530

BCM 0.013 0.022 0.996 1.297 1.465 1.529

ANSYS 0.013 0.017 1.000 1.303 1.463 1.533

3

Present 0.037 0.044 0.660 1.059 1.292 1.422

BCM 0.037 0.048 0.662 1.056 1.297 1.419

ANSYS 0.037 0.044 0.665 1.063 1.295 1.425

4

Present 0.071 0.079 0.453 0.838 1.114 1.294

BCM 0.072 0.083 0.458 0.835 1.121 1.291

ANSYS 0.071 0.079 0.457 0.843 1.118 1.298

Table 5: Comparison of Frequency Parameters Ω For a Free Hollow Cylindrical Shell of Varying
Thickness (Re =Varying, Ri=0.6m, H=2m, p=8,q=8)

  

r 

p=8 

q=8 

z 

Modes number

circumferential
Method 1 2 3 4 5 6

wave number

0

Present 2.006 2.193 2.366 2.844 3.273 3.880

BCM 2.007 2.195 2.367 2.839 3.279 3.896

ANSYS 2.007 2.193 2.367 2.846 3.275 3.889

1

Present 1.629 1.996 2.518 2.832 3.370 3.382

BCM 1.627 2.002 2.518 2.835 3.370 3.384

ANSYS 1.629 1.997 2.519 2.839 3.373 3.386

2

Present 0.644 0.761 1.853 2.466 2.967 3.309

BCM 0.646 0.760 1.861 2.464 2.963 3.308

ANSYS 0.644 0.761 1.855 2.468 2.976 3.312

3

Present 1.641 1.762 2.444 3.356 3.767 4.228

BCM 1.641 1.755 2.449 3.348 3.761 4.228

ANSYS 1.642 1.763 2.448 3.365 3.774 4.239

4

Present 2.811 2.904 3.451 4.229 4.996 5.163

BCM 2.811 2.890 3.453 4.214 4.991 5.166

ANSYS 2.815 2.908 3.458 2.242 5.009 5.188

the frequency parameters are almost the same. Starting from a number of circumferential wave
equal to 1 (non-axisymmetric case) the frequency parameters decrease gradually except for the
first two lowest ones (corresponding to m = 1 and m = 2) which decrease quickly to the value 2
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Table 6: Comparison of Frequency Parameters Ω for a Free Thin Circular Plate (Thickness
=0.05m, Radius =2m, p=12, q= 3)

 

r 

z 

First 
Element 

Second 
Element 

 

Modes number

circumferential
Method 1 2 3 4 5 6

wave number

0

Present 0.219 0.924 2.070 3.463 3.611 9.104

BCM 0.219 0.923 2.066 3.463 3.595 9.104

ANSYS 0.219 0.924 2.070 3.463 3.610 9.108

1

Present 0.495 1.424 2.734 2.772 4.493 5.964

BCM 0.494 1.419 2.734 2.761 4.464 5.964

ANSYS 0.495 1.425 2.734 2.774 4.493 5.965

2

Present 0.130 0.846 1.990 2.345 3.532 4.244

BCM 0.136 0.840 1.977 2.345 3.506 4.244

ANSYS 0.130 0.846 1.990 2.345 3.533 4.245

3

Present 0.301 1.262 2.613 3.601 4.340 5.834

BCM 0.308 1.251 2.590 3.601 4.296 5.834

ANSYS 0.300 1.261 2.612 3.601 4.335 5.835

4

Present 0.525 1.736 3.287 4.689 5.194 7.437

BCM 0.532 1.718 3.253 4.689 5.126 7.438

ANSYS 0.525 1.734 3.285 4.689 5.180 7.439

then increase gradually. The cylindrical shell with clamped edge (see Fig. 7), is a similar case
except for the curves corresponding to m = 1 and m = 2 whose frequency parameters increase
between values 0 and 1 of the circumferential wave number then decrease gradually. For the
hollow cylindrical shell and the composed shell (cylindrical shell and plate), the lowest frequency
occurs at n = 2 for the two cases, free base (see Fig. 9 and Fig. 12) and clamped base (see Fig.
10 and Fig. 13). The only difference between the two cases is that for n = 0 and for n = 2,
the gap between the frequency values is slightly more important for the clamped base case than
for the free base one. Otherwise, for the two cases of the two shells, the frequency parameters
increase linearly from a number of circumferential waves equal to 2.

4 Conclusion

The bi-hierarchical finite element presented in this study is able to give accurate frequencies
for shells of revolution of linearly varying thickness. The results show clearly that this element
can be easily used for the extreme cases of very thin or very thick shells of revolution. With
this element one is not constrained any more to have the same number of hierarchical modes in
the two main directions of the radial and axial shells of revolution. Indeed, if the shapes and
dimensions change (thick or thin shells) the hierarchical mode number can change very easily.
This element can also be used to idealize a composed shell, plate linked to cylindrical shell for
example. Finally this bi-hierarchical finite element allows triple increase in the accuracy, finite
elements number, and radial and axial hierarchical modes numbers.
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 Figure 5: Idealization of the cylindrical thin shell
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 Figure 6: Frequency parameters variation versus the circumferential wave number of a very thin
free-free cylindrical shell (thickness =0.01, height =2m, p=2, q= 12).
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 Figure 7: Frequency parameters variation versus the circumferential wave number base of a free-
clamped very thin cylindrical shell (Thickness =0.01m, height =2m, p=2, q= 12).
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Figure 8: Idealization of the thick hollow cylindrical shell with linearly varying thickness
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 Figure 9: Frequency parameters variation versus the circumferential wave number of a free- free
hollow Cylindrical Shell Of Varying Thickness (Re =Varying, Ri= 0.6m, H =2m, p=8, q=8).
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 Figure 10: Frequency parameters variation versus the circumferential wave number of a free-
clamped hollow Cylindrical Shell Of Varying Thickness (Re =Varying, Ri= 0.6m, H =2m, p=8,
q=8).
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Figure 11: cylindrical shell of linearly varying thickness with a bottom plate
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 Figure 12: Frequency parameters variation versus the circumferential wave number of a cylindri-
cal shell of linearly varying thickness with a free bottom plate.
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 Figure 13: Frequency parameters variation versus the circumferential wave number of a cylindri-
cal shell of linearly varying thickness with a clamped bottom plate.
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