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Abstract

Vehicle-pavement coupling systems may produce random vibration due to the road surface
unevenness. In this paper, a Kirchhoff plate with Kelvin foundation is employed to model
the pavement system and the one-dimensional moving element method proposed by Koh
et al. is extended to deal with the random vibration of two-dimensional vehicle-pavement
coupling systems. The plate element stiffness matrix is formulated in a coordinate system
which moves with the load and the equation of motion of the coupled system is established.
The pseudo excitation method is used to analyze random vibration of the coupled system
and the influences on the responses both of the vehicle velocity and of the pavement damping
are investigated by using numerical examples. Hence useful conclusions are drawn.

Keywords: vehicle-pavement coupled systems, random vibration, moving element method,
pseudo excitation method.

1 Introduction

Coupled dynamic analysis of freeway pavement and moving vehicles is a very important topic for
both vehicle manufacture and road construction and so is dealt with in many papers, including
the following. The displacement, stress and strain of pavement systems have often been analyzed
for static loads [5,15]. However, pavement critical responses can be induced by moving dynamic
loads and therefore many studies have sought the dynamic response of pavements subjected
to moving loads, either with the moving loads assumed to be constant [7, 16] or taking into
account the variations of the load amplitude with time due to pavement surface roughness
and the mechanical systems of the vehicles [13, 14]. This paper examines and discusses such
dynamic response of vehicle-pavement systems, building on the sound foundations of the papers
cited in the next paragraph. Kim and Roesset [9] investigated the steady state response of an
infinite plate on an elastic foundation to a harmonic moving rectangular uniform load. Fryba [2]
studied dynamical characteristics of an infinite or finite plate for various boundary conditions.
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Kim [8] used a double Fourier transform to investigate the stability and dynamic displacement
response of an infinite thin plate resting on either Winkler or two-parameter elastic foundations
and subjected to in-plane static compressive forces and a distributed load which moves with a
constant velocity. Huang and Thambiratnam [3] developed a procedure which uses the finite
strip method to treat the response of rectangular plate structures resting on elastic foundations.
Koh et al. [10] proposed a one-dimensional moving element method (MEM) for a train-track
system, which is both relatively flexible and quite accurate. Lin et al. [11] used the pseudo
excitation method (PEM) to investigate the seismic response of long-span structures subjected
to multipoint random ground excitation. Clearly, the random excitation of vehicle-pavement
systems is too complicated a problem for an analytical solution to be obtained and conventional
finite element methods (FEM) are also not practical because they involve unacceptably large
computational effort. Therefore this problem has received much attention. In this paper, the
one-dimensional MEM proposed by Koh et al. is extended to two dimensional problems for
which the vehicle moves on an infinite Kirchhoff plate supported by a Kelvin foundation. The
equation of motion of the vehicle is first derived using a coordinate system which moves with
the vehicle, so that the corresponding dynamic problem can be solved as a quasi-static one. It is
shown that this gives the element stiffness matrices easily and they are simply the corresponding
static element stiffness matrix modified by superposition of terms which account for the velocity
effects. Due to the surface unevenness, the responses of the vehicle-pavement coupled systems are
evidently random. The pseudo excitation method (PEM) [11,12] is herein used to analyze these
random vibration characteristics, and satisfactory results are obtained. Numerical examples are
used to investigate phenomena such as the influences of vehicle velocity and pavement damping
on responses and some conclusions are drawn which are useful for both vehicle manufacture and
road construction.

2 The pavement model and the moving co-ordinate system

A Kirchhoff plate with Kelvin foundation is used as the pavement model (Fig. 1). Its equation
of motion can be written as [6]

D∇2∇2u + µu + η
∂u

∂t
+ m

∂2u

∂t2
= p(t)δ (x− V t) (1)

where ∇ denotes the Laplacian; u = u(x, y, t) represents the deflection of the plate; D =
Eh3/12(1 − υ2) is the plate flexural rigidity; h, E, υ are the thickness, elastic modulus and
Poisson’s ratio of the plate; m and P (t) represent its mass per unit area and external load; µ

and η denote the rigidity and damping of the foundation and; V is the velocity of the load along
the x axis.

For the one-dimensional moving element method (MEM) [10], the elements are formulated in
a co-ordinate system attached to the moving vehicle and so are not physical elements attached
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Figure 1: Kirchhoff plate with Kelvin foundation and moving load P.

to the material, but instead are conceptual elements that ‘flow’ with the moving vehicle along
the pavement. The main advantage is that the moving vehicle is static in this coordinate system,
which avoids the updating of force or displacement vectors due to change of the contact point
with the elements, e.g. it is never necessary to cross from one element into another. In this
paper, MEM is extended to investigate 2D problems by using the Kirchhoff plate of Eq.(1) and
Fig. 1. A segment of the plate is discretized into a finite number of moving elements (Fig. 2),
such that both upstream and downstream ends of the plate segment are sufficiently far from the
contact point of the force for the forces and moments there to be negligible.

m l

i j

P y

x

Figure 2: Discretization of plate into moving elements

Now consider a typical moving square element with nodes i,j,m,l and with its moving coor-
dinates (X,Y ) defined as

X = x− V t, Y = y (2)

The equation of motion of this moving element can be expressed as:

D∇2∇2u + µu + η
(

∂u
∂t − V ∂u

∂X

)

+m
(

∂2u
∂t2

− 2V ∂2u
∂t∂X + V 2 ∂2u

∂X2

)
= pδ (X)

(3)

By means of FEM, the deflection u can be expressed in terms of the nodal displacement
vector ue as
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u = Nue (4)

where N is the shape function vector. For a Kirchhoff plate element with a Kelvin foundation,
the shape function can be written as [1]

N =
{

Ni Nxi Nyi Nj Nxj Nyj

Nm Nxm Nym Nl Nxl
Nyl

}

Nk = (1 + ξ0)(1 + ψ0)(2 + ξ0 + ψ0 − ξ2 − ψ2)/8

Nxk
= −bψk(1 + ξ0)(1 + ψ0)(1− ψ2)/8

Nyk
= −aξk(1 + ξ0)(1 + ψ0)(1− ξ2)/8 (5)

k = i, j,m, l

in which

ξ = (x− xc) /a;ψ = (y − yc) /b;

ξ0 = ξξk; ψ0 = ψψk;

where xc,yc are the central coordinates of the element, which has length a and width b. Note
that most of the elements are not in contact with any loads, so that the force term on the right-
hand side of equation (3) vanishes. By using Galerkin’s approach, i.e. equation (3) is multiplied
by a weighting function (variation) N and integrated over the plate element, the weak Galerkin
form can be obtained as

∫∫
s N [D∇2∇2u + µu + η

(
∂u
∂t − V ∂u

∂X

)
]+∫∫

s N [m
(

∂2u
∂t2

− 2V ∂2u
∂t∂X + V 2 ∂2u

∂X2

)
− pδ (X)] = 0

(6)

Substituting Eqs. (4) and (5) into Eq. (6) gives
∫∫

s

(
BTDB

)
ueds

+
∫∫

s µNTNueds +
∫∫

s η
(

∂ue

∂t NTN − V ∂NT

∂X Nue
)

ds

+
∫∫

s m
(

∂2ue

∂t2
NTN − 2V ∂ue

∂t
∂NT

∂X N + V 2 ∂2NT

∂X2 Nue
)

ds

− ∫∫
s Npδ (X) ds = 0

(7)

in which the element mass, damping and stiffness matrices in the moving coordinate system are,
respectively,
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Ke =
∫∫

s BTDBds + µ
∫∫

s NT Nds

−V η
∫∫

s
∂NT

∂x Nds + mV 2
∫∫

s
∂2NT

∂x2 Nds
(8)

Ce = η

∫∫

s
NTNds− 2V m

∫∫

s

∂NT

∂X
Nds (9)

Me = m

∫∫

s
NTNds (10)

in which B is the 3× 12 matrix:

B = −




∂2Ni
∂x2

∂2Nxi
∂x2

∂2Nyi
∂x2 ...

∂2Nyl
∂x2

∂2Ni
∂y2

∂2Nxi
∂y2

∂2Nyi
∂y2 ...

∂2Nyl
∂y2

2∂2Ni
∂x∂y 2∂2Nxi

∂x∂y 2∂2Nyi
∂x∂y ... 2∂2Nyl

∂x∂y




D =
Eh3

12(1− υ)




1 υ 0
υ 1 0
0 0 (1− υ2)/2




Assembling all element matrices gives the equation of motion of the pavement as

M1
..
u+C1

.
u+K1 u = F1 (11)

where u = { u1 u2 ... un } is the nodal displacement vector. By using MEM the load
velocity, foundation damping and rigidity are all coupled in the element matrices and it is
shown that Eq.(11) below can easily be computed because it is linear and time-independent.

3 Random vibration analysis of vehicle-pavement coupling system

Fig. 3 shows a model of the vehicle-pavement coupling system in which the vehicle model has 4
degrees of freedom (DOF), namely: the vehicle body vertical displacement zc; its rotation in the
x−z plane θ; the front wheel vertical displacement wf and; the rear wheel vertical displacement
wr. The equation of motion of the coupled system in the coordinate system which moves with
the vehicle can be written as

M
′ ..
d +C

′ .
d +K

′
d = F = F1 + F2 (12)

which incorporates Eq.(11). Here, d is the displacement vector of the coupled system; F is the
excitation vector, which includes two parts: F1 caused by gravity acting on the vehicle and F2

caused by the random road surface unevenness. The response induced by F1 is deterministic and
can be computed easily by the two-dimensional moving element method proposed in this paper.
Therefore we focus now on the random vibration analysis of the coupled system caused by F2. It
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Figure 3: Discretization of plate into moving elements

can be reasonably assumed that F2 is a stationary Gaussian process with power spectral density
(PSD) matrix Ss

x(Ω) in the spatial domain. According to random vibration theory, the PSD
matrix St

x(ω) in the time domain is

St
x(ω) =

1
V

Ss
x(Ω) (13)

and the response power spectrum density (PSD) matrix, Sout(ω), can be computed from

Sout(ω) = HT(ω)St
x(ω)H(ω) (14)

where H(ω) is the frequency response matrix. When the system is complicated, using Eq.
(14) to obtain Sout(ω) is very time consuming because it involves many matrix inversion and
multiplication computations. Therefore it is shown at the end of this section that PEM [12]
provides a more efficient way to obtain these response PSDs.

In the vehicle-pavement model the random excitations vectors F2 can be expressed as

F2(t) = ΓR(t) (15)

in which: Γ is a matrix which transforms the wheel forces into the element node force vector F2,
which is related to the position of the vehicle and; R(t) is a vector reflecting the road surface
unevenness such that

R(t) = {r(t), r(t−∆t)} (16)

∆t = (Xr −Xf )/V

Here: r(t) denotes the vertical coordinate of the uneven road surface at the contact point of
the front wheel and the plate; Xf and Xr are the contact locations of the front and rear wheels
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in the moving coordinate system and; ∆t is the time lag between the front and rear wheels.
This can be regarded as a fully coherent multi-excitation problem, and PEM can handle it very
easily, as follows.
1. Constitute a pseudo harmonic excitation

∼
F2(t) = Γ

[
1, e−iω∆t

]T √
Sr(ω)eiωt (17)

where Sr(ω) is the PSD function of r(t).
2. Compute the corresponding harmonic responses

∼
d = H(ω)

∼
F2(t) (18)

where H(ω) is the frequency response matrix. There is no need to compute H(ω) because
Eq.(18) can be replaced by any process for computing the harmonic responses

∼
d.

3. Compute the corresponding PSD

S∼
d
∼
d

(ω) =
∼
d
∗
· ∼d

T
(19)

in which the time terms eiωt and e−iωt in
∼
d
∗

and
∼
d

T
cancel each other out due to the

multiplication, so that S∼
d
∼
d

(ω) is time-independent. It has been proved [11, 12] that Eqs (19)
and (14) lead to the same exact solution, but with PEM being much more efficient. After the
PSD S∼

d
∼
d

has been obtained its standard deviation σdi
is obtained from

σ2
di

=
∫ +∞

−∞
Sdididω (20)

where Sdidi is the PSD of di. The above derivation is in the moving coordinate system, so all
responses are stationary. Then Eq.(2) is used to obtain the non-stationary standard deviation
for a point fixed in the plate.

4 Numerical examples

4.1 Dynamic analysis of a Kirchhoff plate with Kelvin foundation

Consider a constant force moving with steady velocity V along the x axis (y = 0) of a smooth
plate. The computational parameters are: E = 1.516×1010Pa,υ = 0.35,m = 3.66×102kg/m2,h =
0.15m , µ = 9.5× 107N/m3,P = 2.0× 103N ,a = 60m,b = 20m.
The segment of the plate is divided into 60 × 20 moving elements of size 1m × 1m. As the
excitation is a constant force, the response is time invariant in the coordinate system which
moves with the load. As all time derivative terms in equation (11) vanish, no time integration
is necessary even though the response is still dynamic at any point of the plate which is located
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with respect to the fixed coordinates. Fig. 4 shows how the deflections of the plate vary along
the x axis when there is no damping, V = 27.78m/s and the vehicle is at x = 0. The solid
line represents the results obtained using the present method (MEM) and the discrete points
represent the results computed by applying the Newmark method in the fixed coordinate system.
The agreement is excellent and so verifies the present method.
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Figure 4: Plate displacement profile for Example 1

Fig. 5 shows the three-dimensional deflected shape of the plate when t = 0, i.e. when the
force is located at the origin of coordinates. Figs. 5(a) and (b) show the deflected shapes when
V = 27.78m/s and 55.56m/s, respectively, without foundation damping. Clearly, their deflected
shapes are symmetrical about both the x and y axes, with the peak value being 3.085× 10−6m

for (a) and 3.572× 10−6m for (b), so that doubling the velocity caused it to increase by 15.8%.
The velocity for Fig. 5(c) is the same as that for Fig. 5(b), but now there is foundation damping
with η = 1400kN.s/m3. The peak value of (c) is only 1.043×10−6m. The steady state responses
of the plate in the moving co-ordinate system are identical, except for a factor V , to the time-
history curves of a fixed point on the plate. So although this paper only gives the deformation
curves, the time-history curves can readily be derived from them. Fig. 6 shows the responses of
the plate for different damping coefficients and clearly the maximum deflection does not appear
where the force is (i.e. x = 0), but instead is slightly behind it, as is most evident for heavier
damping. For constant load velocity, foundation damping will be the dominant factor influencing
the peak value location, as previously observed [6].

Fig. 7 shows the responses for different velocities and damping coefficient η = 1400 kN.s/m3.
It shows that again these curves are asymmetric, with the peak value occurring slightly behind
the force to an extent which increases as the velocity increases.

To investigate the effect of load velocity and foundation damping more extensively, Ref. [3]

defines the critical plate velocity Vcr =
(

4µD
m2

) 1
4 , the critical foundation damping ηcr = 2

√
µm,

and the dimensionless parameters θ = V
Vcr

and ζ = η
ηcr

. Fig. 8 uses these parameters to illustrate
the influence of load velocity for five alternative foundation damping coefficients. When the
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(a) V = 27.78m/s,η = 0
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(b) V = 55.56m/s,η = 0
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(c) V = 55.56m/s,η = 1400kN.s/m3

Figure 5: Three dimensional deflected shape of the plate
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Figure 6: Deflected shapes along x axis for three values of foundation damping
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Figure 7: Deflected shapes along x axis for three vehicle velocities

foundation damping is smaller than the critical damping (e.g. ζ = 0.5), the change of the
plate response is not pronounced, because it increases slowly with velocity until θ ∼= 1 and then
decreases. When the foundation damping is bigger than the critical damping, (e.g. ζ = 1.5 or
ζ = 2.0), the responses decrease very rapidly with increasing velocity, so that the maximum
response occurs for V = 0.
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Figure 8: Variation of maximum response with velocity

4.2 Coupled random vibration analysis of a vehicle-pavement system

Using the definitions of Fig. 3 and the pavement parameters of Example 1, let the parameters of
a 4-DOF vehicle model [17] be: mc = 708kg,mr = mf = 80kg,J = 1060kg.m2,kr2 = 19326N/m

, kf2 = 20292N/m,cr = cf = 1000N.s/m,lr = 1.308m,lf = 1.168m,kr1 = kf1 = 128760N/m.
The PSD function for the road surface unevenness given by the national standard code

(GB7031) [4, 17] is adopted. In the frequency domain this function can be expressed as:
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St
x (ω) = 2πGqn

2
0

V

ω2

where n0 is a reference frequency which is given the usual value 0.1m−1, while Gq is a coefficient
related to the road grade (16 × 10−6m2/m−1for grade A, 64 × 10−6m2/m−1 for grade B and
256× 10−6m2/m−1 for grade C).

For road grade C and three different velocities, Fig. 9 gives the PSD functions of the vertical
and rotational accelerations of the vehicle body and the vertical accelerations of the front and
rear wheels. The peak values of the three response curves shown in Fig. 9(a) always appear at
1.19Hz, which is the vehicle fundamental frequency, and are higher for higher vehicle velocity.
Note that there are also much lower secondary peaks near 6Hz, the second natural frequency
of the vehicle. The vehicle rotational acceleration PSD curves of Fig. 9(b) behave similarly to
those of Fig. 9(a) except that now the peaks at the second natural frequency of the vehicle can
be higher than those at its fundamental frequency. It would be expected that the peaks for front
and rear wheel vertical acceleration PSD should appear at the natural frequencies of the vehicle
body and this is indeed true, although the peaks at the first natural frequency are too small to
appear to the scale of Figs. 9(c) and (d).

Fig. 10 gives the time-dependent standard deviation curves for vertical displacement of an
arbitrary point fixed in the pavement, with the abscissa being the distance from this point to
the center of gravity of the vehicle. Clearly, velocity affects the pavement responses only very
mildly.

Fig. 11 shows the PSD curves for the same responses as for Fig.9, but now the road grade is
varied at constant velocity 55.56m/s. Clearly, the road condition affects all of these PSD curves
very considerably, e.g. for Fig. 11(a) the PSD peak values for road grades C, B and A are in the
approximate ratios 16 : 4 : 1. Fig. 12 corresponds to Fig. 10, except it gives the time-dependent
standard deviation curves for the displacement of an arbitrary fixed point on the pavement and
clearly shows that the influence of road grade on pavement response is very limited indeed.

5 Conclusions

A computational model has been established for a vehicle-pavement coupled system in a coor-
dinate system which moves with the vehicle. The stiffness matrix has been formulated in this
coordinate system, and hence a 2D moving element method has been established to deal with
the vehicle-pavement coupled vibration problem. The pseudo excitation method has then been
used to analyze the random vibration characteristics, and useful results have been obtained, as
follows.
1. The responses of the plate are influenced by the Kelvin foundation damping coefficient, the
plate parameters and the load velocity. The influences of the foundation damping coefficient and
load velocity on the variation of the deflected shape with x are asymmetric, and are increasingly

Latin American Journal of Solids and Structures 6 (2009)



180 W.T. Xu, J.H. Lin, Y.H. Zhang, D. Kennedy and F.W. Williams

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Velocity=12.7 m/s
Velocity=27.78 m/s
Velocity=55.56 m/s

Frequency Hz 

P
S

D
 

(m
/s

2 )2 /H
z 

(a) Vehicle body vertical acceleration PSD
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(b) Vehicle body rotational acceleration PSD
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(c) Front wheel vertical acceleration PSD
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(d) Rear wheel vertical acceleration PSD

Figure 9: PSDs for vehicle component accelerations

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

Velocity=55.56m/s
Velocity=27.78m/s
Velocity=12.7m/s

x m 

S
ta

nd
ar

d 
de

vi
at

io
n 

m
 

Figure 10: Standard deviation for pavement vertical displacement

Latin American Journal of Solids and Structures 6 (2009)



2D moving finite element method for random vibrations 181

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Grade A
Grade B
Grade C

Frequency Hz 

P
S

D
 

(m
/s

2 )2 /H
z 

(a) Vehicle body vertical acceleration PSD

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Grade A
Grade B
Grade C

Frequency Hz 

P
S

D
 

(r
ad

/s
2 )2 /H

z 
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(c) Front wheel vertical acceleration PSD
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(d) Rear wheel vertical acceleration PSD

Figure 11: PSDs for vehicle component accelerations
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Figure 12: Standard deviation for pavement vertical displacement
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so as the load velocity increases.
2. For different foundation damping coefficients, the effects of the load velocity on the midpoint
responses of plate differ qualitatively. Thus for smaller damping coefficients, the peak value of
a midpoint response appears when the load velocity V is equal to the critical plate velocity,
whereas for bigger damping coefficients it appears when V = 0.
3. For vehicle-pavement coupled systems, resonance appears when the excitation frequency is
close to the vehicle natural frequencies. For a given road grade, the vehicle velocity is the main
factor governing the vehicle vibration; whereas at constant velocity the influence of the grade
of the road surface unevenness has a major effect on vehicle vibration. However, pavement
displacement is almost completely governed by load on the vehicle.
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