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Dynamic response under a moving load of an elastically sup-
ported non-prismatic Bernoulli-Euler beam on variable elastic
foundation

Abstract

The dynamic response under a concentrated moving mass of

an elastically supported non-prismatic Bernoulli-Euler beam

resting on an elastic foundation with stiffness variation is in-

vestigated. For the solution of the fourth order partial differ-

ential equation with singular and variable coefficients, use is

made of the technique based on the Generalized Galerkin’s

Method and the Struble’s asymptotic technique. The nu-

merical results are presented in plotted curves. The results

show that the response amplitudes of the elastically sup-

ported non-prismatic Bernoulli-Euler beam decrease as the

foundation modulli K increases. Also, the displacements of

an elastically supported non-prismatic Bernoulli-Euler beam

resting on a variable elastic foundation, for fixed value of K,

decrease as the pre-stress N increases. The results again

show that the critical speed for the moving mass problem is

reached earlier than that for the moving force problem for

the illustrative examples considered.
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1 INTRODUCTION

The study of dynamical behaviour of structures such as beams and plates, under the action of

moving loads has attracted the attention of several researchers in Engineering, Applied Physics

and Applied Mathematics. Notable among such researchers are Kolousek [6], Clastornik [2],

Sadiku and Leipholz [14] and so on.

In a problem of beam under moving load like this, the effect of the mass of the load is

of great importance since the position of the load changes continuously. Extensive work has

been done on this class of dynamical problems when the structural members have uniform

cross-sections. Work on practical problems involving non-uniform Bernoulli-Euler beam which

is under the action of moving concentrated load is very rare in literature [3]. Such one-

dimensional structures are of variable cross-sections and as such their properties vary with
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respect to the spatial coordinates along the span of the structure. Worthy of mention in this

area of work is the work of Kolousek [6].

Recently, several researchers have made tremendous efforts in the study of dynamics of

structures under moving loads, these include Oni [9], Gbadeyan and Oni [4], Adams [1], Savin

[16], Jia-Jang [18]. In fact, Oni and Awodola [12] considered the flexural motions under

moving loads of elastically supported beams resting on Winkler elastic foundation with stiff-

ness variation. The technique was based on the generalized Galerkin’s method and integral

transformations and the beam was assumed to have uniform cross section. In all of these,

considerations have been limited to cases of uniform beams. Where non-uniform beams are

considered, they are considered only for classical boundary conditions.

Among the recent works is also the work of Oni [8] who considered the response of a non-

uniform thin beam resting on a constant elastic foundation to several moving masses. For the

solution of the problem, he used the versatile technique of Galerkin to reduce the complex

governing fourth order partial differential equation with variable and singular coefficients to

a set of ordinary differential equations. The set of ordinary differential equations was later

simplified and solved using modified asymptotic method of Struble. This work, though im-

pressive, was based only on beam with the classical simply supported end conditions. Other

studies on non-uniform beam include Douglas et al [5], Oni and Awodola [10] and Oni and

Omolofe [13]. I remark here that most of the studies in this area have been treated only for

classical boundary conditions.

Nevertheless, for practical applications in many cases, it is more realistic to consider non-

classical boundary conditions because the ideal boundary conditions can seldom be realized.

A common example is the elastically supported end conditions. As a problem of this kind,

Saito et al [15] presented a theoretical analysis of the steady state response of a plate strip

constrained elastically along its edges against rotation and translation under the action of a

moving transverse line load. The first five speeds of the applied load for which a resonance

effect occurs in the system are plotted as functions of the edge constraint parameters, Wilson

[17] studied the response of a cantilever plate strip restrained elastically against rotation and

subjected to a moving normal line load. Also Muscolino et al [7] considered the response of

beams resting on viscoelastically damped foundation to moving oscillators.

The results of these works on non-classical boundary conditions could seriously be mislead-

ing as only the force effect of the moving load is taken into consideration in their calculations

while the inertia effect is neglected. Thus, the problem of the dynamic response under concen-

trated moving mass of an elastically supported non-prismatic Bernoulli-Euler beam on variable

elastic foundation is investigated in this paper.

2 THE GOVERNING EQUATION

The problem of the dynamic response of elastically supported non-uniform Bernoulli-Euler

beam resting on variable Winkler elastic foundation and traversed by moving loads is governed

by the fourth order partial differential equation given by
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∂2

∂x2
[EI(x)∂

2U(x, t)
∂x2

] + µ(x)∂
2U(x, t)
∂t2

−N ∂2U(x, t)
∂x2

+Mδ(x − ct) [ ∂
2

∂t2
+ 2c ∂2

∂x∂t
+ c2 ∂

2

∂x2
]U(x, t) + k(x)U(x, t) =Mgδ(x − ct)

(1)

where E is the Young’s Modulus, U(x, t) is the transverse displacement, k(x) is the variable

elastic foundation, µ(x) is the variable mass per unit length of the beam, I(x) is the variable

moment of inertia, N is the pre-stress and x, t are respectively spatial and time coordinates.

An example of variable elastic foundation of the form [3]

k(x) =K(4x − 3x2 + x3) (2)

is adopted, where K is the foundation modulus.

Next, the example in Oni [8] shall be adopted and I(x) and µ(x) take the forms

I(x) = I0 (1 + sin
πx

L
)
3

(3)

and

µ(x) = µ0 (1 + sin
πx

L
) (4)

where I0 and µ0 are constants.

Substituting equations (2) and (3) and (4) into equation (1), one obtains

EI0
∂2

∂x2
[(1 + sin πx

L
)
3 ∂2U(x, t)

∂x2
] + µ0 (1 + sin

πx

L
) ∂

2U(x, t)
∂t2

−N ∂2U(x, t)
∂x2

+Mδ(x − ct) [ ∂
2

∂t2
+ 2c ∂2

∂x∂t
+ c2 ∂

2

∂x2
]U(x, t) +K(4x − 3x2 + x3)U(x, t) =Mgδ(x − ct)

(5)

which, on further simplification, yields

EI0
4
[(10 + 15 sin πx

L
− 6 cos 2πx

L
− sin 3πx

L
) ∂

4U(x, t)
∂x4

+ (30π
L

cos
πx

L
+ 24π

L
sin

2πx

L
− 6π

L
cos

3πx

L
) ∂

3U(x, t)
∂x3

+(24π
2

L2
cos

2πx

L
− 15π2

L2
sin

πx

L
+ 9π2

L2
sin

3πx

L
) ∂

2U(x, t)
∂x2

]

+ µ0 (1 + sin
πx

L
) ∂

2U(x, t)
∂t2

−N ∂2U(x, t)
∂x2

+Mδ(x − ct) [ ∂
2

∂t2
+ 2c ∂2

∂x∂t
+ c2 ∂

2

∂x2
]U(x, t)

+K (4x − 3x2 + x3)U(x, t) =Mgδ(x − ct)

(6)
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We shall consider the case when the non-uniform Bernoulli-Euler beam has classical bound-

ary conditions at the end x = 0 and is elastically supported at the other end x = L. We shall

thereafter consider the Bernoulli-Euler beam elastically supported at both ends.

Thus, in the first instance, the associated boundary conditions at x = 0 can be any of

U(0, t) = 0 = U1(0, t) (7a)

U(0, t) = 0 = U11(0, t) (7b)

U111(0, t) = 0 = U11(0, t) and (7c)

U1(0, t) = 0 = U111(0, t) (7d)

while for the end x = L, we have

U11(L, t) − k1U1(L, t) = 0 and (8a)

U111(L, t) + k2U(L, t) = 0 (8b)

where k1 is the stiffness against rotation and k2 is the stiffness against translation. It is clear

that when k1 = 0 and k2 =∞ we have the simply supported end, when k1 =∞ and k2 =∞ we

have the Clamped end, when k1 = 0 and k2 = 0 we have the Free end and when k1 = ∞ and

k2 = 0 we have the Sliding end.

A Bernoulli-Euler beam elastically supported at both ends is considered next, and the

boundary conditions are:

U11(0, t) − k1U1(0, t) = 0 and U111(0, t) + k2U(0, t) = 0 at x = 0 (9a)

and

U11(L, t) − k1U1(L, t) = 0andU111(L, t) + k2U(L, t) = 0 at x = L (9b)

The initial conditions without any loss of generality are taken as

U(x,0) = 0 = ∂U(x,0)
∂t

(10)

3 ANALYTICAL APPROXIMATE SOLUTION

Evidently, a closed form solution of the partial differential equation (6) does not exist. Thus,

the Galerkin’s method described in Oni and Awodola [11] is employed to reduce the equation

to a sequence of ordinary differential equations. Thus a solution of the form

Un(x, t) =
n

∑
m=1

Wm(t)Vm(x), (11)

where Vm(x) is chosen such that the desired boundary conditions are satisfied, is sought.

Equation (11) when substituted into equation (6) yields
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n

∑
m=1
{EI0

4
[(10 + 15 sin πx

L
− 6 cos 2πx

L
− sin 3πx

L
)V iv

m (x)

+ (30π
L

cos
πx

L
+ 24π

L
sin

2πx

L
− 6π

L
cos

3πx

L
)V 111

m (x)

+(9π
2

L2
sin

3πx

L
+ 24π2

L2
cos

2πx

L
− 15π2

L2
sin

πx

L
)V 11

m (x)]Wm(t)

+ µ0 (1 + sin
πx

L
)Vm(x)

●●
W
m
(t) −NV 11

m (x)Wm(t)

+Mδ(x − ct) [Vm(x)
●●
W
m
(t) + 2cV 1

m(x)
●
W
m
(t) + c2V 11

m (x)Wm(t)]

+K (4x − 3x2 + x3)Vm(x)Wm(t) −Mgδ(x − ct) } = 0

(12)

In order to determine Wm(t), it is required that the expression on the left hand side of

equation (12) be orthogonal to the function Vk(x). Thus,

∫
L

0

n

∑
m=1
{EI0

4
[(10 + 15 sin πx

L
− 6 cos 2πx

L
− sin 3πx

L
)V iv

m (x)

+ (30π
L

cos
πx

L
+ 24π

L
sin

2πx

L
− 6π

L
cos

3πx

L
)V 111

m (x)

+(9π
2

L2
sin

3πx

L
+ 24π2

L2
cos

2πx

L
− 15π2

L2
sin

πx

L
)V 11

m (x)]Wm(t)

+ µ0 (1 + sin
πx

L
)Vm(x)

●●
W
m
(t) −NV 11

m (x)Wm(t)

+Mδ(x − ct) [Vm(x)
●●
W
m
(t) + 2cV 1

m(x)
●
W
m
(t) + c2V 11

m (x)Wm(t)]

+K (4x − 3x2 + x3)Vm(x)Wm(t) −Mgδ(x − ct) }Vk(x)dx = 0

(13)

When equation (13) is further simplified and rearranged, one obtains

n

∑
m=1
{[ρ1 + ρ2]

●●
W
m
(t) + EI0

4µ0
[10ρ3 + 15ρ4 − 6ρ5 − ρ6 +

6π

L
(5ρ7 + 4ρ8 − ρ9)

+ 3π2

L2
(3ρ10 + 8ρ11 − 5ρ12 −

4L2N

3EI0π2
ρ13) +

4K

EI0
(4ρ14 − 3ρ15 + ρ16)]Wm(t)

+M
µ0
[ρ17(t)

●●
W
m
(t) + 2cρ18(t)

●
W
m
(t) + c2ρ19(t)Wm(t)]} =

Mg

µ0
ρ20(t)

(14)
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where

ρ1 = ∫
L

0
Vm(x)Vk(x)dx ; ρ2 = ∫

L

0
sin

πx

L
Vm(x)Vk(x)dx ;

ρ3 = ∫
L

0
V iv
m (x)Vk(x)dx ; ρ4 = ∫

L

0
sin

πx

L
V iv
m (x)Vk(x)dx ;

ρ5 = ∫
L

0
cos

2πx

L
V iv
m (x)Vk(x)dx ; ρ6 = ∫

L

0
sin

3πx

L
V iv
m (x)Vk(x)dx ;

ρ7 = ∫
L

0
cos

πx

L
V 111
m (x)Vk(x)dx ; ρ8 = ∫

L

0
sin

2πx

L
V 111
m (x)Vk(x)dx ;

ρ9 = ∫
L

0
cos

3πx

L
V 111
m (x)Vk(x)dx ; ρ10 = ∫

L

0
sin

3πx

L
V 11
m (x)Vk(x)dx ;

ρ11 = ∫
L

0
cos

2πx

L
V 11
m (x)Vk(x)dx ; ρ12 = ∫

L

0
sin

πx

L
V 11
m (x)Vk(x)dx ;

ρ13 = ∫
L

0
V 11
m (x)Vk(x)dx ; ρ14 = ∫

L

0
xVm(x)Vk(x)dx ;

ρ15 = ∫
L

0
x2Vm(x)Vk(x)dx ; ρ16 = ∫

L

0
x3Vm(x)Vk(x)dx ;

ρ17 = ∫
L

0
δ(x − ct)Vm(x)Vk(x)dx ; ρ18 = ∫

L

0
δ(x − ct)V 1

m(x)Vk(x)dx ;

ρ19 = ∫
L

0
δ(x − ct)V 11

m (x)Vk(x)dx ; ρ20 = ∫
L

0
δ(x − ct)Vk(x)dx ;

The Dirac-delta function as an even function can be expressed as

δ(x − ct) = 1

L
+ 2

L

∞
∑
n=1

cos
nπct

L
cos

nπx

L
(15)

Substituting (15) into equation (14), the equation, after some rearrangements takes the

form

n

∑
m=1
{β1(m,k)

●●
W
m
(t) + β2(m,k) Wm(t)

+ M

Lµ0
[(β3A(m,k) + 2

∞
∑
n=1

cos
nπct

L
β3B(n,m,k))

●●
W
m
(t)

+ 2c(β4A(m,k) + 2
∞
∑
n=1

cos
nπct

L
β4B(n,m, k))

●
W
m
(t)

+c2 (β5A(m,k) + 2
∞
∑
n=1

cos
nπct

L
β5B(n,m,k))Wm(t)] } =

Mg

µ0
Vk(ct)

(16)

where

β1(m,k) = ρ1 + ρ2 ;
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β2(m,k) =
EI0
4µ0
[10ρ3 + 15ρ4 − 6ρ5 − ρ6 +

6π

L
(5ρ7 + 4ρ8 − ρ9)

+ 3π2

L2
(3ρ10 + 8ρ11 − 5ρ12 −

4L2N

3EI0π2
ρ13) +

4K

EI0
(4ρ14 − 3ρ15 + ρ16)]

β3A(m,k) = ∫
L

0
Vm(x)Vk(x)dx ;

β3B(n,m,k) = ∫
L

0
cos

nπx

L
Vm(x)Vk(x)dx ;

β4A(m,k) = ∫
L

0
V 1
m(x)Vk(x)dx ;

β4B(n,m,k) = ∫
L

0
cos

nπx

L
V 1
m(x)Vk(x)dx ;

β5A(m,k) = ∫
L

0
V 11
m (x)Vk(x)dx ;

β5B(n,m,k) = ∫
L

0
cos

nπx

L
V 11
m (x)Vk(x)dx

A solution valid for all cases of boundary conditions is sought. Consequently, Vm(x) is
chosen as the beam function given as

Vm(x) = sin
θmx

L
+Am cos

θmx

L
+Bm sinh

θmx

L
+Cm cosh

θmx

L
(18)

where the constants Am, Bm, Cm, and the mode frequency θm are determined by using the

desired ends support conditions. Thus neglecting the summation sign and substituting (18)

into equation (16) yields

{β1(m,k)
●●
W
m
(t) + β2(m,k) Wm(t)

+ Γa [(β3A(m,k) + 2
∞
∑
n=1

cos
nπct

L
β3B(n,m,k))

●●
W
m
(t)

+ 2c(β4A(m,k) + 2
∞
∑
n=1

cos
nπct

L
β4B(n,m,k))

●
W
m
(t)

+c2 (β5A(m,k) + 2
∞
∑
n=1

cos
nπct

L
β5B(n,m,k))Wm(t)] }

= Mg

µ0
[sin θkct

L
+Ak cos

θkct

L
+Bk sinh

θkct

L
+Ck cosh

θkct

L
]

(19)

where

Γa =
M

Lµ0
(20)
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Evidently, an exact analytical solution to equation (19) is not possible. Thus a modifica-

tion of Struble’s technique discussed in Oni [8] is employed. Consequently, equation (19) is

rearranged to take the form

●●
W
m
(t) +

2cΓa (β4A(m,k) + 2β4B(m,k) cos πct
L
)

β1(m,k) + Γa (β3A(m,k) + 2β3B(m,k) cos πct
L
)
●
W
m
(t)

+
[β2(m,k) + c2Γa (β5A(m,k) + 2β5B(m,k) cos πct

L
)]

β1(m,k) + Γa (β3A(m,k) + 2β3B(m,k) cos πct
L
)

Wm(t)

=
ΓagL [sin θkct

L
+Ak cos

θkct
L
+Bk sinh

θkct
L
+Ck cosh

θkct
L
]

β1(m,k) + Γa (β3A(m,k) + 2β3B(m,k) cos πct
L
)

(21)

The homogenous part of equation (21) is first considered and a modified frequency corre-

sponding to the frequency of the free system due to the presence of moving mass is sought.

An equivalent free system operator defined by the modified frequency then replaces equation

(21). To do this, consider a parameter ε < 1 for any arbitrary mass ratio Γa defined as

ε = Γa

1 + Γa
(22)

It follows that

Γa = ε [1 + o(ε) + o(ε2) + . . .] (23)

Consequently,

1

β1(m,k) + ε (β3A(m,k) + 2β3B(m,k) cos πct
L
)

= 1

β1(m,k)
[1 − 1

β1(m,k)
ε(β3A(m,k) + 2β3B(m,k) cos

πct

L
) + o(ε2) + . . .]

(24)

where

∣ ε

β1(m,k)
(β3A(m,k) + 2β3B(m,k) cos

πct

L
)∣ < 1 (25)

which implies that all the coefficients of Wm(t) and its derivatives in equation (21) can be

written in terms of the parameter ϵ. When ϵ is set to zero in equation (21), a situation

corresponding to the case in which the inertia effect of the mass of the system is regarded as

negligible is obtained. In such a case, the solution is of the form

Wm(t) = Cm cos(γmt − ϕm) (26)

where
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Cm and ϕm are constants and γ2m =
β2(m,k)
β1(m,k)

(27)

However, since for any arbitrary mass ratio Γa, we always have ε < 1, then Struble’s

technique requires that the solution of the homogenous part of equation (21) be given in an

asymptotic form, namely

Wm(t) = φ(m, t) cos[γmt −Ω(m, t)] + εW1(t) + o(ε2) (28)

Substituting equation (28) and its derivatives into the homogenous part of equation (21)

one obtains

− 2γm
●
φ(m, t) sin[γmt −Ω(m, t)] + 2γmφ(m, t)

●
Ω(m, t) cos[γmt −Ω(m, t)] − φ(m, t)γ2m cos[γmt −Ω(m, t)]

+ 2cε

β1(m,k)
[β4A(m,k) + 2β4B(m,k) cos

π ct

L
] [−φ(m, t)γm sin[γmt −Ω(m, t)]]

+ {β2(m,k)
β1(m,k)

− εβ2(m,k)
β2
1(m,k)

[β3A(m,k) + 2β3B(m,k) cos
π ct

L
]

+ c2ε

β1(m,k)
[β5A(m,k) + 2β5B(m,k) cos

π ct

L
]} [φ(m, t) cos[γmt −Ω(m, t)]] = 0

(29)

where terms higher than o(ε) have been neglected.

The variational equations are obtained by equating the coefficients of sin[γmt − Ω(m, t)]
and cos[γmt −Ω(m, t)] terms on both sides of the equation (29). Thus, we note that

cos
π ct

L
sin[γmt −Ω(m, t)] =

1

2
sin [π ct

L
+ γmt −Ω(m, t)] +

1

2
sin [γmt −Ω(m, t) −

π ct

L
]

and

cos
π ct

L
cos[γmt −Ω(m, t)] =

1

2
cos [π ct

L
+ γmt −Ω(m, t)] +

1

2
cos [π ct

L
− γmt +Ω(m, t)]

and neglecting those terms that do not contribute to the variational equations, equation (29)

reduces to

2γmφ(m, t)
●
Ω(m, t) cos[γmt −Ω(m, t)] − 2γm

●
φ(m, t) sin[γmt −Ω(m, t)]

− φ(m, t)γ2m cos[γmt −Ω(m, t)] −
2cε

β1(m,k)
φ(m, t)γmβ4A(m,k) sin[γmt −Ω(m, t)]

+ γ2mφ(m, t) cos[γmt −Ω(m, t)] −
εγ2m

β1(m,k)
β3A(m,k)φ(m, t) cos[γmt −Ω(m, t)]

+ c2ε

β1(m,k)
β5A(m,k)φ(m, t) cos[γmt −Ω(m, t)] = 0

(30)
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The variational equations of the problem are obtained respectively as

2γmφ(m, t)
●
Ω(m, t) −

εγ2mβ3A(m,k)φ(m, t)
β1(m,k)

+ εc
2β5A(m,k)φ(m, t)

β1(m,k)
= 0 (31)

and

γm
●
φ(m, t) + εcγmβ4A(m,k)φ(m, t)

β1(m,k)
= 0 (32)

Rearranging equations (31) and (32), we have

●
Ω(m, t) =

ε[γ2mβ3A(m,k) − c2β5A(m,k)]
2γmβ1(m,k)

(33)

and
●
φ(m, t) = −εcβ4A(m,k)φ(m, t)

β1(m,k)
= 0 (34)

Solving equations (33) and (34) respectively yields

Ω(m, t) = ε[γ
2
mβ3A(m,k) − c2β5A(m,k)] t

2γmβ1(m,k)
+Ωm (35)

where Ωm is a constant and

φ(m, t) = ϕ0e(−η
0t) (36)

where η0 = εcβ4A(m,k)
β1(m,k) and ϕ0 is a constant.

Therefore, when the effect of the mass of the particle is considered, the first approximation

to the homogenous system is

Wm(t) = φ(m, t) cos[ωmt −Ωm] (37)

where

ωm = γm −
ε[γ2mβ3A(m,k) − c2β5A(m,k)]

2γmβ1(m,k)
(38)

is called the modified natural frequency representing the frequency of the free system due to

the presence of the moving mass.

In view of (37), the homogenous part of the equation (21) can be written as

d2Wm(t)
dt2

+ ω2
mWm(t) = 0 (39)

while the entire equation (21) takes the form

d2Wm(t)
dt2

+ ω2
mWm(t) = R0 [sin

θkct

L
+Ak cos

θkct

L
+Bk sinh

θkct

L
+Ck cosh

θkct

L
] (40)
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where R0 = εLg
β1(m,k) .

Using Laplace transformation technique and the convolution theory, expression for Wm(t)
is obtained and in view of equation (11) taking (18) into consideration, one obtains

Un(x, t) =
n

∑
m=1

R0

ωm [ω4
m − p4k]

{ [ω2
m + p2k] [Akωm (cos(pkt) − cos(ωmt)) − (pk sin(ωmt) − ωm sin(pkt))]

+ [ω2
m − p2k] [Ckωm (cosh(pkt) − cos(ωmt)) +Bk (ωm sinh(pkt) − pk sin(ωmt))] } [sin

θmx

L
+Am cos

θmx

L

+Bm sinh
θmx

L
+Cm cosh

θmx

L
]

(41)

where

pk =
θkc

L
(42)

Equation (41) represents the response to a moving mass of an elastically supported non-

prismatic Bernoulli-Euler beam resting on a variable elastic foundation. The corresponding

moving force solution is

Un(x, t) =
n

∑
m=1

A0
m

γm [γ4m − p4k]
{ [γ2m + p2k] [Akγm (cos(pkt) − cos(γmt)) − (pk sin(γmt) − γm sin(pkt))]

+ [γ2m − p2k] [Ckγm (cosh(pkt) − cos(γmt)) +Bk (γm sinh(pkt) − pk sin(γmt))] } [sin
θmx

L
+Am cos

θmx

L

+Bm sinh
θmx

L
+Cm cosh

θmx

L
]

(43)

where A0
m =

Mg
µ0β1(m,k) .

4 ILLUSTRATIVE EXAMPLES

For the illustration of the results in the foregoing analysis, we provide some examples;

1. Simple-Elastic non-uniform Bernoulli-Euler beam

2. Elastic-Elastic non-uniform Bernoulli-Euler beam

4.1 Simple-elastic non-uniform Bernoulli-Euler beam

In this case, the beam is simply supported at one end and elastically supported at the other

end. Hence, the deflection and the bending moment vanish for the non-uniform Bernoulli-Euler

beam simply supported at the end x = 0. Thus,

U(0, t) = 0 = U11(0, t) (44)
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while at the other end x = L, the beam is elastically supported and we have

U11(L, t) − k1U1(L, t) = 0 = U111(L, t) + k2U(L, t) (45)

and hence for the normal modes

Vm(0) = 0 = V 11
m (0) at x = 0 (46)

and

V 11
m (L) − k1V 1

m(L) = 0 = V 111
m (L) + k2Vm(L) at x = L (47)

It can therefore be shown that

Am = Cm = 0 and Bm =
k1 cos θm + θm

L
sin θm

θm
L

sinh θm − k1 cosh θm
=

θ3
m

L3 cos θm − k2 sin θm
θ3
m

L3 cosh θm + k2 sinh θm
(48)

Thus we have

tan θm = tanh θm (49)

as the frequency equation for the dynamical problem, such that

θ1 = 3.927 , θ2 = 7.069 , θ3 = 10.210, . . . (50)

Using (48) and (50) in equations (41) and (43) one obtains the displacement response

respectively to a moving mass and a moving force of simple-elastic ends non-uniform Bernoulli-

Euler beam on a variable elastic foundation.

4.2 Elastic-elastic non-uniform Bernoulli-Euler beam

Here, the non-uniform Bernoulli-Euler beam on variable foundation is taken to be elastically

supported both at both ends x = 0 and x = L, the conditions are expressed as

U11(0, t) − k1U1(0, t) = 0 = U111(0, t) + k2U(0, t) (51)

and

U11(L, t) − k1U1(L, t) = 0 = U111(L, t) + k2U(L, t) (52)

Similarly, for normal modes

V 11
m (0) − k1V 1

m(0) = 0 = V 111
m (0) + k2Vm(0) (53)

and

V 11
m (L) − k1V 1

m(L) = 0 = V 111
m (L) + k2Vm(L) (54)
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Thus, following the same procedure, we have

Cm =
[θm

L
− k1r2] sin θm + [k1 + r2θm

L
] cos θm − r1θm

L
sinh θm + k1r1 cosh θm

k1r1 sin θm − r1θm
L

cos θm + [r3θmL
− k1] sinh θm + [θmL − k1r3] cosh θm

=
− [r2θ

3
m

L3 + k2] sin θm + [
θ3
m

L3 − k2r2] cos θm − k2r1 sinh θm −
r1θ

3
m

L3 cosh θm

r1θ3
m

L3 sin θm + k2r1 cos θm + [θ
3
m

L3 + k2r3] sinh θm + [
r3θ3

m

L3 + k2] cosh θm

(55)

Am = r1Cm + r2 and Bm = r3Cm + r1 (56)

where

r1 =
θ4
m

L4 + k1k2
θ4
m

L4 − k1k2
; r2 =

−2k1θ
3
m

L3

θ4
m

L4 − k1k2
and r3 =

−2k2θm
L

θ4
m

L4 − k1k2
.

The frequency equation for the dynamical problem is obtained as

tan θm = tanh θm (57)

such that

θ1 = 3.927 , θ2 = 7.069 , θ3 = 10.210, . . . (58)

Using equations (55), (56) and (58) in equations (41) and (43) one obtains the displacement

response respectively to a moving mass and a moving force of non-uniform Bernoulli-Euler

beam elastically supported at both ends and resting on a variable Winkler elastic foundation.

5 DISCUSSION OF THE ANALYTICAL SOLUTIONS

We shall examine the phenomenon of resonance in this section. Equation (43) reveals clearly

that the non-uniform Bernoulli-Euler beam on a variable foundation and traversed by a moving

force encounters a resonance effect when

γm =
θkc

L
(59)

while equation (41) shows that the same beam under the action of a moving mass reaches the

state of resonance whenever

ωm =
θkc

L
(60)

where ωm = γm − ε[γ2
mβ3A(m,k)−c2β5A(m,k)]

2γmβ1(m,k) .

Thus,

ωm =
γm [β1(m,k) − ε

2
(β3A(m,k) − c2β5A(m,k)

γ2
m

)]
β1(m,k)

= θkc
L

(61)
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Clearly 1 − ε
2
(γ

2
mβ3A(m,k)−c2β5A(m,k)

γ2
mβ1(m,k) ) < 1 for all m.

Consequently, for the same natural frequency, the critical speed (and the natural frequency)

for the moving mass problem is smaller than that of the moving force problem. Thus, the

resonance is reached earlier in the moving mass system than in the moving force system.

6 NUMERICAL CALCULATION AND DISCUSSIONS OF RESULTS

To illustrate the foregoing analysis, the non-uniform Bernoulli-Euler beam of length 12.192m

is considered. Furthermore, the moving load is assumed to travel at the constant velocity of

8.123m/s, EI and M/Lµ are chosen to be 6.068x106m3/s2 and 0.25 respectively. The results are

as shown on the various graphs below for the classes of boundary conditions so far considered.

6.1 Simple-elastic ends

Figures 1 and 2 present the effect of pre-stress (N) on the transverse deflection of the non-

uniform beam, simply supported at one end and elastically supported at the other end, in both

cases of moving force and moving mass respectively. The graphs show that an increase in the

pre-stress decreases the deflection of the beam.
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Figure 1 Deflection of moving force for Simple-Elastic non-uniform Bernoulli-Euler beam on variable elastic
foundation for various values of pre-stress N .

For the purpose of comparison, the displacement curves of the moving force and moving

mass for the beam, with one end simply supported and the other end elastically supported are

illustrated in Figure 3. It is seen that the response amplitude of a moving mass is greater than

that of a moving force problem.
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Figure 2 Displacement response of moving mass for Simple-Elastic non-uniform Bernoulli-Euler beam on vari-
able elastic foundation for various values of pre-stress N .
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Figure 3 Comparison of moving force and moving mass for Simple-Elastic non-uniform Bernoulli-Euler beam
on variable elastic foundation.

6.2 Elastic-elastic ends

It is observed in Figures 4 and 5 that as the value of the foundation modulus K increase

the deflection amplitude of the elastic-elastic Bernoulli-Euler beam decreases for both cases of

moving force and moving mass respectively.

Table 1 compares the displacement response of the moving force and moving mass for a

Bernoulli-Euler beam, elastically supported at both ends, for fixed values of K and N . It is

shown that the displacement response of the moving mass problem is greater than that of the

moving force problem.
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Figure 4 Deflection of moving force for Elastic-Elastic non-uniform Bernoulli-Euler beam on variable elastic
foundation for various values of foundation modulus K.
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Figure 5 Displacement response of moving mass for Elastic-Elastic non-uniform Bernoulli-Euler beam on vari-
able elastic foundation for various values of foundation modulus K.
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Table 1 Displacement response of the moving force and moving mass for a Bernoulli-Euler beam, elastically
supported at both ends, for fixed values of K and N .

S/N T(sec.) MOVING FORCE MOVING MASS

1 0 0 0

2 0.1 1.60E-05 1.60E-05

3 0.2 6.76E-05 6.78E-05

4 0.3 1.25E-04 1.26E-04

5 0.4 1.73E-04 1.74E-04

6 0.5 2.32E-04 2.33E-04

7 0.6 2.94E-04 2.95E-04

8 0.7 3.28E-04 3.30E-04

9 0.8 3.49E-04 3.51E-04

10 0.9 3.73E-04 3.74E-04

11 1 3.74E-04 3.76E-04

12 1.1 3.51E-04 3.53E-04

13 1.2 3.35E-04 3.36E-04

14 1.3 3.22E-04 3.23E-04

15 1.4 2.97E-04 2.98E-04

7 CONCLUSION

The problem of the dynamic response under a moving load of an elastically supported non-

prismatic Bernoulli-Euler beam on variable Winkler elastic foundation has been solved. The

elegant Galerkin’s method is used to reduce the governing fourth order partial differential equa-

tions and a modification of the Struble’s technique is employed for the solutions of the resulting

Galerkin’s equations. The numerical analyses carried out show that as the foundation modulli

K increases, the response amplitudes of the elastically supported non-uniform Bernoulli-Euler

beam decrease and that for fixed value of K, the displacements of an elastically supported

non-uniform Bernoulli-Euler beam resting on a variable Winkler elastic foundation decrease

as the pre-stress N increases.

Furthermore, for fixed K and N , the response amplitude for the moving mass problem is

greater than that for the moving force problem for the illustrative examples so far considered.

Also, as the pre-stress increases, the critical speed of the elastically supported non-uniform

Bernoulli-Euler beam increases.

Finally, in the illustrative examples so far considered, for the same natural frequency, the

critical speed for the moving mass problem is smaller than that of the moving force problem.

Consequently, the moving force solution cannot be a save approximation to the moving mass

solution.
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