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Abstract

This paper investigates the flexural motions of non-uniform deep beams resting on vari-
able elastic foundation and traversed by harmonic variable magnitude moving loads. The
versatile Galerkin’s method and the integral transform techniques were employed to treat the
coupled second order partial differential equations governing the motion of the vibrating sys-
tem. Analytical solution was obtained for both the transverse displacement response and the
rotation of the non-uniform deep beam. Analytical and Numerical results show that, as the
value of foundation stiffness K increases the deflection profile of the non-uniform deep beam
decreases. It is also found that the critical velocity of the dynamical systems increases with
an increase in the values of foundation stiffness K, thereby reducing the risk of resonance.

Keywords: Flexural motions, Critical velocity, foundation stiffness, Deep beams, transverse
response, Galerkin’s method.

1 Introduction

The vibration analysis of beams or beam-like structural elements has been and continues to be
the subject of numerous researchers, since it embraces a wide class of problems with immense
importance in Engineering Science. However, studies on beam problems have largely been
restricted to the case when the beam structure is uniform. In particular, works on non-uniform
deep beams are not common.

In non-uniform structures, the flexural rigidity and mass per unit length of the beam become
certain functions of the spatial coordinate x in the model equation. This renders the exact
solution to the dynamical problem impossible as the governing partial differential equation now
has variable coefficients.

Among the earliest researchers on the dynamic analysis of an elastic beam was Ayre et al [2]
who studied the effect of the ratio of the weight of the load to the weight of a simply supported
beam for a constantly moving mass load. They obtained the exact solution for the resulting
partial differential equation by using the infinite series method. Kenny [10] similarly studied and
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found the possible velocities for the propagation of free bending waves and studied their relation
to the critical velocity of the beam. He also presented an analytical solution and resonance
diagrams for a constant velocity of a rapidly moving load on an elastic foundation including
the effect of a viscous damping. In a more recent development, Foda and Abduljabbar [7]
worked on the dynamic Green formulation for the response of a beam structure to a moving
mass while Park et al [12] studied the natural frequencies and open-loop responses of an elastic
beam fixed on a moving cart and carrying and intermediate mass. In the same vein, Gbadeyan
and Aiyesimi [9] considered the dynamic response of a simple beam continuously supported
by visco-elastic foundation to a load moving at non-uniform speed. In all the aforementioned
works, investigations were limited to the analysis of beam flexure of Bernoulli-Euler beams
models. Specifically, the effects of shear deformation and rotatory inertia were neglected in the
governing partial differential equations.

Among the few studies on the dynamic analysis of deep beams under moving load include the
work of Djondjorov [6] who investigated the invariant properties of Timoshenko beam equations,
Wang [14] who studied the vibration of multi-span Timoshenko beams to a moving force and
Oni [11] who studied the transverse vibrations under moving loads of deep beams on a variable
elastic foundation. In all their works, it is tacitly assumed that the beam has uniform cross
sections. To the best of authors knowledge, the more practical cases of deep beam moving load
problems in which the beam under consideration is of non-uniform cross-section has not been
tackled.

This paper therefore, is concerned with the problem of the transverse motions of non-
prismatic deep beams resting on variable elastic foundations and subjected to a harmonic mag-
nitude moving load.

2 Mathematical Model

This paper considers the dynamic behaviour of a non-uniform deep beam resting on a variable
elastic foundation when it is under the action of a moving load. The beam’s properties such
as moment of inertia I and the mass per unit length µ of the beam vary along the span L
of the beam. The beam is assumed to maintain contact with the variable subgrade reaction
modulus K0(x) and that there is no friction forces at the interface. The deflection V(x,t) from
the equilibrium and the rotation U(x,t) of the beam under the action of a variable magnitude
moving load is described by the system of partial differential equations

µ(x)
∂2V (x, t)

∂t2
−K∗GA

[
∂2V (x, t)

∂x2
− ∂U(x, t)

∂x

]
+ K0(x)V (x, t) = P (x, t) (1)

and

E
∂

∂x

[
I(x)

∂U(x, t)
∂x

]
+ K∗GA

[
∂V (x, t)

∂x
− U(x, t)

]
− I(x)ρ

∂2U(x, t)
∂t2

= 0 (2)
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where µ(x) is the mass m of the beam per unit length L, K* is a constant dependent on the
shape of the cross-section, G is the modulus of elasticity in the shear, A is the cross-sectional
area, P(x,t) is the harmonic moving force, E is the Young’s modulus of the beam, I(x) is the
variable moment of inertia of the beam cross-section, ρ is the mass of the beam per unit volume
and K0(x) is the variable elastic foundation.

The boundary conditions at the end x = 0 and x = L are given by

V(0,t) = 0; U(0,t) = 0

∂V (L, t)
∂x

= 0;
∂U(L, t)

∂x
= 0 (3)

and the initial conditions are

V (x, 0) = 0 =
∂V (x, 0)

∂t
and U(x, 0) = 0 =

∂U(x, 0)
∂t

(4)

For the variable moment of inertia I and the mass per unit length µ of the beam, we adopt
the example in [8] and take I(x) and µ(x) to be of the form

I(x) = I0

(
1 + sin

πx

L

)3
(5)

and

µ(x) = µ0

(
1 + sin

πx

L

)
(6)

Furthermore, the variable harmonic magnitude moving force P (x, t) acting on the beam is
given by

P (x, t) = P cosω tδ(x− vt) (7a)

where ω is the frequency of the load and δ(•) is the dirac-delta function.
In this paper, we adopt the example in [4] and define the variable elastic foundation K(x) as

K0(x) = K(4x− 3x2 + x3) (7b)

Where K is the foundation modulus constant
When equations (5), (6), (7a) and (7b) are substituted into equations (1) and (2), the result

is a non-homogeneous system of partial differential equations with variable coefficients given by

µ0

(
1 + sin

πx

L

) ∂2V (x, t)

∂t2
−K∗GA

[
∂2V (x, t)

∂x2
− ∂U(x, t)

∂x

]
+ K(4x− 3x2 + x3)V (x, t) = P cos ωtδ(x− vt) (8)
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and

EI0
∂

∂x

[(
1 + sin

πx

L

)3 ∂U(x, t)

∂x

]
+ K∗GA

[
∂V (x, t)

∂x
− U(x, t)

]
− I0

(
1 + sin

πx

L

)3

ρ
∂2U(x, t)

∂t2
= 0 (9)

To the authors best of knowledge, a closed form solution to the simultaneous second order
partial differential equations (8) and (9) does not exist. Consequently, an approximate analytical
solution is desirable to obtain some vital information about the vibrating system.

3 Approximate Analytical Solution

In order to solve the beam problem above, we shall use the versatile solution technique called
Galerkin’s method often used in solving diverse problems involving mechanical vibrations [3, 5,
13]. This solution technique involves solving equations of the form

Θ(V )− P = 0 (10)

where,
Θ is the differential operator, V is the structural displacement and P is the traverse load

acting on the structure. To this effect, the solutions of the system of equations (8) and (9) are
expressed as

Vj(x, t) =
n∑

j=1

Pj(t)Qj(x) (11)

and

Uj(x, t) =
n∑

j=1

Yj(t)Xj(x) (12)

where the functions Qj(x) and Xj(x) are chosen to satisfy the pertinent boundary conditions.
Thus, substituting equations (11) and (12) into the coupled simultaneous ordinary differential
equations (8) and (9) we obtain

n∑
j=1

{
µ0

(
1 + sin

πx

L

)
Qj(x)P̈j(t)−K∗GA

[
Pj(t)Q

′′
j (x)− Yj(x)− Yj(t)X

′
j

]
+ K

(
4x− 3x2 + x3) Pj(t)Qj(x)

}

−PCosωtδ(x− ct) = 0
(13)

and
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n∑
j=1

{
EI0

4

∂

∂x

[(
10 + 15sin

πx

L
− 6cos

2πx

L
− sin

3πx

L

)
X ′

j(x)Yj(t)

]
+ K∗GA

[
Pj(t)Q

′
j − Yj(t)Xj(x)

]

− I0
4

ρ
(
10 + 15sinπx

L
− 6cos 2πx

L
− sin 3πx

L

)
Xj(x)Ÿj(t)

}
= 0

(14)

To determine Pj(t) and Yj(t), the expressions on the left hand sides of equations (13) and
(14) are required to be orthogonal to the functions Qk(x) and Xk(x) respectively. Thus,

∫ L

0

n∑
j=1

{[
µ0

(
1 + sin

πx

L

)
Qj(x)P̈j(t)−K∗GA

[
Pj(t)Q

′′
j (x)− Yj(t)X

′
j

]
+ K

(
4x− 3x2 + x3) Pj(t)Qj(x)

]

−P cosωtδ(x− ct)
}

Qk(x)dx = 0

(15)

and

∫ L

0

n∑
j=1

{
EI0

4

∂

∂x

[(
10 + 15sin

πx

L
− 6cos

2πx

L
− sin

3πx

L

)
X ′

j(x)Yj(t)

]
+ K∗GA

[
Pj(t)Q

′
j − Yj(t)Xj(x)

]

− I0
4

ρ
(
10 + 15sinπx

L
− 6cos 2πx

L
− sin 3πx

L

)
Xj(x)Ÿj(t)

}
Xk(x)dx = 0

(16)

Equations (15) and (16) after some rearrangements and simplifications yield

A1(j, k)P̈j(t) + A2(j, k)Pj(t) + A3(j, k)Yj(t) = P cosωtQk(ct) (17)

and
B1(j, k)Ÿj(t) + B2(j, k)Pj(t) + B3(j, k)Yj(t) = 0 (18)

where

A1(j, k) = µ0

∫ L

0

(
1 + sin

πx

L

)
Qj(x)Qk(x)dx (19a)

A2(j, k) =
∫ L

0

[−K∗GAQ′′
j (x) + K0

(
4x− 3x2 + x3

)
Qj(x)

]
Qk(x)dx (19b)

A3(j, k) = K∗GA

∫ L

0
X ′

j(x)Qk(x)dx (19c)

B1(j, k) = −I0

4
ρ

∫ L

0

(
10 + 15sin

πx

L
− 6cos

2πx

L
− sin

3πx

L

)
Xj(x)Xkdx (19d)

B2(j, k) = K∗GA

∫ L

0
QXj(x)Xk(x)dx (19e)
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and

B3(j, k) =
EI0

4

∫ L

0

∂

∂x

[(
10 + 15sin

πx

L
− 6cos

2πx

L
− sin

3πx

L

)
X ′

j(x)

]
Xk(x)dx−

∫ L

0

K∗GAXj(x)Xk(x)dx

(19f)

Since our beam has simple supports at both ends x = 0 and x = L, we therefore choose the
functions Qj(x) and Xj(x) to be

Qj(x) = sin
jπx

L
(20)

and

Xj(x) = cos
jπx

L
(21)

Thus, in view of (20) and (21), integrals (19a) to (19f) are evaluated to yield

A1(j, k) = µ0


L

2
− 2L

(
1− j2 − k2

)

π
[
1− (j + k)2

] [
1− (j − k)2

]

 (22a)

A2(j, k) = KL2

(
1− L

2
+

L2

8

)
+

K∗GFj2π2

2L
(22b)

A3(j, k) = −K∗GAjπ

2
(22c)

B1(j, k) = −I0ρ

4

[
5L +

120L
(
1− j2 − k2

)

4π
[
(1 + k)2 − j2

] [
(1− k)2 − j2

] − 3L− 24L
(
9− j2 − k2

)

4π
[
(3 + k)2 − j2

] [
(3− k)2 − j2

]
]

(22d)

B2 (j, k) =
K∗GAL

2
(22e)

and

B3 (j, k) = EI0
4

[
− 10j2π2

2L
− 120j2π(1−j2−k2)

4L[(1+k)2−j2][(1−k)2−j2]
− 60jπ

4L

(
(j+k)

[(j+k)2−1]
+ (j−k)

[(j−k)2−1]

)

+ 3π2j2

L
− 12π2j

L
+

24j2π(3−j2−k2)
4L[(3+k)2−j2][(3−k)2−j2]

+ 12jπ
4L

(
(j+k)

[(j+k)2−9]
+ (j−k)

[(j−k)2−9]

) ]
− LK∗GF

2

(22f)

In what follows we subject the system of ordinary differential equations (17) and (18) to a
Laplace transform defined as
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( ·̃ ) =
∫ ∞

0
(·) e−stdt (23)

where s is the Laplace parameter. Applying the initial condition (2.4), we thus obtain the
following algebraic simultaneous equations

(
A1 (j, k) s2 + A2 (j, k)

)
Pj(s) + A3 (j, k) Yj(s) =

P0

2

[
ω + kπv

L

sin
(
ω + kπv

L

) − ω − kπv
L

sin
(
ω − kπv

L

)
]

(24)

and

(
B1 (j, k) s2 + B3 (j, k)

)
Yj(s) + B2 (j, k) Pj(s) = 0 (25)

Solving the simultaneous equations (24) and (25) one obtains

Pj(s) =
P0

(
ω+ kπv

L

s2+(ω+ kπv
L )2 − ω− kπv

L

s2+(ω− kπv
L )2

)(
B1 (j, k) s2 + B3 (j, k)

)

2∆ (j, k)
(26)

and

Yj(s) =
P0

(
ω+ kπv

L

s2+(ω+ kπv
L )2 − ω− kπv

L

s2+(ω− kπv
L )2

)
B2 (j, k)

2∆ (j, k)
(27)

where

∆ (j, k) = A1 (j, k)B1 (j, k) s4 + (A1 (j, k) B3 (j, k) + A2 (j, k) B1 (j, k)) s2 −A3 (j, k) B2 (j, k)
(28)

equation (28) is rearranged to take the form

∆(j, k) = C1

(
s2 + α2

) (
s2 + β2

)
(29)

where

α2 =
C2

2C1
−

√
C2

2

4C2
1

− C3

C1
, β2 =

C2

2C1
+

√
C2

2

4C2
1

− C3

C1
(30)

and

C1 = A1 (j, k) B1 (j, k) ,

C2 = A1 (j, k) B3 (j, k) + A2 (j, k) B1 (j, k) ,

C3 = A2 (j, k) B3 (j, k)−A3 (j, k) B2 (j, k)
(31)
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in view of (29) , equations (26) and (27) after some rearrangements and simplifications yield

Pj (s) =
[

P0B1(j,k)β
2C1(β2−α2)

− P0B3(j,k)
2C1β(β2−α2)

] (
ω1

s2+ω2
1

)(
β

s2+β2

)

−
[

P0B1(j,k)α
2C1(β2−α2)

− P0B3(j,k)
2C1α(β2−α2)

] (
ω1

s2+ω2
1

)(
α

s2+α2

)

−
[

P0B1(j,k)β
2C1(β2−α2)

− P0B3(j,k)
2C1β(β2−α2)

] (
ω2

s2+ω2
2

)(
β

s2+β2

)

−
[

P0B1(j,k)α
2C1(β2−α2)

− P0B3(j,k)
2C1α(β2−α2)

] (
ω2

s2+ω2
2

)(
α

s2+α2

)

(32)

and

Yj (s) = − P0B2 (j, k)

2C1 (β2 − α2)

[
ω1

s2 + ω2
1

· 1

s2 − β2
− ω1

s2 + ω2
1

· 1

s2 − α2
− ω2

s2 + ω2
2

· 1

s2 − β2
− ω2

s2 − ω2
2

· 1

s2 − α2

]
(33)

where

ω1 = ω +
kπv

L
, ω2 = ω − kπv

L
(34)

to obtain the Laplace inversion of equations (32) and (33), use is made of the following
representations

g1 (s) =
ω1

s2 + ω2
1

, f1 (s) =
β

s2 + β2
(35)

g2 (s) =
ω2

s2 + ω2
2

, f2 (s) =
α

s2 + α2
(36)

so that the Laplace inversion of the equation (32) is the convolution of fi ’s and gi ’s defined
as

fi ∗ gj =
∫ t
0 ft (t− u) gj (u) du where i = 1, 2, 3 . . . . . .

j = 1, 2, 3 . . . . . .
(37)

Thus the Laplace inversion of (32) is given by

Pj (t) =
[

P0B1 (j, k) β

2C1 (β2 − α2)
− P0B3 (j, k)

2βC1 (β2 − α2)

]
H1 −

[
P0B1 (j, k) α

2C1 (β2 − α2)
− P0B3 (j, k)

2αC1 (β2 − α2)

]
H2

−
[

P0B1 (j, k) β

2C1 (β2 − α2)
− P0B3 (j, k)

2βC1 (β2 − α2)

]
H3 +

[
P0B1 (j, k) α

2C1 (β2 − α2)
− P0B3 (j, k)

2αC1 (β2 − α2)

]
H4 (38)

where
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H1

∫ t

0
sin β (t− u) sin ω1udu, H2 =

∫ t

0
sin α (t− u) sin ω1udu

H3

∫ t

0
sin β (t− u) sin ω2udu, H4 =

∫ t

0
sin α (t− u) sin ω2udu (39)

In what follows, we shall evaluate integrals (39) above and to do so, we note the following
trigonometric identities namely

∫ t

0
sin B (t− u) sin Audu =

B sin Bt

B2 −A2

[
sin BtCosAt +

A

B
(cos At cos Bt− 1)

]

− B cos Bt

B2 −A2

[
sin At cos Bt− A

B
sin Bt cos At

] (40)

In view of (40), integrals (39) are thus evaluated and we have

H1 =
β sin βt

β2 − ω2
1

[
sin βt cos ω1t +

ω1

β
(cos ω1t cos βt− 1)

]
− β cos βt

β2 − ω2
1

[
sin βt cos ω1t− ω1

β
sin βt cos ω1t

]

H2 =
α sin αt

α2 − ω2
1

[
sin αt cos ω1t +

ω1

α
(cos ω1t cos αt− 1)

]
− α cos αt

α2 − ω2
1

[
sin αt cos ω1t− ω1

α
sin αt cos ω1t

]

H3 =
β sin βt

β2 − ω2
2

[
sin βt cos ω2t +

ω2

β
(cos ω2t cos βt− 1)

]
− β cos βt

β2 − ω2
2

[
sin βt cos ω2t− ω2

β
sin βt cos ω2t

]

H4 =
α sin αt

α2 − ω2
2

[
sin αt cos ω2t +

ω2

α
(cos ω2t cos αt− 1)

]
− α cos αt

α2 − ω2
2

[
sin αt cos ω2t− ω2

α
sin αt cos ω2t

]
(41)

Thus in view of equation (11) taking into account (38) one obtains

Vj (x, t) =
n∑

j=1

{[
P0B1 (j, k)β

2C1 (β2 − α2)
− P0B3 (j, k)

2βC1 (β2 − α2)

]
H1−

[
P0B1 (j, k) α

2C1 (β2 − α2)
− P0B3 (j, k)

2αC1 (β2 − α2)

]
H2

−
[

P0B1 (j, k) β

2C1 (β2 − α2)
− P0B3 (j, k)

2βC1 (β2 − α2)

]
H3+

[
P0B1 (j, k) α

2C1 (β2 − α2)
− P0B3 (j, k)

2αC1 (β2 − α2)

]
H4

}
× sin

jπx

L

(42)
which represents the transverse displacement response of the non-uniform deep beam under

the action of variable magnitude harmonic moving load.
Similarly,

Yj (t) = − P0B2 (j, k)
2C1 (β2 − α2)

[
1
β

H1 − 1
α

H2 − 1
β

H3 +
1
α

H4

]
(43)

which on inversion yields
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Uj (x, t) =
n∑

j=1

−
{

P0B2 (j, k)
2C1 (β2 − α2)

[
1
β

(H1 −H3)− 1
α

(H2 −H4)
]}

× cos
jπx

L
(44)

which is the rotation of the non-uniform deep beam under the action of variable magnitude
harmonic moving load. Using the method of proof presented in [1], it is can be shown that the
series solutions (42) and (44) converge rapidly.

4 Discussion On The Closed Form Solution

In this section, resonance phenomenon of our vibrating system is investigated, because the trans-
verse displacement of elastic deep beam may grow without bound. Equation (42) clearly shows
that the non-uniform elastic deep beam resting on variable elastic foundation will experience
resonance effects whenever

4 [A2 (j, k) B3 (j, k)−A3 (j, k) B2 (j, k)] = [A1 (j, k) B3 (j, k) + A2 (j, k) B1 (j, k)]2 (45)

β2 = ω2
1, β2 = ω2

2 (46)

α2 = ω2
1, α2 = ω2

2 (47)

It is also observed that as the foundation modulli increases the critical speed of the dynamical
system increases thereby reducing the risk of resonant effects.

5 Comments On The Numerical Results

The theory presented in this paper is illustrated numerically. The velocity of the moving load
and the length of the beam are respectively v=8.128m/s and L=12.192. The values of foundation
moduli K are varied between 10000 N/m3 and 150000 N/m3 for ω = 2π

3 .
Figure 1 displays the deflection profile of an elastic deep beams resting on variable elastic

foundation and subjected to variable magnitude moving load. The figure shows that as the
value of foundation stiffness K increases the deflection of the beam at various time t decreases.
In Figures 2 and 3, the graphs of the critical speeds for resonant conditions (46) and (47) have
been plotted against the foundation stiffness K. The graphs show that as the Ko increases, the
critical speeds of the dynamical system increases.

Figure 4 depicts the deflection profile of non-uniform deep beam resting on elastic foundation
and subjected to moving load for various load positions. It is deduced from this figure that the
load position or the point of contact of the load on the structure affect the response amplitude
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Figure 1: Deflection profile of a non-uniform deep beam under a moving load for various values
of foundation stiffeness K.
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Figure 2: Critical velocity versus Foundation moduli K for α2 = ω2
1

Latin American Journal of Solids and Structures 6 (2009)



164 B. Omolofe, S. T. Oni and J. M. Tolorunshagba

 

0 

200 

400 

600 

800 

1000 

1200 

0 100 200 300 400 500 600 

Foundation stiffness (K) (x102) 

C
ri

ti
ca

l v
el

o
ci

ty
 (

x1
04 ) 

Figure 3: Critical velocity versus Foundation moduli K for β2 = ω2
1

of the beam significantly. Figure 5 shows that as we increase the natural frequency w of the
moving load, the transverse displacement response of the non-uniform deep beam under the
action of the fast moving load reduces. Figure 6 clearly shows that the slight differences in the
values of the natural frequency of the traveling load produces slight differences in the critical
velocities of the vibrating system.

6 Concluding Remarks

In this paper, a procedure involving the Galerkin’s method and integral transform technique has
been used to solve the problem of a non-uniform deep beam when it is subjected to a harmonic
variable magnitude moving load. The objective is to study the behaviour of the dynamical
system. In particular, analytical solution in series form is obtained for the deflection and the
rotation of the elastic deep beam and the effects of foundation stiffness K, the natural frequency
w and the various load positions on the vibrating system are investigated. Analytical solution
and Numerical result in plotted curves show that, as the value of foundation stiffness K increases
the deflection profile of the non-uniform deep beam decreases. It is equally observed from figures
2 and 3 that the critical velocities of the dynamical systems increase with an increase in the
values of foundation stiffness K. Thus, in general, higher values of foundation stiffness K reduce
the risk of resonance in a dynamical system involving non-uniform beam under the action of a
moving load.
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Figure 4: Deflection profile of non-uniform deep beam under a moving load at various load
positions x for fixed value of foundation stiffeness K=50000
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Figure 5: Deflection profile of non-uniform deep beam under moving load for various values of
the load natural frequencies and for fixed value of foundation stiffness K = 50000
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Figure 6: Comparison of the graph of critical velocity versus foundation stiffeness k for various
values of natural frequency w
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